不同因素对六盘山地区甘肃鼢鼠肠道细菌多样性的影响
作者:
基金项目:

林木重大生物灾害扩散流行的生态适应与分子基础(2017YFD0600100)


Effects of the three factors on intestinal bacterial diversity of Eospalax cansus in the region of Liupan Mountains
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [44]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的]研究甘肃鼢鼠肠道细菌的群落结构和多样性,探讨不同环境因素对六盘山地区甘肃鼢鼠肠道细菌多样性的影响。[方法]通过Illumina高通量测序技术,对甘肃鼢鼠的36个盲肠样品进行16S rRNA V3-V4区的高通量测序,分析了肠道细菌多样性、丰度和群落结构,探讨地域、性别和季节等因素对甘肃鼢鼠肠道细菌多样性的影响。[结果]甘肃鼢鼠肠道细菌群落主要包括3个门,其中Firmicutes门占主导地位,其次是Bacteroidetes和Proteobacteri。在属水平,优势菌属分别为OscillospiraRuminococcusCoprococcusDesulfovibrio等。不同县(区)样品中,彭阳县、隆德县和泾源县三个县的甘肃鼢鼠肠道细菌菌群结构相似度较高,海原县甘肃鼢鼠肠道细菌群落结构在组内相似度高,与其他县(区)相似度低;雌性甘肃鼢鼠肠道细菌群落结构相似性高,而雄性细菌群落结构在样品间差异较大;甘肃鼢鼠肠道细菌菌群多样性秋季显著高于春季,细菌群落结构相似度秋季高于春季。[结论]不同地域、性别和季节因素对甘肃鼢鼠肠道细菌群落结构产生显著的影响,甘肃鼢鼠肠道细菌群落结构和多样性的变化对基于食源的季节性变化具有积极的响应。

    Abstract:

    [Objective] We studied the influence of three factors (region, gender and season) on intestinal bacterial community structure and diversity of Gansu zokor distributed in Liupan Mountains. [Methods] The V3-V4 regions of 16S rRNA genes from 36 Gansu zokors' cecum were sequenced using Illumina high-throughput sequencing technology. The sequences were used for analysis of species diversity, abundance and community structure of the intestinal bacteria. [Results] The intestinal bacteria of Gansu zokor mainly consisted of three phyla, among which Firmicutes was the most predominant phylum, and the others of Bacteroidetes and Proteobacteria. At the genus level, the predominant genera were Oscillospira, Ruminococcus, Coprococcus and Desulfovibrio. By comparing samples obtained from different regions, we found intestinal bacterial community structure presented a high similarity among the three counties (Pengyang county, Longde county, and Jingyuan county), whereas it showed a low similarity between Haiyuan county with other counties. Meanwhile, we concluded different sexes had different impacts on intestinal bacterial community structure of Gansu zokor, whereas female zokors are highly variable on the community structure of gut bacteria than male zokors. In addition, season might be an important modulator of the intestinal bacteria. The results showed that intestinal bacterial diversity of Gansu zokor was significantly higher in autumn than in spring, the similarity of bacterial community structure in autumn was also higher than in spring. [Conclusion] Region and gender merely had significant effects on intestinal bacterial community structure of Gansu zokor, whereas seasons might have significant impacts on both community structure and diversity of cecal bacteria significantly.

    参考文献
    [1] 孙丙华. 社群环境下的短尾猴肠道微生物群落结构及适应进化. 安徽大学博士学位论文, 2016.
    [2] Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI. The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(44):15718-15723.
    [3] Rawls JF, Mahowald MA, Ley RE, Gordon JI. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell, 2006, 127(2):423-433.
    [4] Kovacs A, Ben-Jacob N, Tayem H, Halperin E, Iraqi FA, Gophna U. Genotype is a stronger determinant than sex of the mouse gut microbiota. Microbial Ecology, 2011, 61(2):423-428.
    [5] Benson AK, Kelly SA, Legge R, Ma FR, Low SJ, Kim J, Zhang M, Oh PL, Nehrenberg D, Hua KJ, Kachman SD, Moriyama EN, Walter J, Peterson DA, Pomp D, Mackay TFC. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(44):18933-18938.
    [6] Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, Fontana L, Henrissat B, Knight R, Gordon JI. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science, 2011, 332(6032):970-974.
    [7] de Filippo C, Cavalieri D, di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from europe and rural africa. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(33):14691-14696.
    [8] Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, Lewis JD. Linking long-term dietary patterns with gut microbial enterotypes. Science, 2011, 334(6052):105-108.
    [9] Fushuku S, Fukuda K. Gender difference in the composition of fecal flora in laboratory mice, as detected by denaturing gradient gel electrophoresis (DGGE). Experimental Animals, 2008, 57(5):489-493.
    [10] David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ. Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2014, 505(7484):559-563.
    [11] Lankau EW, Hong PY, Mackie RI. Ecological drift and local exposures drive enteric bacterial community differences within species of Galápagos iguanas. Molecular Ecology, 2012, 21(7):1779-1788.
    [12] Phillips CD, Phelan G, Dowd SE, McDonough MM, Ferguson AW, Delton Hanson J, Siles L, Ordóñez-Garza N, San Francisco M, Baker RJ. Microbiome analysis among bats describes influences of host phylogeny, life history, physiology and geography. Molecular Ecology, 2012, 21(11):2617-2627.
    [13] Sudakaran S, Salem H, Kost C, Kaltenpoth M. Geographical and ecological stability of the symbiotic mid-gut microbiota in European firebugs, Pyrrhocoris apterus (Hemiptera, Pyrrhocoridae). Molecular Ecology, 2012, 21(24):6134-6151.
    [14] Sun BH, Wang X, Bernstein S, Huffman MA, Xia DP, Gu ZY, Chen R, Sheeran LK, Wagner RS, Li JH. Marked variation between winter and spring gut microbiota in free-ranging Tibetan Macaques (Macaca thibetana). Scientific Reports, 2016, 6:26035.
    [15] Costello EK, Stagaman K, Dethlefsen L, Bohannan BJM, Relman DA. The application of ecological theory toward an understanding of the human microbiome. Science, 2012, 336(6086):1255-1262.
    [16] Freire AC, Basit AW, Choudhary R, Piong CW, Merchant HA. Does sex matter? The influence of gender on gastrointestinal physiology and drug delivery. International Journal of Pharmaceutics, 2011, 415(1/2):15-28.
    [17] Han CX, Yang XJ, Wang MC, Yang QE. Study on the differential character of major rodent. Journal of Northwest Forestry University, 2002, 17(3):48-52. (in Chinese)韩崇选, 杨学军, 王明春, 杨清娥. 主要啮齿动物的特异性研究. 西北林学院学报, 2002, 17(3):48-52.
    [18] Barnes EM, Burton GC. The effect of hibernation on the Caecal Flora of the thirteen-lined ground squirrel (Citellus tridecemlineatus). Journal of Applied Bacteriology, 1970, 33(3):505-514.
    [19] Wang Q, Yang ZJ, Li JG, He JP. Seasonal variations of morphological features and tissue structures of the digestive tract in Gansu zokor (Myospalax cansus). Chinese Journal of Zoology, 2016, 51(4):573-582. (in Chinese)王倩, 杨佐娟, 李金钢, 何建平. 甘肃鼢鼠适应地下生活的消化道形态和结构的季节可塑性. 动物学杂志, 2016, 51(4):573-582.
    [20] Wang J, Fan WW, Yang ZJ, He JP. Study on the histological characteristics of Gansu zokor's digestive tract. Journal of Shaanxi Normal University (Natural Science Edition), 2010, 38(5):65-67. (in Chinese)王剑, 樊魏伟, 杨佐娟, 何建平. 甘肃鼢鼠消化道的组织结构. 陕西师范大学学报(自然科学版), 2010, 38(5):65-67.
    [21] Yang CH, Du YR, Lin GH, Su JP, Zhang TZ. Histological structure comparison of the small intestine between Gansu zokor (Myospalax cansus) and plateau zokor (Myospalax baileyi). Acta Theriologica Sinica, 2013, 33(2):172-177. (in Chinese)杨传华, 都玉蓉, 林恭华, 苏建平, 张同作. 甘肃鼢鼠和高原鼢鼠小肠组织学结构的比较. 兽类学报, 2013, 33(2):172-177.
    [22] 杨佐娟. 甘肃鼢鼠胃肠道适应性变化的初步研究. 陕西师范大学硕士学位论文, 2007.
    [23] 段旭. 六盘山地区水文要素坡面变化. 中国林业科学研究院博士学位论文, 2011.
    [24] 王云霓. 宁夏六盘山主要树种及典型森林植被的水分利用效率研究. 中国林业科学研究院硕士学位论文, 2012
    [25] Pan S, Yu PT, Wang YH, Wang ZY, Yuan CX, Yu ZJ, Hu YQ, Xiong W, Xu LH. Spatial distribution of carbon density for forest vegetation and the influencing factors in Liupan Mountains of Ningxia, NW China. Acta Ecologica Sinica, 2014, 34(22):6666-6677. (in Chinese)潘帅, 于澎涛, 王彦辉, 王占印, 袁彩霞, 余治家, 胡永强, 熊伟, 徐丽宏. 六盘山森林植被碳密度空间分布特征及其成因. 生态学报, 2014, 34(22):6666-6677.
    [26] Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. QⅡME allows analysis of high-throughput community sequencing data. Nature Methods, 2010, 7(5):335-336.
    [27] Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 2010, 26(19):2460-2461.
    [28] Costa MC, Arroyo LG, Allen-Vercoe E, Stämpfli HR, Kim PT, Sturgeon A, Weese JS. Comparison of the fecal microbiota of healthy horses and horses with colitis by high throughput sequencing of the V3-V5 region of the 16S rRNA gene. PLoS One, 2012, 7(7):e41484.
    [29] Steelman SM, Chowdhary BP, Dowd S, Suchodolski J, Janečka JE. Pyrosequencing of 16S rRNA genes in fecal samples reveals high diversity of hindgut microflora in horses and potential links to chronic laminitis. BMC Veterinary Research, 2012, 8:231.
    [30] Liu XF, Fan HL, Ding XB, Hong ZS, Nei YW, Liu ZW, Li GP, Guo H. Analysis of the gut microbiota by high-throughput sequencing of the V5-V6 regions of the 16S rRNA gene in donkey. Current Microbiology, 2014, 68(5):657-662.
    [31] Li ZP, Liu HL, Cui XZ, Jing Y, Bao K, Xu C, Yang FH, Li GY. Bacterial diversity in rumen of sika deer (Cervus nippon) based on l6S rRNA sequences analysis. Chinese Journal of Animal Nutrition, 2013, 25(9):2044-2050. (in Chinese)李志鹏, 刘晗璐, 崔学哲, 荆祎, 鲍坤, 徐超, 杨福合, 李光玉. 基于16S rRNA基因序列分析梅花鹿瘤胃细菌多样性. 动物营养学报, 2013, 25(9):2044-2050.
    [32] Chen YH, Penner GB, Li MJ, Ob M, Guan LL. Changes in bacterial diversity associated with epithelial tissue in the beef cow rumen during the transition to a high-grain diet. Applied and Environmental Microbiology, 2011, 77(16):5770-5781.
    [33] Van Dyke MI, McCarthy AJ. Molecular biological detection and characterization of clostridium populations in municipal landfill sites. Applied and Environmental Microbiology, 2002, 68(4):2049-2053.
    [34] Kohl KD, Miller AW, Marvin JE, Mackie R, Dearing MD. Herbivorous rodents (Neotoma spp.) harbour abundant and active foregut microbiota. Environmental Microbiology, 2014, 16(9):2869-2878.
    [35] Koike S, Kobayashi Y. Development and use of competitive PCR assays for the rumen cellulolytic bacteria:Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiology Letters, 2001, 204(2):361-366.
    [36] Gophna U, Konikoff T, Nielsen HB. Oscillospira and related bacteria-from metagenomic species to metabolic features. Environmental Microbiology, 2017, 19(3):835-841.
    [37] Lam YY, Ha CWY, Campbell CR, Mitchell AJ, Dinudom A, Oscarsson J, Cook DI, Hunt NH, Caterson ID, Holmes AJ, Storlien LH. Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLoS One, 2012, 7(3):e34233.
    [38] Li JY. Variation characteristics of ecological water requirement about forest and grass in the central and Southern Ningxia. Yellow River, 2016, 38(12):116-121. (in Chinese)李金燕. 宁夏中南部干旱区林草植被生态需水变化研究. 人民黄河, 2016, 38(12):116-121.
    [39] Gao ZZ. Analysis on the distribution law of mountainous vegetation in Ningxia. Ningxia Journal of Agriculture and Forestry Science and Technology, 1983, (6):1-6. (in Chinese)高正中. 宁夏山地植被分布规律解析. 宁夏农林科技, 1983, (6):1-6.
    [40] Li JG, He JP, Wang TZ. Behavioural activity rhythm of the Gansu zokor (Myospalax cansus) in summer and autumn under the cage condition. Journal of Northwest University (Natural Science Edition), 2003, 33(2):217-222. (in Chinese)李金钢, 何建平, 王廷正. 笼养条件下甘肃鼢鼠夏秋季行为活动节律. 西北大学学报(自然科学版), 2003, 33(2):217-222.
    [41] Chen XD, Hu ZL, Wang MC, Han CX, Yang XJ, Cao F. Study on the feeding habits and appetite of Gansu sokhor in the forested land of Norther Shaanxi. Shaanxi Forest Science and Technology, 1994(1):44-45. (in Chinese)陈孝达, 胡忠朗, 王明春, 韩崇选, 杨学军, 曹锋. 陕北林区甘肃鼢鼠的食性及食量研究. 陕西林业科技, 1994(1):44-45.
    [42] 刘占英. 绵羊瘤胃主要纤维降解细菌的分离鉴定及不同氮源对其纤维降解能力的影响. 内蒙古农业大学博士学位论文, 2008.
    [43] Zhu JQ, Wang YQ, Wang YJ, Zhang HL, Bai XQ, Li YP, Liu Y. Effect of root main component content on its soil-binding capacity. Bulletin of Soil and Water Conversation, 2014, 34(3):166-170. (in Chinese)朱锦奇, 王云琦, 王玉杰, 张会兰, 白雪琪, 李云鹏, 刘勇. 根系主要成分含量对根系固土效能的影响. 水土保持通报, 2014, 34(3):166-170.
    [44] Ye C, Guo ZL, Cai CF, Yan FL, Ma ZH. Relationship between root tensile mechanical properties and main chemical components of five herbaceous species. Pratacultural Science, 2017, 34(3):598-606. (in Chinese)叶超, 郭忠录, 蔡崇法, 闫峰陵, 马中浩. 5种草本植物根系理化特性及其相关性. 草业科学, 2017, 34(3):598-606.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨静,南小宁,邹垚,张斐然,石建宁,韩崇选. 不同因素对六盘山地区甘肃鼢鼠肠道细菌多样性的影响[J]. 微生物学报, 2018, 58(8): 1382-1396

复制
分享
文章指标
  • 点击次数:909
  • 下载次数: 1602
  • HTML阅读次数: 1371
  • 引用次数: 0
历史
  • 收稿日期:2017-08-14
  • 最后修改日期:2018-01-26
  • 在线发布日期: 2018-07-31
文章二维码