+Advanced Search

Current Issue Archive
  • The heterogeneity of gene expression in plant cells plays a crucial role in determining the functional differences among tissues. Recent advancements in spatial transcriptome (ST) technology have significantly contributed to the study of specific biological questions in plants. This technology has been successfully applied to examine cell development, identification, and stress resistance. This review aims to explore the application of ST technology in plants by reviewing three aspects: the development of ST technology, its current application in plants, and future research directions. The review provides a systematic description of the development process of ST technology, with a focus on analyzing its progress in studying plant cell growth and differentiation, plant cell identification, and stress resistance. In addition, the challenges faced by ST technology in plant applications are summarized, along with proposed future directions for plant research, including the advantages of combining other omics technologies with ST technology to tackle scientific challenges in the field of plants.
    Citation
    张成,周承哲,田采云,郭玉琼. 空间转录组学技术及其在植物研究中的应用[J]. Chinese Journal of Biotechnology, 2024, 40(4): 971-987
    Export BibTex EndNote
  • LI Rongping, LI Rongchun
    . 2024,40(4):988-1001
    DOI: 10.13345/j.cjb.230725
    The CRISPR/Cas9 gene editing system is a versatile technology for modifying gene, playing a crucial role in the study of functional genes and genetic breeding of plants, animals, fungi, and microorganisms. This review provides a comprehensive analysis of the application of this technology in gene research and genetic breeding of edible fungi. The review covers various aspects, including the delivery and expression strategies of Cas9 and sgRNA, genetic transformation methods, mutant screening, and repair strategies for target sites following DNA double-strand breaks. Additionally, the review summarizes the main challenges and optimization strategies associated with the application of this technology in edible fungi. Lastly, the future application potential of this technology in edible fungi research is discussed, drawing from the authors’ personal research background.
    Citation
    李荣平,李荣春. CRISPR/Cas9基因编辑技术在食用菌中的应用现状[J]. Chinese Journal of Biotechnology, 2024, 40(4): 988-1001
    Export BibTex EndNote
  • Hemicellulose, as a primary component of plant cell walls, constitutes approximately one third of cell wall dry matter and ranks as the second abundant renewable biomass resource in the nature after cellulose. Hemicellulose is tightly cross-linked with cellulose, lignin and other components in the plant cell wall, leading to lignocellulose recalcitrance. However, precise genetic modifications of plant cell walls can significantly improve the saccharification efficiency of lignocellulose while ensuring normal plant growth and development. We comprehensively review the research progress in the structural distribution of hemicellulose in plant cell walls, the cross-linking between hemicellulose and other components of the cell wall, and the impact of hemicellulose modification on the saccharification efficiency of the cell wall, proving a reference for the genetic improvement of energy crops.
    Citation
    管伦,王艳婷,刘晓峰,彭良才,杨巧梅. 植物半纤维素合成修饰与细胞壁遗传改良[J]. Chinese Journal of Biotechnology, 2024, 40(4): 1002-1016
    Export BibTex EndNote
  • Brassica juncea (mustard) is a vegetable crop of Brassica, which is widely planted in China. The yield and quality of stem mustard are greatly influenced by the transition from vegetative growth to reproductive growth, i.e., flowering. The WRKY transcription factor family is ubiquitous in higher plants, and its members are involved in the regulation of many growth and development processes, including biological/abiotic stress responses and flowering regulation. WRKY71 is an important member of the WRKY family. However, its function and mechanism in mustard have not been reported. In this study, the BjuWRKY71-1 gene was cloned from B. juncea. Bioinformatics analysis and phylogenetic tree analysis showed that the protein encoded by BjuWRKY71-1 has a conserved WRKY domain, belonging to class II WRKY protein, which is closely related to BraWRKY71-1 in Brassica rapa. The expression abundance of BjuWRKY71-1 in leaves and flowers was significantly higher than that in roots and stems, and the expression level increased gradually along with plant development. The result of subcellular localization showed that BjuWRKY71-1 protein was located in nucleus. The flowering time of overexpressing BjuWRKY71-1 Arabidopsis plants was significantly earlier than that of the wild type. Yeast two-hybrid assay and dual-luciferase reporter assay showed that BjuWRKY71-1 interacted with the promoter of the flowering integrator BjuSOC1 and promoted the expression of its downstream genes. In conclusion, BjuWRKY71-1 protein can directly target BjuSOC1 to promote plant flowering. This discovery may facilitate further clarifying the molecular mechanism of BjuWRKY71-1 in flowering time control, and creating new germplasm with bolting and flowering tolerance in mustard.
    Citation
    邓琴霖,王远达,冯俊杰,魏大勇,王志敏,汤青林. 芥菜BjuWRKY71-1通过调节SOC1的表达促进开花[J]. Chinese Journal of Biotechnology, 2024, 40(4): 1017-1028
    Export BibTex EndNote
Online First