微生物学通报

Jan. 20, 2020, 47(1): 210–221 DOI: 10.13344/j.microbiol.china.190585

Microbiology China tongbao@im.ac.cn http://journals.im.ac.cn/wswxtbcn

一株新型裂解 K63 荚膜型肺炎克雷伯菌的噬菌体分离鉴定 和生物学特性研究及全基因组分析

高明明¹ 王灿² 李璞媛² 刘慧莹² 裴广倩³ 范航³ 张湘莉兰³ 米志强³ 童贻刚^{*3,4} 柏长青^{*1,2}

1 河北北方学院研究生部 河北 张家口 075000

2 解放军总医院第五医学中心呼吸与危重症医学科 北京 100071

3 军事科学院军事医学研究院微生物流行病研究所 病原微生物安全国家重点实验室 北京 1000714 北京化工大学生命科学与技术学院 北京 100029

摘 要:【背景】噬菌体具有特定的杀菌能力,对生态和细菌的进化具有重要影响。近年来由于多 重耐药细菌的全球出现,噬菌体疗法逐渐引起了人们的关注。【目的】对一株新型裂解 K63 荚膜型 肺炎克雷伯菌的噬菌体 vB KonP IME308 进行生物学特性研究、测序和比较基因组学的分析。【方 法】以一株从临床分离到的肺炎克雷伯菌为宿主菌分离噬菌体,应用双层平板法进行噬菌体最佳感 染复数(optimal multiplicity of infection)、一步生长曲线(one-step growth curve)、温度以及 pH 敏感性 实验测定, 纯化噬菌体并通过透射电镜观察噬菌体形态; 应用标准的苯酚-氯仿提取方案提取噬菌体 全基因组,使用 Illumina MiSeq 测序平台进行噬菌体全基因组测序,测序后对噬菌体全基因组序列 进行组装、注释、进化和比较基因组学分析。【结果】分离到一株新型的肺炎克雷伯菌噬菌体,命 名为 vB KpnP IME308; 其最佳感染复数为 0.001, 一步生长曲线结果显示, 其感染宿主菌的潜伏期 约为 20 min, 裂解期约为 80 min, 平均裂解量 330 PFU/cell; 噬菌体 vB_KpnP_IME308 在 4-50 °C 和 pH 5.0-10.0 范围内稳定; 电镜观察该噬菌体属于短尾噬菌体科(Podoviridae)。基因组测序结果表 明,噬菌体基因组全长为 43 091 bp, (G+C)mol%含量为 53.9%, (A+T)mol%含量为 46.1%。BLASTn 比对结果表明,该噬菌体与目前已知噬菌体基因组仅84%区域有相似性。噬菌体进化树结果表明该 噬菌体属于 Autographivirinae 亚科的 Drulisvirus 属的成员。【结论】从医院污水中分离鉴定了一株 新型的肺炎克雷伯菌噬菌体,表征并分析了噬菌体全基因组序列,这些结果均表明该噬菌体具有开 发为抗肺炎克雷伯菌制剂的潜力,为噬菌体治疗多重耐药细菌感染奠定了基础。

关键词:肺炎克雷伯菌,噬菌体,生物学特性,全基因组分析

Received: 17-07-2019; Accepted: 09-09-2019; Published online: 10-10-2019

Foundation items: The Capital Characteristic Clinic Project of Beijing (Z161100000516181); National Natural Science Foundation of China (81572045)

^{*}Corresponding authors: TONG Yi-Gang: Tel: 86-10-63869835; E-mail: tong62035@gmail.com BAI Chang-Oing: Tel: 86-10-66947356; E-mail: mlp1604@sina.com

基金项目: 首都临床特色项目(Z161100000516181); 国家自然科学基金(81572045)

^{*}通信作者: 童贻刚: Tel: 010-63869835; E-mail: tong62035@gmail.com

柏长青: Tel: 010-66947356; E-mail: mlp1604@sina.com

收稿日期: 2019-07-17; 接受日期: 2019-09-09; 网络首发日期: 2019-10-10

Biological characteristics and complete genomic analysis of a novel virulent bacteriophage that infects *Klebsiella pneumoniae* capsular type K63

GAO Ming-Ming¹ WANG Can² LI Pu-Yuan² LIU Hui-Ying² PEI Guang-Qian³ FAN Hang³ ZHANG Xiang-Li-Lan³ MI Zhi-Qiang³ TONG Yi-Gang^{*3,4} BAI Chang-Qing^{*1,2}

1 Department of Graduate, Hebei North University, Zhangjiakou, Hebei 075000, China

- 2 Department of Respiratory and Critical Care Diseases, The Fifth Medical Center, Chinese General Hospital of the PLA, Beijing 100071, China
- 3 State Key Laboratory of Pathogenic Microbiology Safety, Institute of Microbiological Epidemiology, Institute of Military Medicine, Academy of Military Sciences, Beijing 100071, China
- 4 College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China

Abstract: [Background] Bacteriophages have a specific bactericidal ability to influence the evolution of bacteria and ecology. In recent years, due to the global emergence of multidrug-resistant bacterial strains, phage therapy has received renewed interest. [Objective] Biological characteristics and complete genome sequence of a novel virulent bacteriophage vB_KpnP_IME308 that infects Klebsiella pneumoniae capsular type K63. [Methods] A novel lytic phage was isolated from sewage of Chinese general Hospital of the PLA using a clinical Klebsiella pneumoniae strain as an indicator. The double-layer plate method was conducted the titer, optimal multiplicity of infection (MOI), one-step growth curve, thermostability and pH stability. Phage morphology was observed by transmission electron microscopy after purification. Phage genome was sequenced using the Illumina MiSeq sequencing platform. Complete genome sequence was used for genome annotation, comparative genomics and evolutionary analyses. [Results] A novel phage, designated vB_KpnP_IME308, isolated from hospital sewage using a clinical *Klebsiella pneumoniae* strain as a host. The optimal MOI of phage vB_KpnP_IME308 is 0.001. One step growth curve showed that the latent period and the burst period of vB_KpnP_IME308 were 20 min and 80 min, respectively. The burst size was about 330 PFU/cell. The genome of vB_KpnP_IME308 is 43 091 base pairs (bp) with (G+C)mol% content of 59.3% and (A+T)mol% content of 46.1%. Electron microscopic observation showed that the phage belongs to the family Podoviridae. The BLASTn alignment showed that the genome of the phage had limited similarity with the currently known phages. The evolutionary relationship between phage vB_KpnP_IME308 and other *Podoviridae* phages was analyzed by major capsid protein and large terminase protein of phage vB_KpnP_IME308, which suggest that phage vB_KpnP_IME308 was a member of the genus Drulisvirus of subfamily Autographivirinae. [Conclusion] A lytic phage, vB_KpnP_IME308, was isolated successfully from hospital sewage, characterization and genome analysis of a novel bacteriophage vB_KpnP_IME308, which shows its potency to be developed as a novel alternative for multi-drug resistant Klebsiella pneumoniae infects control and treatment.

Keywords: Klebsiella pneumonia, Bacteriophage, Biological characteristics, Genomic analysis

肺炎克雷伯菌(*Klebsiella pneumoniae*)为革兰氏 阴性杆菌,是医院和社区获得性尿路感染常见病 原体,败血症和肺炎的常见原因^[1-2]。近几十年 来,由肺炎克雷伯菌并发转移性脑膜炎和眼内炎 引起的社区获得性化脓性肝脓肿病例已在全世界 范围内出现,特别是在亚洲^[3-4]。由于抗生素滥用 和细菌进化,抗生素耐药问题正在变得越来越严 重。抗生素长期以来被认为是治疗细菌感染性疾 病最有力的武器,碳青霉烯类抗生素被认为是最 后的抗生素。但是随着更多碳青霉烯类抗生素的 广泛使用,产超广谱β-内酰胺酶(extended spectrum β-lactamase, ESBLs)的菌株正在增加,这给临床 治疗带来了困难。因此,美国疾病控制和预防中 心认为耐碳青霉烯类肠杆菌科是公共卫生的直接 威胁^[5]。

噬菌体(bacteriophage)作为一种新兴的治疗 方法,已经越来越受到人们的关注。噬菌体对细 菌具有高度专一性,可在细菌中繁殖并杀死细菌 却对动植物没有毒性。Cao 等^[6]用分离自临床患 者的多药耐药肺炎克雷伯菌,使用滴鼻法构建 肺炎感染的小鼠模型,随后用单剂量噬菌体 (2×10⁹ PFU/小鼠)治疗感染小鼠,结果显示,未用噬 菌体处理的小鼠 24 h 内全部死亡, 使用噬菌体治 疗组,只有 20%的小鼠在感染后 72 h 死亡,这种 治疗方法显着提高了感染小鼠的存活率,提示肺 炎克雷伯菌噬菌体可用于噬菌体治疗。此外, Manohar 等将污水样品中分离出的噬菌体制备成 噬菌体鸡尾酒,然后加入到城市污水中孵育2h, 细菌负荷从10⁶CFU/mL降至10³CFU/mL,这个 结果表明噬菌体鸡尾酒也是一个很好的生物 防治剂^[7]。

我们根据 Pan 等的方法鉴定了宿主菌 226 肺炎 克雷伯菌菌株属于 K63 荚膜型^[8]。在本研究中,我 们以一株 K63 荚膜型肺炎克雷伯菌菌株 226 为宿主 菌,从医院废水样品中获得一株新型肺炎克雷伯 菌噬菌体,命名为vB_KpnP_IME308,并研究其生 物学特性,确定其基因组序列,这些结果可为进一 步应用和研究不同荚膜类型的肺炎克雷伯菌噬 菌体在临床治疗中作为抗生素替代品的应用奠定 基础。

1 材料与方法

1.1 材料

1.1.1 菌株来源与培养条件

肺炎克雷伯菌菌株 226 分离自中国人民解放军 总医院呼吸与重症医学科一名肺炎感染患者的痰 液,使用引物 16S-F (5'-AGAGTTTGATCCTGGC TCAG-3')和 16S-R (5'-ACGGCTACCTTGTTACGA CTT-3'),通过 16S rRNA 基因的 PCR 扩增进行初步 的肺炎克雷伯菌鉴定^[9],然后使用终浓度 25%的甘 油保存至军事医学科学院微生物流行病研究所 -80 ℃ 细菌库中。肺炎克雷伯菌通常在 LB 培养基 中于 37 ℃ 通风培养。

1.1.2 培养基及主要试剂和仪器

LB 液体培养基 (g/L):氯化钠 10.0,酵母提取 物 5.0,胰蛋白胨 10.0,于 1×10⁵ Pa 灭菌 20 min。 LB 固体培养基(g/L):氯化钠 10.0,酵母提取物 5.0, 胰蛋白胨 10.0,琼脂 15.0,1×10⁵ Pa 灭菌 20 min。LB 半固体培养基(g/L):氯化钠 10.0,酵母提取物 5.0, 胰蛋白胨 10.0,琼脂 7.5,1×10⁵ Pa 灭菌 20 min。

蛋白酶 K、RNase、DNase, Thermo Fisher Scientific 公司; 酚:氯仿:异戊醇(25:24:1,体积比)、 DNA 平衡酚,北京索莱宝科技有限公司。MiSeq 测序仪, Illumina 公司。

1.2 噬菌体的分离鉴定

噬菌体的分离纯化按照文献[10]所描述的步骤 进行。具体来说,噬菌体的分离使用污水富集 法:将污水 12 000×g 离心 10 min, 0.22 µm 微孔滤 膜(millipore 膜,孔径 0.22 µm)进行过滤,并将 2 mL 收集的液体与 10 mL 指数期(*OD*₆₀₀=0.4−0.6)指示菌 混合。将混合物在 37 °C 温育过夜,12 000×g 离心 10 min,收集上清液并用 0.22 µm 微孔滤膜进行过 滤以除去残留的细菌细胞。然后,100 µL 上清液 和 500 µL 指示菌指数生长期(*OD*₆₀₀=0.4−0.6)混合, 混合物加入约 5 mL 上层琼脂(LB 含 0.7%琼脂, 50 °C 水浴)中,倒入含有下层琼脂的 LB 平板上(双 层法)^[11],待上层琼脂凝固后移至 37 °C 恒温培养 箱培养过夜。通过 5 次连续单斑分离获得纯噬菌体 菌株。

1.3 噬菌体最佳感染复数(multiplicity of infection, MOI)测定

参照 Li 等^[12]的方法,略有改动。为了确定最 佳 MOI,根据感染比例,将噬菌体和宿主菌液分 别按照 MOI 为 10、1、0.1、0.01、0.001 的拷贝数 比例混合,各 200 µL,加入新鲜的 5 mL LB 培养基 中,37 ℃、220 r/min 振荡培养 6 h 后,6 000×g 离 心 15 min 除去细胞沉淀。收集上清液,使用 0.22 µm

的滤膜过滤,通过双层平板法测定噬菌体的滴 度。其中噬菌体滴度最高的 MOI 是最佳的感染复 数^[13]。每次独立实验重复3次。

1.4 噬菌体一步生长曲线(one-step growth)的 测定

参照 Wang 等的方法^[14],略有改动。使用培养 至生长指数中期肺炎克雷伯氏菌菌株 226 (*OD*₆₀₀=0.2-0.6)并与噬菌体 vB_KpnP_IME308 以 0.001 的 MOI 混合,将混合物置于 37 °C 恒温培养 箱孵育 10 min,使噬菌体与细菌充分吸附,然后将 混合物以 10 000×g 离心 1 min,将含有宿主细菌的 沉淀物用 37 °C 新鲜 LB 洗涤 2 次,期间无需振荡 混匀。然后将混合物转移到 20 mL LB 培养基中并 在 37 °C、220 r/min 振荡培养。然后在感染后 0、 5、10、20、30、40、50、60、70、80、90、100、 110、120 min 收集 3 个 150 μL 等分试样。将样品以 10 000×g 离心 2 min,除去上清液,然后使用双层 琼脂测定噬菌体滴度,稀释样品并立即铺板以确定 噬菌体滴度。每次独立实验重复 3 次。

1.5 噬菌体温度和 pH 敏感性的测定

使用无菌 1.5 mL 离心管将 900 μL LB 液体培养 基在 4、20、30、40、50、60、70 和 80 °C 金属浴 中预热 60 min,待温度稳定后,加入 100 μL 噬菌 体(10⁹噬斑形成单位 PFU/mL),并将样品在培养箱 中加热。孵育 60 min 后收集样品,然后通过双层 琼脂方法测定噬菌体滴度。该测定重复 3次^[15]。对 于 pH 敏感性,用 1 mol/L HCl 和 1 mol/L NaOH 将 LB 培养基调节至 pH 2.0–14.0。接下来,将 100 μL 噬菌体原液(10⁹ 噬菌斑形成单位 PFU/mL)加入到 900 μL 分别装不同 pH 值 LB 溶液的 1.5 mL EP 管 中,37 °C 孵育 60 min,通过双层琼脂方法测定噬 菌体滴度。这个实验也重复了 3次^[16]。

1.6 噬菌体电镜

噬菌体 vB_KpnP_IME308 的形态进一步可视 化 通 过 透 射 电 子 显 微 镜 (transmission electron microscope, TEM)观察^[17]。吸取一滴纯化的噬菌体 悬液滴在铜网上,用 2%磷钨酸溶液染色 1 min 后 立即除去过量的染色剂,在 100 kV TEM 106 下观 察噬菌体的形态。

1.7 噬菌体基因组提取

噬菌体基因组使用文献[18]描述的标准苯酚-氯 仿提取方案。取 600 µL 已纯化过滤的噬菌体裂解 液,加入 DNase I (1 µg/mL)和 RNase A (1 µg/mL), 将混合物充分涡旋并在 37 ℃ 下温育,消化过夜; 80 ℃ 酶灭活 20 min 后加入裂解缓冲液 (终浓度: 0.5% SDS, 20 mmol/L EDTA 和 50 µg/mL 蛋白酶 K),将混合物在金属浴中 56 ℃ 温育 1 h;加入等 体积的 DNA 平衡酚,充分涡旋振荡 1 min,然后将 混合物 12 000×g 离心 10 min。转移上层水相到一 个新的1.5 mL 离心管中,加入相同体积的苯酚:氯仿: 异戊醇(25:24:1,体积比),充分涡旋振荡 1 min, 12000×g离心10min以去除蛋白质和多糖物质。将 上层水相再次转移至新的 1.5 mL 离心管中, 加入 等体积的异丙醇, -20 ℃ 放置 4 h 沉淀基因组 DNA。然后将样品在 4 ℃ 条件下 10 000×g 离心 20 min 后收集沉淀物。用 75% 的乙醇(预冷)洗涤上 述 DNA 沉淀, 室温干燥后使用适量无核酸水重悬 DNA 沉淀, 并储存在-20 ℃ 保存备用。

1.8 噬菌体的全基因组测序及生物信息学分析

噬菌体 vB_KpnP_IME308 的 DNA 全基因组测 序使用的是 Illumina MiSeq测序平台。DNA 文库构 建使用 NEBNext[®] Ultra[™] II DNA Library Prep Kit 来完成。

基因组序列组装使用的使 Newbler V3.0 软件^[19] (Roche applied science)和 CLC 3.0 软件。使用 RAST 在线数据库^[20] (http://www.rast.nmpdr.org)进 行开放阅读框(open reading frame, ORF)初步确 定,所有的 ORF 使用 NCBI 的蛋白质基本局部比对工 具 BLASTp (http://www.ncbi.nlm.nih.gov/BLAST/)手 动验证。此外,进一步的基因组分析使用 tRNA scan-SE 2.0 版(http://lowelab.ucsc.edu/tRNAscan-SE/)^[21] 预测 tRNA, TMHMM Server V2.0 (http://www.cbs. dtu.dk/services/TMHMM/)用于筛选所有的潜在含有 跨膜结构域蛋白质的开放阅读框。序列比对分析 使用 Mauve 2.3.1^[22],生成基因组图谱使用 SnapGene[®] V2.6.2 (GSL Biotech; www.snapg ene.com)。为了确定噬菌体 vB_KpnP_IME308 与其 他 Autographivirinae 亚科之间的系统发育关系,使 用 MEGA 6.0^[23]构建系统发育树。选择主要衣壳蛋 白(ORF34)和推定的末端酶大亚基(ORF43)两种蛋 白,从当前的 ICTV (international committee on taxonomy of viruses)库中各下载了序列,系统发 育分析使用 ClustalW 和 Neighbor-Joining 的方法 构建。

2 结果与分析

2.1 噬菌体的分离与鉴定

使用肺炎克雷伯菌菌株 226 作为宿主菌,从医院污水中分离出噬菌体 vB_KpnP_IME308。噬菌体 经过 5 次纯化之后,37 ℃下孵育 12 h,在双层平

板上,该噬菌体产生直径 1-2 mm 的斑块,其中小的透明噬菌斑周围被晕环包围(图 1A)。如 Hughes 等所述,晕圈的存在可能表明可溶性噬菌体酶的产生,例如多糖解聚酶^[24]。

2.2 噬菌体的形态学特征

电子显微照片显示噬菌体具有典型的二十面体结构和非收缩的尾部,其头部直径约为60±1 nm, 尾部长度约为10±2 nm,这是 Podoviridae 家族 (Caudovirales 目)的特征(图1B)。根据目前的国际病 毒分类委员会分类系统,噬菌体 vB_KpnP_ IME308 被划分为 Autographivirinae 亚科中的 Drulisvirus 属。

2.3 噬菌体最佳感染复数

噬菌体与宿主菌肺炎克雷伯菌菌株 226 按一 定比例混合,当以 MOI 为 0.001 感染时,噬菌体 vB_KpnP_IME308 产生最大滴度(表 1),表明 0.001 是噬菌体 vB_KpnP_IME308 的最佳 MOI (表 1)。

图 1 噬菌体 vB_KpnP_IME308 的形态 Figure 1 The morphology of phage vB_KpnP_IME308

注: A: 噬菌斑; B: 电镜照片. Note: A: Plaques of phage; B: Transmission electron micrograph.

表1 噬菌体 vB_KpnP_IME308 最佳感染复数的测定

Table 1 Determination of optimal multiplicity of infection (MOI)

序号	菌落数	噬菌体数	感染复数	噬菌体滴度
No.	Numbers of bacteria (CFU/mL)	Numbers of phages (PFU/mL)	MOI	Titer (PFU/mL)
1	10 ⁸	10 ⁹	10	1.6×10^8
2	10 ⁸	10 ⁸	1	3.0×10 ⁸
3	10 ⁸	10 ⁷	0.1	7.6×10 ⁸
4	10 ⁸	10 ⁶	0.01	8.8×10 ⁹
5	10 ⁸	10 ⁵	0.001	1.2×10^{10}

2.4 噬菌体的一步生长曲线

进行一步生长曲线实验以确定噬菌体 vB_KpnP_ IME308 的潜伏期(latent period)和暴发 量(burst size)。由图 2A 可知,噬菌体与对数生长 期的肺炎克雷伯菌混合培养 20 min 曲线走势无明 显变化,即噬菌体潜伏期约为 20 min;而后噬菌 体的滴度急剧增加,在约 80 min 后其滴度趋于平 稳,则噬菌体感染期的时间约为 80 min,由此可 得裂解量为 3.3×10¹⁰/1×10⁸=330 PFU/cell (裂解 量=裂解末期噬菌体滴度/感染初期宿主菌浓度), 即噬菌体 vB_KpnP_IME308 感染宿主菌的裂解量 约为 330 PFU/cell。

2.5 噬菌体温度和 pH 的敏感性

噬菌体 vB_KpnP_IME308 在 4-50 ℃ 的温度范 围内稳定生长。当在 60 ℃ 温育 60 min 时,噬菌体 滴度减少几乎 11g;随后在 70 ℃ 水金属浴中孵育 60 min 噬菌体滴度迅速下降至 1×10⁴ PFU/mL, 70 ℃ 下孵育 60 min,噬菌体滴度急剧下降至 0。 这些结果表明噬菌体能够耐受实验环境下的常规 温度(图 2B)。噬菌体 vB_KpnP_IME308 在 pH 5.0-10.0 的范围内显示较高的活性,而 pH 低于 5.0 或者大于 10.0 时活性下降,由此可知噬菌体 vB_KpnP_IME308 的最适合 pH 范围为 4.0-10.0 (图 2C)。这些数据表明噬菌体 vB_KpnP_IME308 可能 具有肺炎克雷伯菌生物控制的潜在应用。

2.6 噬菌体的全基因组分析

噬菌体 vB_KpnP_IME308 的基因组为双链线 性的 DNA, 其核酸序列 NCBI 登录号为 MN176572。基因组组装使用 Roche Newbler 3.0 汇 编程序和 CLC 软件进行的。具体而言,基因组文 库产生 170 656 kb 的数据,平均阅读长度为 298 个 碱基,发现 vB_KpnP_IME308 的完整基因组长为 43 091 bp,整个读数的 96.08%与完整基因组匹 配(572 472 个读数中 550 035 个),平均覆盖率为 3 960。噬菌体 IME308 基因组 A、C、G、T 碱基含 量分别为 24.6%、24.8%、29.1%和 21.5%, (G+C)mol%含量为 53.9%, (A+T)mol%含量 为 46.1%。

使用 RAST 鉴定基因组序列注释显示,噬菌体 vB_KpnP_IME308 含有总共 49 个开放阅读框,其中 22 个为功能编码序列(coding sequence, CDS), 其余基因注释为假设蛋白质或未知功能蛋白质(表 2)。该基因组主要涉及 4 个功能模块,包括:噬菌体裂解系统;结构和 DNA 包装;代谢;复制。

图 2 噬菌体 vB_KpnP_IME308 的生物学特性 Figure 2 Biological properties of phage vB_KpnP_IME308

注: A: 一步生长曲线; B: 温度敏感性; C: pH 敏感性. Note: A: One-step growth curve; B: Thermostability; C: pH stability.

表 2 噬菌体 vB_KpnP_IME308 的 ORF 功能预测

 Table 2
 ORF analysis of the phage vB_KpnP_IME308 genome

ORE	F Top BLAST hit ^a	Amino acid identity (%) ^b	E value	Accession No.
1	Hypothetical protein [Klebsiella phage KpV71]	61/66 (92%)	5.00E-35	NC_031246.1
2	Hypothetical protein [Dehalobacter sp. FTH1]	15/25 (60%)	0.092	NZ_AQYY0000000.1
3	Hypothetical protein [Klebsiella phage vB_KpnP_SU503]	53/59 (90%)	9.00E-33	NC_028816.1
4	Hypothetical protein [Klebsiella phage F19]	47/67 (70%)	3.00E-28	NC_023567.2
5	Hypothetical protein [Klebsiella phage vB_KpnP_KpV48]	543/659 (82%)	0	KX237514.1
6	Putative peptidase [Klebsiella phage F19]	344/348 (99%)	0	NC_023567.2
7	Hypothetical protein [Klebsiella phage F19]	96/155 (62%)	2.00E-57	NC_023567.2
8	Putative DNA primase [Klebsiella phage vB_KpnP_KpV48]	250/260 (96%)	0	KX237514.1
9	Hypothetical protein [Klebsiella phage KP34]	63/64 (98%)	5.00E-38	NC_013649.2
10	Hypothetical protein [Klebsiella phage vB_Kpn_IME260]	23/45 (51%)	4.00E-05	NC_041899.1
11	Putative DNA helicase [Klebsiella phage KpV71]	422/426 (99%)	0	NC_031246.1
12	Hypothetical protein [<i>Klebsiella</i> phage KpV41]	50/51 (98%)	5.00E-28	NC_028670.1
13	DNA polymerase [<i>Klebsiella</i> phage phiKpS2]	801/803 (99%)	0	KX587949.2
14	Hypothetical protein [<i>Klebsiella</i> phage KP-Rio/2015]	73/73 (100%)	1.00E-44	KX856662.1
15	Putative HNH endonuclease[<i>Klebsiella</i> phage NTUH-K2044-K1-1]	32/54 (59%)	1.00E-12	NC_025418.1
16	Hypothetical protein [<i>Klebsiella</i> phage KP34]	311/348 (89%)	0	NC 013649.2
17	Putative HNH endonuclease [Klebsiella phage KP34]	124/130 (95%)	5.00E-87	NC 013649.2
18	Hypothetical protein [<i>Klebsiella</i> phage vB KpnP KpV74]	49/64 (77%)	5.00E-17	KY385423.1
19	Hypothetical protein [<i>Klebsiella</i> phage F19]	259/265 (98%)	0	NC 023567.2
20	Hypothetical protein [<i>Klebsiella</i> phage Kp2]	77/84 (92%)	1.00E-44	 KT367886.1
21	Hypothetical protein [<i>Klebsiella</i> phage Kp2]	107/124 (86%)	4.00E-69	KT367886.1
22	Hypothetical protein [<i>Klebsiella</i> phage AltoGao]	50/53 (94%)	5.00E-28	MF612071.1
23	Putative 5'-3' exonuclease [<i>Klebsiella</i> phage vB KppP SU552A]	293/309 (95%)	0	NC 028870.1
24	Hypothetical protein [<i>Achromobacter</i> phage JWAlpha]	60/148 (41%)	8.00E-24	NC 023556.1
25	Putative DNA endonuclease VII [<i>Klehsiella</i> phage F19]	139/140 (99%)	7.00E-96	NC 023567.2
26	Hypothetical protein [<i>Klebsiella</i> phage Kp2]	100/152 (66%)	6.00E-60	KT367886.1
27	Hypothetical protein [<i>Klebsiella</i> phage Kp2]	36/42 (86%)	4 00E-19	KT367886 1
28	RNA polymerase [<i>Klebsiella</i> phage Kp2]	813/822 (99%)	0	KT367886 1
29	Hypothetical protein phiKpS2 34 [<i>Klebsiella</i> phage phiKpS2]	146/146 (100%)	5.00E-104	KX587949.2
30	Hypothetical protein [<i>Klebsiella</i> phase KP34]	86/87 (99%)	2.00E-50	NC 013649 2
31	Collar protein [<i>Klebsiella</i> phage Kn?]	526/531 (99%)	0	KT367886 1
32	Putative scaffolding protein [<i>Klebsiella</i> phage KnV41]	273/280 (98%)	0	NC 028670 1
33	Putative HNH endonuclease [<i>Klebsiella</i> phage vB KnpP KnV74]	114/153 (75%)	5 00E-81	KY385423 1
34	Major cansid protein [<i>Escherichia</i> phage Minorna]	325/338 (96%)	0	MK598851 1
35	Hypothetical protein [<i>Klebsiella</i> phage KP34]	53/59 (90%)	7 00F-27	NC 013649 2
36	Tail tubular protein [<i>Klobsiella</i> phage mvPSH1235]	182/186 (98%)	2.00E-133	MG972768 1
37	Tail tubular protein B [<i>Klebsiella</i> phage F19]	737/759 (97%)	0	NC 023567.2
38	Putative internal virion protein [Klabsialla phagev B KnnP SU5524]	193/195 (99%)	2 00E-135	NC_028870_1
30	Hypothetical protein [Klabsialla phage Kp2]	877/804 (08%)	2.00E 155	KT367886 1
<i>4</i> 0	Putative internal core protein [<i>Klabsialla</i> phage vB_KnnP_SU503]	1 205/1 232 (98%)	0	NC 0288161
40	Toil fibers protein [Klabsialla phage Kp2]	502/520(05%)	0	NC_028810.1
41	Putativo DNA maturaso A [Klabsialla phago yP KppP KpV74]	100/100(100%)	0 4 00E_63	K1307000.1 KV285422.1
42	Putative DIVA maturase A [<i>Klebsiella</i> phage vb_Kpirf_Kpv74]	610/618 (00%)	4.00E 03	K1505425.1 KM576124.1
43	Hunothetical protain [Enterohacteria phage 18 65]	56/140(40%)	0 6 00E_11	NC 025445 1
44	Hypothetical protein [<i>EnteroDacteria</i> phage J8-05]	50/140(40%)	0.00E-11	NC_023443.1
43	Hypothetical protein [<i>Klebsiella</i> phage Kr v 811]	$\frac{32}{00} (67\%)$	6.00E-27	NC 028670 1
40	Hypothetical protein [<i>Klebsiella</i> phage KpV41]	134/134(100%) 82/82(000%)	6.00E-53	NC_020070.1 VT267886 1
4/	Endolvoin [<i>Klobsialla</i> phage E10]	02/03 (99%)	4.00E 122	NC 022567.2
48	Endoryshi [<i>Klebslella</i> phage F19] Tail fiber family protein [<i>Klabsialla</i> shase F10]	100/104 (98%)	4.00E-132	NC_025507.2
49 50	ran noer ranning protein [<i>Kiedsteild</i> phage F19]	502/579 (97%)	0	NC_025507.2

50 No hit 注: ^a: 最相近基因组微生物物种的基因和名称; No hit: 没有比对到相近的氨基酸序列; ^b: BLASTp 搜索到比对百分比. Note: ^a: The most closely related genes and names of the organisms; No hit: Indicates no significant homology detected for a particular amino acid sequence; ^b: Percent identity for top hits in BLASTp searches.

功能蛋白质可视化如图3所示。其中,裂解系 统中仅鉴定出一个相关基因为 ORF48 (细胞内溶 素), 它是噬菌体编码的酶, 其主要功能是在噬菌 体繁殖周期的末期分解细菌肽聚糖^[25]。噬菌体的 尾纤(tail fiber)或尾刺(tail spikes)蛋白通常展示荚膜 解聚糖的活性。在琼脂平板上的细菌菌落层上, 这些酶通常会在噬菌斑块周围形成晕圈。在噬菌 体vB KpnP IME308 中预测了3个噬菌体尾部相关 蛋白: ORF36 和 ORF37 (尾管蛋白)及 ORF49 (尾丝 蛋白), 它们主要参与了尾部组装或在感染后穿透 宿主细胞外膜的过程。注释结果还显示了 ORF34 (主要衣壳蛋白)与 Escherichia phage Minorna (MK598851.1) 高度相似,同一性为 325/338 (96%), E值为0。该衣壳蛋白编码序列高度保守, 通常用于分类[26-28]。在噬菌体复制及代谢相关基 因中,噬菌体 vB_KpnP_ IME308 编码几种核苷酸 代谢基因,包括核酸外切酶(CDS15, CDS17, CDS25, CDS33)和DNA核酸内切酶(CDS23),这些 酶通过水解宿主基因组 DNA 和 RNA 产生用于噬菌 体 DNA 合成的脱氧核糖核苷酸^[29]。此外, ORF8 (引物酶)和 ORF11 (水解酶)在 DNA 复制、修复和转 录中具有重要作用^[30]。

参与噬菌体包装的蛋白质主要鉴定了 ORF32 (脚手架蛋白),其与 *Klebsiella* phage KpV41 (NC_028670.1)具有高度的序列相似性,同一性为 273/280 (98%), *E*值为零; ORF42 (推定的 DNA 成 熟蛋白 A)和 ORF43 (推定的末端酶大亚基)分别与 *Klebsiella* phage vB_KpnP_KpV74 (KY385423.1)和 *Klebsiella* phage phiBO1E (KM576124.1)具有 100/100 (100%)和 610/618 (99%)的一致性。

217

2.7 噬菌体 vB_KpnP_IME308 比较基因组学分 析及系统进化树的构建

使用 NCBI 的 BLASTn 程序进行全基因组序列 分析,噬菌体vB_KpnP_IME308 的基因组与vB_KpnP_ KpV74 (KY385423.1)、phage phiKpS2 (KX587949.2)、 phage vB_KpnP_SU552A (NC_028870.1)、phage KP34 (NC_013649.2)最为相似。因此,使用 Mauve 软件 首次对这 4 个基因组进行了比对分析。图 4 显示主 要在结构和代谢区域发现插入和删除点。例如, 发现了 CDS15 和 CDS17 的插入,两者均编码推定 的 HNH 核酸内切酶。由噬菌体 vB_KpnP_IME308 编码的 ORF14 (尾纤维蛋白)与宿主特异性相关, 因此,在这些噬菌体之间主要显示了较大的差异 (覆盖率为 48%-100%;同一性为 64.6%-79.3%)。

图 3 噬菌体 vB_KpnP_IME308 功能结构图谱

Figure 3 Genomic map of phage vB_KpnP_IME308 with structural and functional annotation

注: 基因从 ORF1 开始, 橙色代表复制模块; 绿色代表代谢模块; 黄色代表结构和包装模块; 红色代表裂解模块; 暗红色代表假想 蛋白.

Note: The genome starts from the upstream of ORF1, the ORF involved in DNA replication is shown in orange, the ORF involved in metabolism is shown in green, and the ORF involved in structure and packing is shown in yellow, red represents the ORF for phage lytic and ORFs without phage related functions are shown in dark red.

图 4 噬菌体 vB_KpnP_IME308 与其近源噬菌体 phage phiKpS2、vB_KpnP_KpV74 和 phage vB_KpnP_SU552A 同 源性分析

Figure 4 Comparative genome map of phage vB_KpnP_IME308, closely related phage phiKpS2, vB_KpnP_KpV74, and phage vB_KpnP_SU552A

为了说明 vB_KpnP_IME308 与其他代表性相 似 噬 菌 体 之 间 的 进 化 关 系 , 使 用 噬 菌 体 vB_KpnP_ IME308 中具有进化意义的主要衣壳蛋 白(ORF34)和推定的末端酶大亚基(ORF43),以及 从 ICIV 数据库获得的其他同源蛋白序列构建了系 统 发 育 树 。 两 个 进 化 树 结 果 都 显 示 噬 菌 体 vB_KpnP_IME308 与 phage KP34(NC_013649.2)、 phage F19 (NC_023567.2) 、 vB_KpnP_KpV74 (KY385423.1)、phage phiKpS2 (KX587949.2)最密 切 相 关 并 且 均 属 于 *Autographivirinae* 亚 科 的 *Drulisvirus* 属(图 5)。

3 讨论与结论

噬菌体具有特定的杀菌能力及环境多样性, 对生态和细菌的进化具有重要影响^[31-32]。尽管自 20世纪 20年代以来噬菌体被认为是潜在的治疗药 物^[33-35],但这种疗法的发展落后于广泛应用的抗 生素^[36]。然而,由于多重耐药细菌的全球出现, 近年来对噬菌体治疗的研究和兴趣逐渐复兴。

肺炎克雷伯菌是一种临床上重要的机会致病 菌,主要引起医院和社区获得性感染,本研究分 离了一株新型的肺炎克雷伯菌噬菌体 vB_KpnP_IME308。一步生长曲线是定量描述噬菌 体生长规律的实验曲线,它可以反映每个噬菌体 的3个最重要的特征参数:潜伏期、裂解期和平稳 期。基于一步生长动力学曲线, 噬菌体 vB KpnP IME308具有较短的潜伏期和裂解周期, 潜伏期和暴发期分别为 20 min 和 80 min。噬菌 体 vB_KpnP_IME308 感染宿主菌的裂解量约为 330 PFU/cell。当宿主完全裂解时,溶液中噬菌体 的滴度达到最高点或平台。通常,如果此时存在 过量的噬菌体并且受感染的细菌被同一噬菌体反 复攻击,则噬菌体裂解细菌的触发过程就会受到 抑制,细菌就会产生耐受而继续生长。然而,如 果在临床环境中重复使用单个噬菌体作为抗菌 剂,则可能产生噬菌体抗性。因此,将不同的噬 菌体组合成噬菌体混合物可以帮助扩大噬菌体裂 解谱,并避免病原菌对单个噬菌体的抗性^[37-39]。从 这个角度来看,具有相似裂解能力但不同性质和 特征的新噬菌体的发现可以促进噬菌体疗法的临 床应用。

图 5 使用噬菌体主要衣壳蛋白(A)和推定的末端酶大亚基(B)制作的进化树

Figure 5 Phylogenetics tree were formed by major capsid protein (A) and putative large terminase subnit (B) of phage

注:分支点上的数字代表可信度,数值越接近100,可信度越强;标尺:代表遗传距离,标尺越短代表亲缘关系越近;黑色圆点:vB_KpnP_IME308.

Note: The number at the branch point: The confidence level, the closer to 100 the bootstrap value is, the higher confidence level would be; Scale: The genetic distance; Black ball: vB_KpnP_IME308.

在本研究中,噬菌体 vB_KpnP_IME308 的最 佳温度确定为 4-50 ℃,最合适的 pH 值范围为 5.0-10.0,与我们之前报道的噬菌体 vB_SauS_ IMEP5^[40]有相似的温度和 pH 耐受能力。将噬菌体 vB_SauS_IMEP5 在 70 ℃ 孵育 20 min 后噬菌体全 部失活并在 pH 3.0-12.0下稳定。Kęsik-Szeloch 等^[41] 也报道了肺炎克雷伯氏菌噬菌体颗粒在 pH 5.0-8.0 的范围内相对稳定。在 pH 4.0下孵育导致 KP16 和 KP34 的噬菌体滴度降低 3lg。然而,KP15 显示出 对高温的相对敏感性,在 60 ℃ 温育 10 min 后观察 到滴度降低了 2lg^[41]。

综上所述,本实验从解放军总医院第五医学中 心污水处理站的污水中分离出一株新型肺炎克雷 伯菌噬菌体,命名为vB_KpnP_IME308,通过透射 电镜观察,按照噬菌体分类学中的分类标准,判断 该噬菌体属于短尾噬菌体科(*Podoviridae*),进一步 进行生物学特性研究发现该噬菌体最佳感染复数 为0.001,一步生长曲线显示vB_KpnP_IME308的 潜伏期为 20 min,暴发期为 80 min,暴发量为 330 PFU/cell,裂解量大且具有一定的温度和 pH 稳 定性。此外,噬菌体 vB_KpnP_IME308 裂解酶实验 与动物实验也值得深入研究,可为未来使用该噬菌 体治疗肺炎克雷伯菌耐药感染奠定基础。

REFERENCES

- Podschun R, Ullmann U. *Klebsiella* spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors[J]. Clinical Microbiology Reviews, 1998, 11(4): 589-603
- [2] Daszak P, Cunningham AA, Hyatt AD. Emerging infectious diseases of wildlife – threats to biodiversity and human health[J]. Science, 2000, 287(5452): 443-449
- [3] Chiu CT, Lin DY, Liaw YF. Metastatic septic endophthalmitis in pyogenic liver abscess[J]. Journal of Clinical Gastroenterology, 1988, 10(5): 524-527
- [4] Lin YT, Siu LK, Lin JC, et al. Seroepidemiology of *Klebsiella pneumoniae* colonizing the intestinal tract of healthy Chinese and overseas Chinese adults in Asian countries[J]. BMC Microbiology, 2012, 12: 13
- [5] Ventola CL. The antibiotic resistance crisis: part 1: causes and threats[J]. P & T, 2015, 40(4): 277-283
- [6] Cao F, Wang XT, Wang LH, et al. Evaluation of the

efficacy of a bacteriophage in the treatment of pneumonia induced by multidrug resistance *Klebsiella pneumoniae* in mice[J]. BioMed Research International, 2015, 2015: 752930

- [7] Manohar P, Tamhankar AJ, Lundborg CS, et al. Therapeutic characterization and efficacy of bacteriophage cocktails infecting *Escherichia coli*, *Klebsiella pneumoniae*, and *Enterobacter* species[J]. Frontiers in Microbiology, 2019, 10: 574
- [8] Pan YJ, Lin TL, Chen YH, et al. Capsular types of *Klebsiella pneumoniae* revisited by *wzc* sequencing[J]. PLoS One, 2013, 8(12): e80670
- [9] Greisen K, Loeffelholz M, Purohit A, et al. PCR primers and probes for the 16S rRNA gene of most species of pathogenic bacteria, including bacteria found in cerebrospinal fluid[J]. Journal of Clinical Microbiology, 1994, 32(2): 335-351
- [10] Zhao FY, Sun HZ, Zhou XY, et al. Characterization and genome analysis of a novel bacteriophage vB_SpuP_Spp16 that infects *Salmonella enterica serovar pullorum*[J]. Virus Genes, 2019, 55(4): 532-540
- [11] Anderson TF. Bacteriophages[J]. Annual Review of Microbiology, 1949, 4: 21-34
- [12] Li F, Xing SZ, Fu KF, et al. Genomic and biological characterization of the *Vibrio alginolyticus*-infecting "*Podoviridae*" bacteriophage, vB_ValP_IME271[J]. Virus Genes, 2019, 55(2): 218-226
- [13] Delbrück M. The growth of bacteriophage and lysis of the host[J]. The Journal of General Physiology, 1940, 23(5): 643-660
- [14] Wang RH, Xing SZ, Zhao FY, et al. Characterization and genome analysis of novel phage vB_EfaP_IME195 infecting *Enterococcus faecalis*[J]. Virus Genes, 2018, 54(6): 804-811
- [15] Xing SZ, Zhang XLL, Sun Q, et al. Complete genome sequence of a novel, virulent Ahjdlikevirus bacteriophage that infects *Enterococcus faecium*[J]. Archives of Virology, 2017, 162(12): 3843-3847
- [16] Chen YB, Guo GH, Sun EC, et al. Isolation of a T7-like lytic *Pasteurella bacteriophage* vB_PmuP_PHB01 and its potential use in therapy against *Pasteurella multocida* infections[J]. Viruses, 2019, 11(1): 86
- [17] Ackermann HW. Basic phage electron microscopy[A]//Clokie MRJ, Kropinski AM. Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interactions. New York: Humana Press, 2009: 113-126
- [18] Lu SG, Le S, Tan YL, et al. Genomic and proteomic analyses of the terminally redundant genome of the *Pseudomonas aeruginosa* phage PaP1: establishment of genus PaP1-like phages[J]. PLoS One, 2013, 8(5): e62933
- [19] Margulies M, Egholm M, Altman WE, et al. Genome sequencing in microfabricated high-density picolitre

reactors[J]. Nature, 2005, 437(7057): 376-380

- [20] Aziz RK, Bartels D, Best AA, et al. The RAST Server: rapid annotations using subsystems technology[J]. BMC Genomics, 2008, 9: 75
- [21] Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence[J]. Nucleic Acids Research, 1997, 25(5): 955-964
- [22] Darling ACE, Mau B, Blattner FR, et al. Mauve: multiple alignment of conserved genomic sequence with rearrangements[J]. Genome Research, 2004, 14(7): 1394-1403
- [23] Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology and Evolution, 2013, 30(12): 2725-2729
- [24] Hughes KA, Sutherland IW, Clark J, et al. Bacteriophage and associated polysaccharide depolymerases-novel tools for study of bacterial biofilms[J]. Journal of Applied Microbiology, 1998, 85(3): 583-590
- [25] Loessner MJ. Bacteriophage endolysins current state of research and applications[J]. Current Opinion in Microbiology, 2005, 8(4): 480-487
- [26] Bamford DH, Grimes JM, Stuart DI. What does structure tell us about virus evolution?[J]. Current Opinion in Structural Biology, 2005, 15(6): 655-663
- [27] Hambly E, Tétart F, Desplats C, et al. A conserved genetic module that encodes the major virion components in both the coliphage T4 and the marine cyanophage S-PM2[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(20): 11411-11416
- [28] Loessner MJ, Krause IB, Henle T, et al. Structural proteins and DNA characteristics of 14 *Listeria* typing bacteriophages[J]. Journal of General Virology, 1994, 75(4): 701-710
- [29] Kropinski AM, Waddell T, Meng JC, et al. The host-range, genomics and proteomics of *Escherichia coli* O157:H7 bacteriophage rV5[J]. Virology Journal, 2013, 10: 76
- [30] Guilliam TA, Keen BA, Brissett NC, et al. Primase-polymerases are a functionally diverse superfamily of replication and repair enzymes[J]. Nucleic Acids

Research, 2015, 43(14): 6651-6664

[31] Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms[J]. Nature Reviews Microbiology, 2010, 8(5): 317-327

221

- [32] Chan BK, Sistrom M, Wertz JE, et al. Phage selection restores antibiotic sensitivity in MDR *Pseudomonas aeruginosa*[J]. Scientific Reports, 2016, 6: 26717
- [33] Gu JM, Liu XH, Li Y, et al. A method for generation phage cocktail with great therapeutic potential[J]. PLoS One, 2012, 7(3): e31698
- [34] Ho K. Bacteriophage therapy for bacterial infections: rekindling a memory from the pre-antibiotics era[J]. Perspectives in Biology and Medicine, 2001, 44(1): 1-16
- [35] Summers WC. Cholera and plague in India: the bacteriophage inquiry of 1927–1936[J]. Journal of the History of Medicine and Allied Sciences, 1993, 48(3): 275-301
- [36] Sulakvelidze A, Alavidze Z, Morris Jr JG. Bacteriophage therapy[J]. The British Medical Journal, 1934, 2(3858): 1110
- [37] Tomat D, Migliore L, Aquili V, et al. Phage biocontrol of enteropathogenic and Shiga toxin-producing *Escherichia coli* in meat products[J]. Frontiers in Cellular and Infection Microbiology, 2013, 3: 20
- [38] Chan BK, Abedon ST, Loc-Carrillo C. Phage cocktails and the future of phage therapy[J]. Future Microbiology, 2013, 8(6): 769-783
- [39] Yu L, Wang S, Guo ZM, et al. A guard-killer phage cocktail effectively lyses the host and inhibits the development of phage-resistant strains of *Escherichia coli*[J]. Applied Microbiology and Biotechnology, 2018, 102(2): 971-983
- [40] Zhang Q, Xing SZ, Sun Q, et al. Characterization and complete genome sequence analysis of a novel virulent *Siphoviridae* phage against *Staphylococcus aureus* isolated from bovine mastitis in Xinjiang, China[J]. Virus Genes, 2017, 53(3): 464-476
- [41] Kęsik-Szeloch A, Drulis-Kawa Z, Weber-Dabrowska B, et al. Characterising the biology of novel lytic bacteriophages infecting multidrug resistant *Klebsiella pneumoniae*[J]. Virology Journal, 2013, 10: 100