微生物学通报

Jan. 20, 2020, 47(1): 66–75 DOI: 10.13344/j.microbiol.china.190358

Microbiology China tongbao@im.ac.cn http://journals.im.ac.cn/wswxtbcn

耐盐菌 *Staphylococcus* sp. YZ-1 和 *Bacillus cereus* CC-1 的 Cr(VI) 脱毒特性与机理

杨重 徐天怡 刘奕含 周豪^{*} 大连理工大学食品与环境学院 辽宁 盘锦 124221

摘 要:【背景】高盐含铬废水的去除过程中,Cr(VI)还原菌是研究者关注的重点,但目前对耐盐菌 株的Cr(VI)脱毒特性及机理的分析仍较少。【目的】比较两株耐盐菌株的Cr(VI)移除特性,并区分 Cr(VI)耐受机制的差异;通过基因组测序分析,从基因层面推测铬耐受相关基因;构建铬还原菌的 混菌体系,考察两者对去除污染物的协同作用。【方法】从青海茶卡盐湖分离耐盐菌 Staphylococcus sp. YZ-1,与 Bacillus cereus CC-1 进行基础特性和Cr(VI)去除性能的比较,并通过全基因组序列的分析 验证特性测试的结果。【结果】两株菌都具有铬移除特性,但CC-1的铬移除效率更高,在初始Cr(VI) 浓度为0.1 mmol/L 情况下,CC-1 能在12 h内移除95.3%的Cr(VI),而YZ-1只能移除40.1%。在进 一步实验中发现YZ-1只能对Cr(VI)进行还原,将其转化为可溶的有机态Cr(III),而CC-1 能同时对 Cr(VI)进行还原和吸附。全基因组分析发现YZ-1具有编码外排泵蛋白的基因和编码NAD(P)H氧化 还原酶的基因,而CC-1具有编码铬转运蛋白ChrA和细胞色素C氧化还原酶的基因。两株菌的混 菌体系在处理含Cr(VI)、Te(IV)的废水时,菌群能将还原产物聚集成团并沉淀到底部。【结论】菌株 YZ-1和CC-1均为耐盐铬还原菌,但YZ-1中的铬还原酶为诱导型酶,CC-1则为组成型酶。基因组 数据分析鉴别出两者可能同时存在多种铬耐受机制相关编码基因。混合菌群可以结合YZ-1的自絮 凝特性和两者均有的Te(IV)/Cr(VI)还原活性,具有潜在的实用价值。

关键词: 耐盐菌, 铬耐受, 脱毒机理, 全基因组

Cr(VI) detoxification characteristics of salt-tolerant *Staphylococcus* sp. YZ-1 and *Bacillus cereus* CC-1

YANG Zhong XU Tian-Yi LIU Yi-Han ZHOU Hao*

School of Food and Environment, Dalian University of Technology, Panjin, Liaoning 124221, China

Abstract: [Background] Cr(VI) reducing bacteria are important for bioremediation of high salinity Cr(VI) containing wastewater. However, Cr(VI) detoxification characteristics of salt-tolerant bacteria are little known. [Objective] Comparing the Cr(VI) removal performance and resistant mechanism of two salt-tolerant strains. Identifying the putative Cr(VI) resistance related genes from the result of genome

Foundation items: National Natural Science Foundation of China (31500080); Fundamental Research Funds of Dalian University of Technology (DUT17RC(4)36)

^{*}Corresponding author: Tel: 86-427-2631786; E-mail: zhouhao@dlut.edu.cn

Received: 22-04-2019; **Accepted:** 29-07-2019; **Published online:** 09-09-2019

基金项目:国家自然科学基金青年基金(31500080);大连理工大学基本科研业务费(DUT17RC(4)36)

^{*}通信作者: Tel: 0427-2631786; E-mail: zhouhao@dlut.edu.cn

收稿日期: 2019-04-22; 接受日期: 2019-07-29; 网络首发日期: 2019-09-09

sequencing. Constructing the microbial consortium of Cr(VI) reducing bacteria, and investigate the synergy effect on pollutant removal. [Methods] Staphylococcus sp. YZ-1 was isolated from Chaka salt lake in Qinghai province, and its Cr(VI) removal performance was compared with a previously identified strain Bacillus cereus CC-1. Genome sequencing was used to identify the putative Cr(VI) resistance related genes. [Results] Staphylococcus sp. YZ-1 and Bacillus cereus CC-1 both had Cr(VI) removal characteristics, but the latter was superior. When the Cr(VI) concentration was 0.1 mmol/L, Bacillus cereus CC-1 removed 95.3% Cr(VI) but Staphylococcus sp. YZ-1 only 40.1% in 12 hours. Strain YZ-1 reduced Cr(VI) to organic Cr(III) species, whereas CC-1 removed Cr(VI) through reduction and absorption. Genes encoding pump protein and NAD(P)H oxidoreductase were found in the genome of YZ-1, whereas genes encoding chromate transporter protein ChrA and cytochrome c oxidoreductase were found in the genome of CC-1. The mixture cultures of these strains could self-flocculate and carried the reduced Te⁰ as participation. The Cr(VI) reductase of YZ-1 was inducible enzyme, and the Cr(VI) reductase of CC-1 was constitutive enzyme. The related encoding genes of multiple Cr(VI) resistance mechanisms maid simultaneously in bacteria. [Conclusion] Staphylococcus sp. YZ-1 and Bacillus cereus CC-1 both are salt-tolerant Cr(VI) reducing bacteria. After mix culture of the two bacteria, the auto-aggregation and Te(IV) reducing performance of YZ-1 may extent the application of Cr(VI) resistant consortium in wastewater treatment.

Keywords: Salt tolerant bacteria, Cr(VI) resistant, Detoxification mechanism, Genome

Cr(VI)是一种广泛存在于皮革、电镀、印染等 行业废水中的污染物,对人体具有潜在的致癌、致 畸、致突变效应。常用的去除方法主要包括吸附法 和还原法,其中将高毒性的 Cr(VI)还原为低毒性且 水溶性较差的 Cr(III)是目前较为主流的方法。在这 些方法中,生物移除 Cr(VI)具有绿色友好、成本低 廉等特点,因此在实际应用中广泛采用^[1]。但是, 在实际的含 Cr(VI)废水中通常还会包含大量的盐 分^[2], 筛选出能够耐受高盐度的微生物是进行生物 处理高盐含铬废水的关键因素。目前已经有多种具 有耐盐特性的铬移除菌株从不同的环境中筛选获 得, 例如 Exiguobacterium sp. GS1^[3]、Vigribacillus sp. H4^[4]和 Dunaliella sp. 1^[5]。另一方面,细菌的耐 盐机制已经得到了较多报道,主要的耐盐机理为利 用甘氨酸甜菜碱和四氢嘧啶等物质调节体内渗透 压^[6]。同时也有研究者采用微生物群落直接对高盐 含铬废水进行处理^[7]。由于天然或人工合成的微生 物群落相比于单菌具有更强的稳定性、代谢多样性 以及环境适应性,研究微生物群落中的 Cr(VI)去除 性能具有更大的实用价值。

微生物群落去除 Cr(VI)的前提条件在于这些微 生物具有 Cr(VI)的耐受性能。微生物在高浓度的 Cr(VI)存在时,主要存在着四大类的耐受机制。首先, 细菌可以通过专门的 Cr(VI)膜转运蛋白(ChrA)或者 非特异性的硫酸盐转运蛋白(Cys操纵子编码蛋白)以 及氯高铁血红素转运蛋白将 Cr(VI)从细胞质中泵出; 其次,可以通过特异性或非特异性的铬还原过程(铬 还原蛋白或者还原性小分子)将 Cr(VI)还原为 Cr(III)。除此之外,细菌还可以通过过表达氧化压 力应答蛋白(超氧化物歧化酶、谷胱甘肽转移酶、过 氧化氢酶)以及 DNA 修复系统相关蛋白(RecG、 RuvB、DNA 解旋酶)等方式应对 Cr(VI)的胁迫^[8]。这 些途径可以单独或者同时存在于特定的菌株中。

基于上述研究背景,本文的主要研究目的在于 获取不同铬耐受性能的菌株,并比较其铬耐受特 性;通过基因组测序及分析,从基因层面推测铬耐 受相关的基因;通过构建铬还原菌的混菌体系,考 察混菌对去除污染物的协同作用。

1 材料与方法

1.1 菌株和培养基

实验所研究的菌株包括 CC-1 和 YZ-1,其中 CC-1 为实验室前期筛选获得的硒还原菌并已被鉴 定为 *Bacillus cereus* (CICC 24251)^[9],而 YZ-1 为本 研究筛选所得。实验所用培养基为修正后的 LB 培

养基(g/L):蛋白胨 10.0,酵母浸粉 5.0, NaCl 0-200.0;固体 LB 培养基则额外加入 2.0%-2.5% 琼脂。LB 培养基 pH 为 6.5-7.0,使用前需高压蒸 汽灭菌(1×10⁵ Pa, 20 min),随后再在无菌操作台 中紫外灭菌 15 min。

1.2 主要试剂和仪器

蛋白胨、酵母浸粉,北京奥博星生物技术有限 公司;重铬酸钾,天津市光复科技发展有限公司; 氯化钠,天津市东丽区天大化学试剂厂;氯化铜、 氯化钴、氯化锰,天津市大茂化学试剂厂;亚碲酸 钠,阿拉丁工业公司。电感耦合等离子体质谱仪 ICP-MS,安捷伦科技有限公司;紫外分光光度计, 上海舜宇恒平科学仪器有限公司;全基因组测序, 北京诺禾致源科技股份有限公司。

1.3 菌株筛选与鉴定

高盐铬耐受菌的筛选利用来源于青海茶卡盐 湖的湖水样品。在灭菌后的修饰 LB 培养基(NaCl 浓度为 5%)中添加 0.1 mmol/L K₂Cr₂O₇ 以及 1 mL 湖水样品,30 °C、150 r/min 下培养 24 h 进行平板 涂布,反复多轮纯化后获取纯菌,命名为 YZ-1。 菌株的鉴定采用 16S rRNA 基因测序,利用正向引物 27F (5'-AGAGTTTGATCCTGGCTGGCTCAG-3')和 反向引物 1492R (5'-GGTTACCTTGTTACGACTT-3') 进行 PCR 扩增^[10]。PCR 产物回收后由生工生物工程 (上海)股份有限公司进行测序,获得的序列通过在线 服务器 EzBioCloud (https://www.ezbiocloud.net)进 行序列一致性比较,随后通过 MEGA 8.0 构建系统 进化树。

1.4 Cr(VI)、Te(IV)测定

所用测定 Cr(VI)浓度的方法为二苯碳酰二肼 分光光度法(GB/T 15555.5-1995)^[11],测定 Te(IV) 浓度的方法为二乙基二硫代氨基甲酸钠(DDTC) 法^[12],分别利用紫外分光光度计在波长为 540、 340 nm 下进行测量,每一组实验重复 3 次。

1.5 菌株 YZ-1 和 CC-1 性能研究

1.5.1 菌株 YZ-1 和 CC-1 的基本特性

分别设置 pH 为 4.0-11.0, NaCl 浓度为 0、50、

100、150、200 g/L, Cr(VI)浓度为 0.05、0.1、0.2、 0.5、1 mmol/L, Cu(II)、Co(II)、Mn(II)浓度为 0.1、 0.2、0.5 mmol/L 与 0.1 mmol/L Cr(VI)共存的 LB 培 养基,接种 1%菌液后培养 48 h,通过菌株生长情 况判断菌株 YZ-1 和 CC-1 对环境条件和常见金属 离子的耐受性能。

1.5.2 菌株 YZ-1 和 CC-1 的 Cr(VI)去除性能

设置 Cr(VI)浓度为 0.1 mmol/L 和 NaCl 浓度为 50 g/L 的 LB 培养基,分别接种 1%的 YZ-1 和 CC-1 菌液,每隔 12 h 测量菌株的生长情况以及溶液中 Cr(VI)浓度;并设置不含菌液的空白对照,在无菌 条件下每隔 24 h 测量培养基内 Cr(VI)浓度。将 48 h 后的样品在 10 000 r/min 下离心 10 min,取上清液 过 0.22 μm PVDF 膜后利用 ICP-MS 对总 Cr 浓度进 行测量,根据 Cr(VI)的移除率和水相中残留的总铬 含量计算两株菌的 Cr 吸附量。

1.5.3 菌株 YZ-1 和 CC-1 的铬还原酶活性

分别将菌株 YZ-1 和 CC-1 在含 0.1 mmol/L Cr(VI)以及不含 Cr(VI)的 LB 培养基中培养 48 h, 分别取 20 mL 菌液在转速为 10 000 r/min 下离心 10 min, 收集上清液用于胞外酶活的测定; 将菌液 沉淀用 Tris-HCl (10 mmol/L, pH 8.0)洗 3次, 并用 细胞破碎机在 300 W 功率下间隔 1 s 对细胞破碎 20 min。将细胞破碎后的菌液在 14 000 r/min 下离 心 10 min, 收集上清液用于胞内酶活的测定; 将细 胞破碎后的菌液沉淀再次用 Tris-HCl 洗 3 次, 重 新悬浮后用于细胞膜酶活的测定。酶活测定方法采 用二苯碳酰二肼法, 4 mL 反应体系包括 0.04 mL Cr(VI)、0.2 mL NADH、2.96 mL Tris-HCl 和 0.8 mL 蛋白液,体系中Cr(VI)、NADH、Tris-HCl浓度分 别为 0.05、1、10 mmol/L, 30 min 后测量 Cr(VI) 浓度,并利用 Bradford 法测量体系中的蛋白含量^[13], 计算比酶活[µg/(mg·h)]。

1.6 菌株 CC-1 的休眠细胞性能研究

(1) Cr(VI)浓度对 CC-1 休眠细胞 Cr(VI)还原性 能的影响

取 20 mL 对数生长期的 CC-1 菌液,10 000 r/min 离心 10 min 后用 Tris-HCl 缓冲溶液重新悬浮,并 利用紫外分光光度计在波长为 660 nm 下调节其吸 光度为 1.5,随后分别设置 Cr(VI)浓度为 0.1、0.2、 0.5、1 mmol/L 的休眠细胞体系,培养 24 h 测量溶 液中 Cr(VI)浓度变化。

(2) pH对CC-1休眠细胞Cr(VI)还原性能的影响

用 HCl 和 NaOH 调节 pH 为 4.0-12.0 的休眠 细胞体系,加入 Cr(VI)使其浓度为 0.2 mmol/L,培养 24 h 测量溶液中 Cr(VI)浓度变化。

(3) 电子供体对 CC-1 休眠细胞 Cr(VI)还原性能的影响

分别设置电子供体为5g/L丙酮酸钠、乙酸钠、 乳酸钠、葡萄糖、甘油和柠檬酸钠的休眠细胞体系, 加入 Cr(VI)使其浓度为0.2 mmol/L,培养24h测 量溶液中 Cr(VI)浓度变化;另设不含电子供体的空 白对照,测量 Cr(VI)浓度变化。

1.7 全基因组测序及生物信息学分析

本实验室前期研究已经获得了菌株 CC-1 的基因 组完成图(GenBank 登录号为 CP023179-CP023183)^[9]。 菌株 YZ-1 的菌体收集、DNA 提取和纯度检测、 测序组装、注释过程与 CC-1 类似(GenBank 登录号 为 QHJX01000001-QHJX01000018)。注释采用的 数据库包括 KEGG、GO、NR。同时,在线服务器 RAST Server 也被用于基因的注释。

1.8 YZ-1/CC-1 复合菌群的 Cr(VI)-Te(IV)移除 性能

设置反应体系为 20 mL 0.1 mmol/L K₂Cr₂O₇和 Na₂TeO₃ 共存的 LB 培养基。共接种 5%菌液,分 别设置菌液中 YZ-1 占比为 100%、80%、60%、40%、 20%、0% (对应的 CC-1 占比为 0%、20%、40%、 60%、80%、100%),测定 24 h内 Cr(VI)、Te(IV) 去除率。

2 结果与分析

2.1 菌株 YZ-1 的鉴定

通过对茶卡盐湖中耐盐菌的分离获得了一株铬 耐受菌 YZ-1 (GenBank 登录号为 MH426978),对其 16S rRNA 基因进行比对,表明其与 *Staphylococcus warneri* ATCC 27836 的序列一致性最高,达到了 99.79%,据此构建了 YZ-1 的系统进化树(图 1), 确定该菌株为葡萄球菌属(*Staphylococcus*)。

2.2 菌株 YZ-1 和 CC-1 的基本特性

首先对菌株 YZ-1 和 CC-1 的基本特性进行了 考察,由表 1 可知,菌株 YZ-1 和 CC-1 均属于耐 盐菌,且 YZ-1 具有更高的耐盐性能,这一性能可 能与 YZ-1 及 CC-1 具有合成细胞相容性介质的基 因有关。同时,两者可以耐受 0.5 mmol/L 的 Cr(VI), 这一性能介于已报道的 Bacillus 及 Staphylococcus 属细菌的耐受范围内^[14-15]。此外,菌株 CC-1 和

图 1 菌株 YZ-1 基于 16S rRNA 基因序列的系统进化树

Figure 1 Phylogenetic tree based on 16S rRNA gene sequences of Staphylococcus sp. YZ-1

注: 括号中的序号表示菌株的 GenBank 号; 分支上的数字为 Bootstrap 值,表示置信度;标尺长度代表核苷酸序列差异.

Note: The number in parentheses indicates the GenBank accession numbers of bacteria; The number on each branch are bootstrap values, which represent confidence coefficient; The ruler length represents the nucleotide sequence difference.

表 1 菌株 YZ-1 和 CC-1 对环境条件和常见金属离子的耐受性能										
Table 1 The environmental conditions and metal ions tolerant characteristics of <i>Staphylococcus</i> sp. YZ-1 and <i>Bacillus cereus</i> CC-1										
菌株 Strains	NaCl (g/L)	pН	Cr(VI) (mmol/L)	Cu(II) (mmol/L)	Co(II) (mmol/L)	Mn(II) (mmol/L)				
YZ-1	100	5 0-8 0	0.5	0.5	0.5	0.5				

0.5

YZ-1 对常见的重金属离子,如 Cu(II)、Co(II)和 Mn(II)均具有一定的耐受性,在0.5 mmol/L上述离子 存在时,两株菌均可以正常生长。

4.0-11.0

0.5

2.3 菌株 YZ-1 和 CC-1 的 Cr(VI)去除性能

50

图 2 展示了菌株 YZ-1 和 CC-1 在修饰 LB 培 养基中的 Cr(VI)性能和生长曲线。CC-1 可以在 12 h 内移除 95.3%的 Cr(VI), 而 YZ-1 则需要 48 h 才可 将 Cr(VI)完全移除;然而在最开始的 12 h 内, YZ-1 并没有体现出明显的生长趋势,而溶液中的 Cr(VI) 已经被去除了 40.1%, 这意味着 LB 培养基里的还 原性成分可能也参与到了 Cr(VI)的去除过程中;通 过不加菌液的 LB 空白培养基实验表明, LB 培养 基自身可在 48 h 内还原 43%的 Cr(VI)。这一结果 表明在 LB 培养基中的 Cr(VI)去除, 是培养基自身 组分的化学作用,及微生物的生物吸附/还原作用 共同导致的结果[16]。

图 3 展示了 YZ-1 和 CC-1 的 Cr(VI)移除性能, YZ-1在还原Cr(VI)时,水相中可溶的有机态Cr(III) 占比为 98.7%, 说明 YZ-1 对 Cr(III)几乎没有吸附

图 2 菌株 YZ-1 和 CC-1 的 Cr(VI)去除率和生长曲线 Figure 2 Cr(VI) removal rate and growth curves of Staphylococcus sp. YZ-1 and Bacillus cereus CC-1

效果;而 CC-1 还原过程中,水相中的 Cr(III)占比为 76.1%, 被吸附的 Cr 物种占比 17.5%。这一结果表 明,两株铬还原菌在去除 Cr(VI)时, YZ-1 主要依靠 生物还原作用, 而 CC-1 依赖生物吸附/还原作用。

0.5

2.4 菌株 YZ-1 和 CC-1 的酶活性研究

0.5

为了进一步区分菌株 YZ-1 及 CC-1 的铬耐受 机制,进行了铬还原酶活力的测试。在不含 Cr(VI) 的培养基中进行培养, 菌株 CC-1 具有铬还原酶活 性, 而 YZ-1 不具有铬还原酶活性, 在对 YZ-1 进 行 Cr(VI)诱导后, YZ-1 表现出了铬还原活性。如 图 4 所示, 菌株 CC-1 的胞外、细胞膜及胞内酶组 分均体现出了铬还原活性,比酶活分别为 2.01、 0.34、0.39 µg/(mg·h),表明 CC-1 可能通过多种酶 对 Cr(VI)进行还原,且这些酶为组成酶。菌株 YZ-1 在含 0.1 mmol/L Cr(VI)的培养基中进行培养后,细 胞膜和胞内组分表现出了铬还原酶活性,比酶活分 别为 0.02、0.70 μg/(mg·h), 表明 YZ-1 的铬还原酶 为诱导型还原酶。

Cr(VI)经 Staphylococcus sp. YZ-1 和 Bacillus 图 3 cereus CC-1 反应后的产物分析

Figure 3 Cr species after Cr(VI) removal by Staphylococcus sp. YZ-1 and Bacillus cereus CC-1

Tel: 010-64807511; E-mail: tongbao@im.ac.cn; http://journals.im.ac.cn/wswxtbcn

CC-1

注: A: 菌株 CC-1 没有经过 Cr(VI)诱导的铬还原酶活性; B: 菌株 YZ-1 经过 0.1 mmol/L Cr(VI)诱导后的铬还原酶活性. Note: A: Chromate reductase activity of *Bacillus cereus* CC-1 without Cr(VI) induced; B: Chromate reductase activity of *Staphylococcus* sp. YZ-1 with the 0.1 mmol/L Cr(VI) induced.

2.5 菌株 CC-1 休眠细胞性能研究

由于菌株 CC-1 的铬还原酶为组成型酶,相较 于 YZ-1 来说不需要提前诱导,在实际应用中具有 潜在优势,因此选择菌株 CC-1 进行进一步研究。 如图 5A 所示,菌株 CC-1 休眠细胞铬还原的百分 比随初始 Cr(VI)的增加而下降,0.1 mmol/L 的

Figure 5 Cr(VI) removal rate of CC-1 rest cells with different Cr(VI) concentrations (A), pH (B) and electron donors (C)

Cr(VI)在 24 h 内可被移除 80%, 而初始 Cr(VI)浓 度升至1 mmol/L 时,移除率下降到 5%以内。图 5B 展示了不同 pH 对于菌株 CC-1 移除 0.2 mmol/L Cr(VI)的影响, pH 8.0 时, 菌株 CC-1 对 Cr(VI)的 还原率能达到 40.7%, 而在 pH 4.0-11.0 的范围内, 菌株在 24 h 内都对 Cr(VI)具有 20%以上的去除率 说明菌株 CC-1 的 pH 耐受范围较广,大部分菌株 如 Bacillus cereus S5.4^[17]、Klebsiella pneumonia MKPF5、Acinetobacter gerneri MKPF7^[18]等,最适 pH 在 7.0 左右, 在 pH 为 5.0 或 9.0 时, 菌株的活 性就会受到抑制,从而导致 Cr(VI)还原能力下降。 外源电子供体的加入对菌株 CC-1 移除 Cr(VI)的性 能具有不同的影响,如图 5C 所示。在无外加电子 供体的情况下, 菌株可在 24 h 内还原 40%的 Cr(VI); 乳酸钠、葡萄糖、丙酮酸钠、甘油和乙酸 钠均可不同程度地增强菌株的 Cr(VI)还原性能,而 柠檬酸钠的加入抑制了 Cr(VI)的还原,24 h 的还原 率仅为 9.4%。

2.6 生物信息学分析结果

对菌株 YZ-1 和 CC-1 进行了全基因组测序, YZ-1 序列总长为 2.66 Mb, CC-1 为 5.08 Mb。YZ-1 的(G+C)mol%含量为 32.53%, CC-1 为 35.47%。 高质量片段组装后, YZ-1 获得 19 个 Contig 和 18 个 Scaffold,而 CC-1 获得 5 个 Contig。YZ-1 全基 因组数据中包含预测的基因 2 630 个,蛋白编码区 2 569 个,而 CC-1 包含预测的基因 5 516 个,蛋 白编码区 5 483 个。两株菌的耐盐和耐受重金属离 子相关基因如表 2 所示。

2.7 复合菌群的 Cr(VI)、Te(IV)移除性能

考虑到铬还原菌通常会具有 Cr(VI)类似物如 Se(IV)、Te(IV)的还原活性,本研究考虑构建 YZ-1/CC-1复合体系,以探索混菌在去除 Cr(VI)、 Te(IV)时的性能变化。混菌体系在 24 h 内对 Cr(VI) 和 Te(IV)的去除性能如图 6 所示。单菌 YZ-1 比 CC-1 体现出了更强的 Cr(VI)、Te(IV)移除特性。同 时反应体系中产生大量的黑色絮凝物,表明 YZ-1 在 高盐条件下形成的自絮凝体可以有效地还原并吸附 碲单质,另一方面,CC-1 单独存在时,Te(IV)的移 除率虽然较高,但是反应产物并没有明显的黑色, 表明 Te(IV)更多地被转化为低价态的有机碲物种, 不易实现 Te(IV)从水中的完全去除。当两者以不同 比例混合时,YZ-1 主导的自絮凝特性仍然可以得以 体现,从而实现单质碲从水相中的移除。

3 讨论与结论

本研究筛选并鉴定了一株耐盐铬耐受菌 Staphylococcus sp. YZ-1,将其与实验室之前筛选的 硒还原菌 Bacillus cereus CC-1 进行基本特性的对 比, 菌株 YZ-1 能耐受 100 g/L 的 NaCl, CC-1 仅 能耐受 50 g/L; 在 0.1 mmol/L 的 Cr(VI)浓度条件 下, 12h内YZ-1 去除 40.1%的 Cr(VI), 而 CC-1 去 除 95.3%。这一实验现象说明 YZ-1 和 CC-1 皆为耐 盐铬还原菌,之前有文献报道过 Staphylococcus arlettae strain Cr11 能在 24 h 内还原 100 mg/L 的 Cr(VI), 且同样能耐受 100 g/L NaCl^[19], 与之相比 YZ-1 的铬还原效率较低。也有文献报道过 Bacillus circulans BWL1061 能在 60 g/L NaCl 条件下, 36 h 内还原 50 mg/L Cr(VI),性能优于 CC-1^[20]。酶活研 究发现菌株 YZ-1 在 Cr(VI)诱导后具有铬还原活性, 所含的铬还原酶为诱导型酶, 而 CC-1 所含铬还原酶 为组成型酶。同时, YZ-1 仅有细胞膜和胞内组分检 测到了 Cr(VI)的还原活性, 而 CC-1 在胞内、细胞膜 上以及胞外均可以检测到 Cr(VI)的还原,这一结果 意味着两者的铬还原过程均由多种酶共同催化,且 这些酶的存在场所具有差异。

对两株菌的全基因组进行分析,发现都具有与 铬耐受和铬还原相关的基因,YZ-1具有编码硫酸 盐转运蛋白的基因、编码外排泵蛋白的基因、编码 亚硝酸盐还原酶的基因以及编码 NAD(P)H 氧化 还原酶的基因。曾有报道 Cr(VI)可以通过硫酸盐 转运通道在细菌体内进出^[21],而 *Staphylococcus aureus* LZ-01 能通过 29-ABC 型金属/抗生素转运 蛋白和外排泵耐受 Cr(VI)^[22],据赵欣欣报道,亚 硝酸盐还原酶和 Cr(VI)去除相关^[23],而 NAD(P)H

基因功能	Staphylococcus sp. YZ-1		Bacillus cereus CC-1		
Gene function	注释	GenBank 登录号	注释	GenBank 登录号	
	Annotation	GenBank	Annotation	GenBank	
		accession No.		accession No.	
耐盐	编码甘氨酸甜菜碱转运蛋白	PXX85639.1	编码甘氨酸甜菜碱转运蛋白	ASZ20207.1	
Salt resistance	Glycine betaine transporter OpuD		Glycine betaine transporter OpuD		
铜耐受	编码铜转运 P 型 ATP 酶	PXX83918.1	编码铜抗性蛋白	ASZ20373.1	
Cu(II) resistance	Copper-translocating P-type ATPase		Copper resistance protein D		
锰耐受	编码二价金属阳离子转运酶	PXX86338.1	编码锰超氧化物歧化酶	ASZ67998.1	
Mn(II) resistance	Divalent metal cation transporter		Superoxide dismutase [Mn] 1		
钴耐受	编码镁-钴泵出蛋白 CorC	PXX86172.1	编码镁-钴转运蛋白 CorA	ASZ17274.1	
Co(II) resistance	Magnesium and cobalt efflux protein CorC		Magnesium and cobalt transport protein CorA		
铬耐受	编码假定硫酸盐出口转运蛋白	PXX86188.1	编码铬转运蛋白 ChrA	ASZ19960.1	
Cr(VI) resistance	Putative sulfate exporter transporter 编码硫酸盐通透酶	PXX84713.1	Chromate transport protein ChrA 编码硫酸盐通透酶	ASZ15760.1	
	Sulfate permease 编码 ABC 转运通透酶	PXX86061.1	Sulfate permease 编码 SOS 应激抑制因子和蛋白酶 LexA	ASZ16672.1	
	ABC transporter permease 编码多重耐药家族外排泵蛋白	PXX84100.1	SOS-response repressor and protease LexA 编码 ATP 依赖的 DNA 解旋酶	ASZ17545.1	
	MATE family efflux transporter 编码过氧化氢酶	PXX86581.1	ATP-dependent DNA helicase RecQ 编码 ABC 转运体底物结合蛋白	ASZ18470.1	
	Catalase 编码 ATP 依赖的 DNA 解旋酶	PXX84877.1	ABC transporter substrate-binding protein		
	ATP-dependent DNA helicase				
铬还原	编码亚硝酸盐还原酶	PXX84071.1	编码亚硝酸盐还原酶	ASZ18103.1	
Cr(VI) reduction	Nitrite reductase 编码依赖 NADPH 氧化还原酶	PXX84912.1	Nitrite reductase 编码亚硫酸盐还原酶黄素蛋白	ASZ19570.1	
	NADPH-dependent oxidoreductase 编码亚硫酸盐还原酶 NADPH 黄素蛋白	PXX84584.1	Sulfite reductase [NADPH] flavoprotein 编码黄素氧化还原蛋白	ASZ16465.1	
	Sulfite reductase [NADPH] flavoprotein		Flavodoxin 编码细胞色素 C 氧化还原酶	ASZ65286.1	
			Cytochrome C reductase		

表 2 菌株 YZ-1 和 CC-1 潜在的耐盐、耐重金属离子相关基因

Table 2 The potential related genes with salt and heavy metal ions resistance in Staphylococcus sp. YZ-1 and Bacillus cereus CC-1

氧化还原酶也被报道过具有 Cr(VI)还原的作用^[24]。 此外,菌株 YZ-1 中识别出的 UvrD-like 的 DNA 解 旋酶编码基因以及过氧化氢酶编码基因也可能和 DNA 修复以及氧化压力应答相关,对 Cr(VI)具有 潜在的贡献^[25]。另一方面,在菌株 CC-1 中,识别 出了编码铬转运蛋白 ChrA 的基因、编码黄素蛋白 的基因、编码细胞色素 C 氧化还原酶、以及编码 DNA 解旋酶的基因。何敏艳曾报道过 ChrA 是与 铬转运相关的基因^[26],在 Dong 等对沙雷氏菌 Serratia sp. S2 的铬代谢相关基因分析中发现了 ChrA 蛋白在 Cr(VI)泵出机制中起到关键作用^[27]。 Beller 报道了黄素蛋白通过电子转移可以催化 Cr(VI)的还原^[28],Xia 等报道了黄素蛋白是一种非 特异性还原酶,对Se(IV)和Cr(VI)都有还原作用^[29], Han等报道过黄素氧化还原酶能在Cu(II)存在的条 件下帮助菌株提高Cr(VI)还原性能^[30],Belchik等 报道了细胞色素C对Cr(VI)的胞外还原^[31],据此推 测 Bacillus cereus CC-1 的胞外Cr(VI)还原可能与

图 6 不同比例下的混菌体系对 Cr(VI)、Te(IV)的移除率 (A)和自絮凝性能(B)

Figure 6 The removal rate of Cr(VI), Te(IV) (A) and self-agglutinability (B) by mixed bacteria system at different proportion

注: B: 在不同 YZ-1 占比(100%-0%)下的混菌体系的自絮凝 性能.

Note: B: The self-agglutinability of mixed bacteria system in different *Staphylococcus* sp. YZ-1 proportions (100%–0%).

黄素蛋白和细胞色素 C 相关。同时,结合休眠细 胞、酶活性测试以及基因组分析结果,推测两株菌 的 Cr(VI)脱毒机理均包括铬酸盐外排和铬酸盐还 原两个主要的过程,而 DNA 解旋酶介导的 DNA 修复和氧化压力应答的相关酶对耐受 Cr(VI)也具 有潜在的贡献。在培养菌株 YZ-1 的过程中, 可以 发现 YZ-1 在 Te(IV)存在时可以形成具有黑色的自 絮凝菌体, 意味着 Te(IV)的存在可以诱导 YZ-1 发 生絮集,同时将 Te(IV)转化为单质碲纳米颗粒。曾 有报道 Bacillus thermoamylovorans SKC1 能同时对 Cr(VI)和 Te(IV)具有还原作用^[32], Shi 等报道过亚 硫酸盐还原酶黄素蛋白与 Te(IV)还原有关^[33],由 于黄素蛋白已被 Xia 等报道过与 Cr(VI)、Se(IV)的 还原相关^[29],由此说明黄素蛋白是一类非特异性 还原酶,对Cr(VI)、Se(IV)、Te(IV)都具有还原作 用。当将 YZ-1 与 CC-1 混合组成混菌体系后, YZ-1

的自絮凝特性仍然可以保留,且 Cr(VI)和 Te(IV) 的还原效率并未发生明显的下降,且 Te(IV)的还原 产物可以有效地与水相进行分离。因此,将具有铬 还原性能的耐盐菌进行组合,可以构建出代谢更为 多样且处理性能稳定的人工菌群,在实际的水处理 中可能具有潜在的应用价值。

综上所述,本文对两株耐盐铬还原菌进行基 本特性、酶活以及全基因组的研究,从基因层面 对两种铬还原菌的脱毒特性和机理差异进行了分 析;另外构建出两种铬还原菌的混菌体系,使其 代谢多样性增强并引入自絮凝性能,在实际应用 中更具潜在优势。

REFERENCES

- Xia X, Li MS, Wu SJ, et al. Research progress in microbial chromium-transformation and resistance and bioremediation[J]. Microbiology China, 2017, 44(7): 1668-1675 (in Chinese) 夏险,李明顺,武士娟,等. 微生物铬转化和抗性机制与 生物修复研究进展[J]. 微生物学通报, 2017, 44(7): 1668-1675
- [2] Alves MM, Beça CGG, de Carvalho RG, et al. Chromium removal in tannery wastewaters "polishing" by *Pinus* sylvestris bark[J]. Water Research, 1993, 27(8): 1333-1338
- [3] Okeke BC. Bioremoval of hexavalent chromium from water by a salt tolerant bacterium, *Exiguobacterium* sp. GS1[J]. Journal of Industrial Microbiology & Biotechnology, 2008, 35(12): 1571-1579
- [4] Mishra RR, Dhal B, Dutta SK, et al. Optimization and characterization of chromium(VI) reduction in saline condition by moderately halophilic *Vigribacillus* sp. isolated from mangrove soil of Bhitarkanika, India[J]. Journal of Hazardous Materials, 2012, 227/228: 219-226
- [5] Dönmez G, Aksu Z. Removal of chromium(VI) from saline wastewaters by *Dunaliella* species[J]. Process Biochemistry, 2002, 38(5): 751-762
- [6] Shen E, Wang P, Zhou H, et al. Isolation, identification and the salt-tolerant mechanism of a salt-tolerant strain for phenol degradation[J]. Acta Scientiae Circumstantiae, 2013, 33(2): 377-382 (in Chinese) 沈娥, 王平, 周豪, 等. 一株耐盐苯酚降解菌的分离、鉴定 及耐盐机制研究[J]. 环境科学学报, 2013, 33(2): 377-382
- [7] Sivaprakasam S, Mahadevan S, Sekar S, et al. Biological treatment of tannery wastewater by using salt-tolerant bacterial strains[J]. Microbial Cell Factories, 2008, 7: 15
- [8] Ramírez-Díaz MI, Díaz-Pérez C, Vargas E, et al. Mechanisms of bacterial resistance to chromium compounds[J]. BioMetals, 2008, 21(3): 321-332
- [9] Che L, Xu WP, Zhan JJ, et al. Complete genome sequence of

Bacillus cereus CC-1, a novel marine selenate/selenite reducing bacterium producing metallic selenides nanomaterials[J]. Current Microbiology, 2019, 76(1): 78-85

 [10] Cao P. Isolation and identification of a strain of tomato endophytic actinomycetes against *Verticilium dahlia*[D]. Harbin: Master's Thesis of Northeast Agricultural University, 2016 (in Chinese)
 曹鹏. 一株抗黄萎病的番茄内生放线菌的分离、筛选和鉴

定[D]. 哈尔滨:东北农业大学硕士学位论文,2016

- [11] Ma XZ, Fei BJ, Jin N, et al. Characteristics of reduce Cr(VI) by *Desulfovibrio* SRB7[J]. Microbiology China, 2009, 36(9): 1324-1328 (in Chinese)
 马小珍,费保进,金楠,等. 脱硫弧菌 SRB7 对重金属铬 Cr(VI)的还原特性[J]. 微生物学通报, 2009, 36(9): 1324-1328
- [12] Wang ZW, Bu YB, Zhao YH, et al. Morphology-tunable tellurium nanomaterials produced by the tellurite-reducing bacterium *Lysinibacillus* sp. ZYM-1[J]. Environmental Science and Pollution Research, 2018, 25(21): 20756-20768
- [13] Kruger NJ. The bradford method for protein quantitation[A]//Walker JM. The Protein Protocols Handbook[M]. Totowa: Humana Press, 2002: 15-21
- [14] Ontañon OM, Fernandez M, Agostini E, et al. Identification of the main mechanisms involved in the tolerance and bioremediation of Cr(VI) by *Bacillus* sp. SFC 500-1E[J]. Environmental Science and Pollution Research, 2018, 25(16): 16111-16120
- [15] Pereira EJ, Ramaiah N. Chromate detoxification potential of *Staphylococcus* sp. isolates from an estuary[J]. Ecotoxicology, 2019, 28(4): 457-466
- [16] Middleton SS, Latmani RB, Mackey MR, et al. Cometabolism of Cr(VI) by *Shewanella oneidensis* MR-1 produces cell-associated reduced chromium and inhibits growth[J]. Biotechnology and Bioengineering, 2003, 83(6): 627-637
- [17] Xiao W, Wang L, Zhang SW, et al. Isolation, identification and hexavalent chromium reduction studies of *Bacillus cereus* S5.4[J]. Industrial Microbiology, 2007, 37(6): 1-6 (in Chinese) 肖伟, 王磊, 张思维, 等. 六价铬还原细菌 *Bacillus cereus* S5.4 的筛选鉴定及还原特性研究[J]. 工业微生物, 2007, 37(6): 1-6
- [18] Kabir MM, Fakhruddin ANM, Chowdhury MAZ, et al. Isolation and characterization of chromium(VI)-reducing bacteria from tannery effluents and solid wastes[J]. World Journal of Microbiology and Biotechnology, 2018, 34(9): 126
- [19] Sagar S, Dwivedi A, Yadav S, et al. Hexavalent chromium reduction and plant growth promotion by *Staphylococcus arlettae* strain Cr11[J]. Chemosphere, 2012, 86(8): 847-852
- [20] Liu WJ, Liu C, Liu L, et al. Simultaneous decolorization of sulfonated azo dyes and reduction of hexavalent chromium under high salt condition by a newly isolated salt-tolerant strain *Bacillus circulans* BWL1061[J]. Ecotoxicology and Environmental Safety, 2017, 141: 9-16
- [21] Alvarez AH, Moreno-Sánchez R, Cervantes C. Chromate efflux by means of the ChrA chromate resistance protein

from *Pseudomonas aeruginosa*[J]. Journal of Bacteriology, 1999, 181(23): 7398-7400

- [22] Zhang XW, Wu WY, Virgo N, et al. Global transcriptome analysis of hexavalent chromium stress responses in *Staphylococcus aureus* LZ-01[J]. Ecotoxicology, 2014, 23(8): 1534-1545
- [23] Zhao XX. Mechanism study on Cr(VI) removal by a strain of Bacillus sp. based on characteristics of NiR enzyme[D]. Guangzhou: Master's Thesis of Guangdong University of Technology, 2013 (in Chinese) 赵欣欣. 基于亚硝酸盐还原酶酶学特性的优势菌除 Cr(VI) 机理研究[D]. 广州: 广东工业大学硕士学位论文, 2013
- [24] Pradhan SK, Singh NR, Rath BP, et al. Bacterial chromate reduction: a review of important genomic, proteomic, and bioinformatic analysis[J]. Critical Reviews in Environmental Science and Technology, 2016, 46(21/22): 1659-1703
- [25] Ahemad M. Bacterial mechanisms for Cr(VI) resistance and reduction: an overview and recent advances[J]. Folia Microbiologica, 2014, 59(4): 321-332
- [26] He MY. Characterization and genomic analysis of highly chromate-reducing strains *Bacillus cereus* SJ1 and *Lysinibacillus fusiformis* ZC1[D]. Wuhan: Doctoral Dissertation of Huazhong Agricultural University, 2010 (in Chinese) 何敏艳. 高效铬还原菌 *Bacillus cereus* SJ1 和 *Lysinibacillus fusiformis* ZC1 的铬还原特性和全基因组序列分析[D]. 武 汉: 华中农业大学博士学位论文, 2010
- [27] Dong LL, Zhou SM, He Y, et al. Analysis of the genome and chromium metabolism-related genes of *Serratia* sp. S2[J]. Applied Biochemistry and Biotechnology, 2018, 185(1): 140-152
- [28] Beller HR, Han RY, Karaoz U, et al. Genomic and physiological characterization of the chromate-reducing, aquifer-derived firmicute *Pelosinus* sp. strain HCF1[J]. Applied and Environmental Microbiology, 2013, 79(1): 63-73
- [29] Xia X, Wu SJ, Li NH, et al. Novel bacterial selenite reductase CsrF responsible for Se(IV) and Cr(VI) reduction that produces nanoparticles in *Alishewanella* sp. WH16-1[J]. Journal of Hazardous Materials, 2018, 342: 499-509
- [30] Han HW, Ling ZM, Zhou TY, et al. Copper (II) binding of NAD(P)H-flavin oxidoreductase (NfoR) enhances its Cr (VI)-reducing ability[J]. Scientific Reports, 2017, 7: 15481
- [31] Belchik SM, Kennedy DW, Dohnalkova AC, et al. Extracellular reduction of hexavalent chromium by cytochromes MtrC and OmcA of *Shewanella oneidensis* MR-1[J]. Applied and Environmental Microbiology, 2011, 77(12): 4035-4041
- [32] Slobodkina GB, Bonch-Osmolovskaya EA, Slobodkin AI. Reduction of chromate, selenite, tellurite, and iron (III) by the moderately thermophilic bacterium *Bacillus thermoamylovorans* SKC1[J]. Microbiology, 2007, 76(5): 530-534
- [33] Shi LD, Du JJ, Wang LB, et al. Formation of nanoscale Te^0 and its effect on TeO_3^{2-} reduction in CH_4 -based membrane biofilm reactor[J]. Science of the Total Environment, 2019, 655: 1232-1239