Cloning and Identification of a Gene Encoding an Acidic Protease from Neurospora crassa

QIU Chong-Yan1,2 WANG Zheng-Xiang1,2

(Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Southern Yangtze University, Wuxi 214036)1
(School of Biotechnology, Chongqing Institute of Technology, Chongqing 400050)2

Abstract: A gene encoding a putative acidic protease was isolated from Neurospora crassa chromosomal DNA. The nucleic acid sequencing and analysis indicated the amplified fragment was an acidic protease gene (ap). Purified PCR product was subcloned into a yeast expression vector, yielding recombinant pPIC9K-ap. The recombinant NA was constructed by transforming pPIC9K-ap into Pichia pastoris KM71. The recombinant acidic protease produced by P. pastoris performed the highest activity at pH 4.0 and 45°C.

Key words: Neurospora crassa, Acidic protease, Cloning, Sequence analysis, Expression

酸性蛋白酶是适合在酸性条件下（pH 1.9 – 4.0）分解蛋白质的一类蛋白水解酶，在其活性位点有两个天冬氨酸。其代表性特征是将两个硫水氨基酸打断，通过内切和外切作用将蛋白质水解为小肽和氨基酸[1]，是食品、饮料、酿造、毛皮与皮革、胶原纤维等工业重要用酶[2]。在香料发酵中应用酸性蛋白酶，有利于原料中蛋白质的水解，增加酶液中酶的吸收性，促进酵母繁殖，提高酒精发酵速率，提高原料出酒率[3]。在国外，毛霉属，根霉属，曲霉属，酵母属都有相关酸性蛋白酶基因被克隆及测序的报道[4-7]。Shimuta等利用转基因技术将Scytalidium lignicolum中的酸性蛋白酶基因导入到酵母中，获得分泌该种酸性蛋白酶的酵母突变体酿酒酵母AH22，所产酸性蛋白酶最适pH为2.3，在pH 2.0 – 5.0之间稳定[7]。

对粗糙脉孢霉（Neurospora crassa）OR74A基因组序列进行分析，发现有一酸性蛋白酶基因同源序列。为此，本文报道粗糙脉孢霉CICIM F0021酸性蛋白酶结构基因的
克隆及其在真核表达系统的表达。

1 材料与方法

1.1 菌种和质粒

大肠杆菌（Escherichia coli）JM109（CICIM B00376），毕赤氏酵母（Pichia pastoris）KM71（CICIM Y00657）从Invitrogen公司购置并保藏。粗糙脉孢霉（N. crassa）CICIM F0021由江南大学中国高校工业微生物资源和信息中心提供（http://cicim.csu.edu.cn）。克隆载体pUC18由本实验室保藏，酵母表达载体pPIC9K购自Invitrogen公司。

1.2 培养基和培养条件

粗糙脉孢霉的培养使用PDA培养基（20% v/v）土豆浸出汁，20 g/L葡萄糖；培养温度为30°C。大肠杆菌的培养采用LB培养基，必要时补加终浓度为80 μg/mL的氨苄青霉素。毕赤氏酵母采用YNB、YPD、MD、YNBG、BMGY或BMMY培养基于32°C下进行培养（培养基组成参照Pichia Expression Kit配置及使用）。

1.3 粗糙脉孢霉染色体DNA的提取

采用石英砂研磨法快速提取粗糙脉孢霉CICIM F0021染色体DNA。

1.4 粗糙脉孢霉酸性蛋白酶结构基因的克隆

粗糙脉孢霉酸性蛋白酶结构基因的克隆，采用如下序列的引物：

Ne-Ap1：ACATGAAATCCATGCTTCTCGATTTCTGCTAAGATGAGAC；
Ne-Ap2：GTTGAAATTCTCACAACCCAAAACACCG。

下划线部分为人工引人的EcoRI酶切位点。通过引物Ne-Ap1去除编码产物的信号肽序列及其5’端的内含子序列。

以粗糙脉孢霉CICIM F0021染色体DNA为模板，以Ne-Ap1，Ne-Ap2为引物，以常规方法进行PCR。PCR产物经纯化和EcoRI酶切后克隆入pUC18中，进行序列测定。

1.5 其他分子克隆和操作

按文献[9]方法进行。

1.6 酵母转化

用电转化方法进行，按文献[10]方法。

1.7 酸性蛋白酶酶活性测定

采用Folin试剂法。发酵上清液在两支平行试管中，取经40°C预热2 min的酶液1.0 mL，加人经预热的pH3.0的1%酪蛋白溶液1 mL，于40°C下恒温反应10 min，立即加0.4 mol/L三氯乙酸溶液2 mL以终止反应。取出静置10 min后过滤，取1.0 mL滤液，加入0.4 mol/L碳酸钠溶液5 mL，再加福林试剂1 mL，于40°C水浴中显色20 min取出，冷却后在680 nm处测定吸光度。1个酶活力单位（U）定义为在上述条件下1分钟水解酪蛋白生成1 μmol L-酪氨酸的酶量。

1.8 重组酶性质的确定

1.8.1 最适pH：pH缓冲液：用0.1 mol/L乳酸和0.2 mol/L乳酸钠配制pH2.5～7.0的缓冲液，测定酶活。酶活测定方法同1.7。计算相对酶活确定最适pH。

1.8.2 最适温度：将重组酶液分别在25°C、35°C、45°C、55°C、65°C、75°C温度下测定酶活。酶活测定方法同1.7。计算相对酶活确定最适温度。
2 结果与讨论

2.1 螺旋毛孢霉酸性蛋白酶基因的分析和比对

以真菌酸性蛋白酶的氨基酸序列搜索螺旋毛孢霉 \(OR74A \) 基因组，发现开放读框 \(NCU00338.1 \) 与真菌酸性蛋白酶有较高相似性，可能为一酸性蛋白酶。此一读框编码一个分子量为 41,671D，由 394 个氨基酸残基组成的蛋白质。氨基酸序列比对发现此一蛋白质序列与来源于米曲霉 \(RIB40 \) 的一种酸性蛋白酶具有 48% 的同源性（图1）。

![图1 真菌酸性蛋白酶的系统发育树](image)

2.2 螺旋毛孢霉酸性蛋白酶结构基因的克隆

用研磨法快速提取螺旋毛孢霉染色体 DNA，以此为模板扩增获得一条特异性条带，大小为 1.2 kb 左右（图2）。

将 PCR 扩增获得的酸性蛋白酶基因（ap）用 EcoRI 酶切并克隆入 \(pUC18 \)，获得重组质粒 \(pUC18-ap \)，用 Sanger 双脱氧法进行序列测定。

将测得的序列及推衍得到的多肽序列进行分析，该蛋白与螺旋毛孢霉 \(OR74A \) 基因组的 \(NCU00338.1 \) 的同源性为 99.75%。其差异仅见于第 361 位氨基酸残基由 \(OR74A \) 菌株的 Glu 变成了 CICIM F0021 菌株的 Gly。2.3 重组质粒 pPIC9K-ap 和重组菌的构建

将扩增获得的酸性蛋白酶基因 EcoRI 酶切与用相同酶切并去磷酸化的表达载体 pPIC9K 连接，获得正向重组质粒 pPIC9K-ap。在 EcoRI 位点插入 ap 后，用 KpnI 酶切验证 pPIC9k-ap 正向重组质粒（图3）。根据 ap 和 pPIC9K 的序列分析重组质粒酶切后正向在 1.7Kb 处有

![图2 N. crassa CICIM F0021 酸性蛋白酶基因的扩增](image)
带，反向则在1.3kb处有带。

将pPIC9K-ap转化P. pastoris KM71后，得到5个整合重组质粒，并用PCR进行验证。PCR结果为NA₃、NA₄、NA₅菌扩增得到1.2kb左右的条带，说明ap基因已成功整合到KM71中。

2.4 亚酸蛋白酶基因(ap)在P. pastoris KM71中的表达

将NA₃、NA₄、NA₅3个整合重组菌分别接种于10 mL BMGY中，230 r/min，30℃，过夜培养。离心收集菌体接种于10 mL BMGY中，220 r/min，30℃培养。甲醇终浓度维持0.5%。发酵72 h，上清液用于酶活的测定。结果3个重组菌中测得NA₃酶活最高，酶活为3 U/mL。

2.5 重组亚酸蛋白酶的粗酶学性能

初步分析了重组菌P. pastoris KM71/pPIC9K-ap发酵液上清中亚酸蛋白酶活性与pH、温度的关系，结果见图4和图5。结果表明，重组酶的最适pH在4.0，最适温度在40℃~50℃，30℃时的酶活是45℃时的60%。

![图4 重组亚酸蛋白酶酶活与pH值的关系](image1)

![图5 重组亚酸蛋白酶酶活与温度的关系](image2)

本实验成功的克隆出亚酸蛋白酶基因并在此中得到表达，重组亚酸蛋白酶的酶学与已报道的其他来源的亚酸蛋白酶有较大的不同。从结果可以看出，重组酶的酶学性质与酒精发酵工艺完全吻合，显示出在酒精发酵工业中可能具有一定应用意义。为此，我们将进一步对该酶的应用研究进行探讨。

参考文献