扩展功能
文章信息
- 宫伟, 葛晶雪, 尹世辉, 李梦奇, 周澳, 邢智锋, 孙巍
- GONG Wei, GE Jingxue, YIN Shihui, LI Mengqi, ZHOU Ao, XING Zhifeng, SUN Wei
- 人布鲁氏菌病致病机制及治疗研究进展
- Research progress in the pathogenesis and treatment of human brucellosis
- 微生物学通报, 2024, 51(8): 2809-2818
- Microbiology China, 2024, 51(8): 2809-2818
- DOI: 10.13344/j.microbiol.china.240035
-
文章历史
- 收稿日期: 2024-01-11
- 接受日期: 2024-04-24
- 网络首发日期: 2024-05-21
布鲁氏菌病是由布鲁氏菌属(Brucella)引起人畜共患的传染-变态反应性疾病。1985年世界卫生组织根据其宿主及表型特征的不同,将布鲁氏菌分为6个种19型:羊种布鲁氏菌(Brucella melitensis) (1、2、3型),牛种布鲁氏菌(B. abortus) (1、2、3、4、5、6、7、9型),猪种布鲁氏菌(B. suis) (1、2、3、4、5型),绵羊附睾种布鲁氏菌(B. ovis),犬种布鲁氏菌(B. canis),沙林鼠种布鲁氏菌(B. neotomae)[1]。近年又分离到鳍型布鲁氏菌(B. pinnipedialis),鲸型布鲁氏菌(B. ceti)和田鼠型布鲁氏菌(B. microti)这3个型[2-3]。其中主要对人致病的有猪种、牛种、羊种[4]。人感染布鲁氏菌常见途径是食用未经消毒的奶制品和未煮熟的肉类[5]。农场和屠宰场工作人员及兽医和实验室工作人员也可通过吸入、黏膜接触布鲁氏菌气溶胶而感染[6]。布鲁氏菌病死亡率虽很低,但病原体在人体内持续存在可导致慢性感染和多种并发症,严重影响患者生活质量。因此,了解布鲁氏菌的致病机制及目前治疗策略对布鲁氏菌病的防治至关重要。
1 布鲁氏菌感染机制布鲁氏菌感染宿主细胞与其胞内寄生菌一样需经过四步:黏附、侵入、定殖、传播[7]。布鲁氏菌能在巨噬细胞、树突状细胞和粒细胞等专业吞噬细胞,以及上皮细胞、成纤维细胞和滋养细胞等非专业吞噬细胞中存活并增殖[8]。研究发现,布鲁氏菌通过脂筏与巨噬细胞细胞膜相互作用进入细胞,形成被囊泡包围的布鲁氏菌液泡(Brucella containing vacuole, BCV)[9]。在布鲁氏菌侵入细胞后8–12 h,BCV通过与溶酶体(lysosome, Lys)和核内体相互作用获得一些宿主标记分子,如鸟苷三磷酸酶Rab7、溶酶体相关蛋白(lysosomal-associated membrane protein-1, LAMP-1)等[10]。此时,BCV被称为内体化布鲁氏菌液泡(endosomal Brucella containing vacuole, eBCV)。逃避Lys降解的BCV会到达内质网,并以依赖Sar1和Rab2的方式与内质网(endoplasmic reticulum, ER)融合[11]。随着BCV发育成熟,布鲁氏菌Ⅳ型分泌系统(type Ⅳ secretory system, T4SS)介导效应蛋白与内质网出口部位COPII (coated vesicles Ⅱ)结构相互作用,获得ER和高尔基体膜组分。ER通过持续的膜输出支持单个液泡中的布鲁氏菌复制,最终形成多个ER膜包裹的布鲁氏菌复制体。此时,BCV被称为重复性布鲁氏菌液泡(repetitive Brucella containing vacuole, rBCV)。在感染晚期,rBCV会转化为自噬布鲁氏菌液泡(autophagic Brucella containing vacuole, aBCV)。至此,布鲁氏菌完成细胞内循环,最终通过裂解和非裂解机制释放病原体[12]。
研究发现,布鲁氏菌被宿主细胞吞噬后,90%细菌体在4–8 h内于吞噬细胞溶酶体室中被杀死[7]。溶酶体腔含有许多限制布鲁氏菌生长和存活的效应因子,如活性氧(reactive oxygen species, ROS)、一氧化氮(NO)和抗菌肽[13-14]。在存活下来的LAMP-1阳性的eBCV中,8 h时观察到布鲁氏菌染色体复制[15],在入侵12–24 h开始在巨噬细胞中繁殖[16]。布鲁氏菌一旦适应了巨噬细胞内的环境就会无限期地延长其在细胞内的生存时间,导致感染慢性化。
2 布鲁氏菌与人体免疫先天免疫和适应性免疫在防御细菌感染中发挥着重要作用。先天免疫系统在布鲁氏菌感染初期可以防止病原体的快速传播和增殖。适应性免疫反应有助于清除感染,并建立具有记忆功能的特异性免疫。
2.1 先天免疫先天免疫反应作为第一道免疫防线在保护机体免受病原体侵害的过程中起着非常重要的作用。包括细胞(中性粒细胞、巨噬细胞、树突状细胞和自然杀伤细胞)的吞噬作用,细胞因子和趋化因子的分泌,模式识别受体(pattern recognition receptor, PRR)对微生物病原体相关分子模式(pathogen-associated molecular pattern, PAMP)典型分子的识别作用,以及补体系统的激活[17]。然而布鲁氏菌的结构特征能够使其躲避先天免疫细胞的识别。
布鲁氏菌缺乏明显的菌体表面分子决定簇,如纤毛、菌毛和荚膜,却具有非规范的表面分子,如脂多糖(lipopolysaccharide, LPS)、含鸟氨酸脂质、脂蛋白和鞭毛。这些结构缺乏明显PAMP活性,因此在一定程度上逃避了PRR的识别。布鲁氏菌LPS的乙酰侧链(C28)降低了内毒素的性质,这种特殊的结构是Toll-like receptors 4/myeloid differentiation-2 (TLR4/MD-2)的弱激动剂,阻碍了PRR的识别,从而避免了宿主免疫系统的监测,因此布鲁氏菌LPS不会诱导巨噬细胞和树突状细胞的炎症反应;布鲁氏菌LPS中所含特异性o抗原由于缺乏游离的羟基,无法与补体C3结合,影响补体片段C3a和C5a的产生,进而抑制中性粒细胞的脱粒、髓性过氧化物酶(myeloperoxidase, MPO)等溶酶体物质的释放,最终防止布鲁氏菌被宿主免疫系统捕获;除此之外,布鲁氏菌细胞壁表面的LPS具有许多长侧链,阻止攻膜复合物与细胞膜接触[18]。Barrionuevo等[19]研究发现,牛布鲁氏菌利用LPS不仅抑制IFN-γ介导的单核/巨噬细胞活化,限制其吞噬作用,而且抑制IFN-γ诱导的MHC-Ⅱ分子的表达和抗原在人单核细胞中的呈递。布鲁氏菌鞭毛蛋白由于缺乏Toll-like receptors 5 (TLR5)特异性识别结构域,也在免疫逃逸中起重要作用[20]。
中性粒细胞是针对微生物病原体先天免疫应答中重要的吞噬细胞之一。研究发现,在布鲁氏菌进入机体后,中性粒细胞未在感染部位迅速募集,反而数量较其他细菌感染相对减少[21-24]。进入体内的布鲁氏菌被常驻多形核中性粒细胞(polymorphonuclear neutrophils, PMN)吞噬后,在细胞内释放LPS启动PMN的过早死亡,并且死亡的中性粒细胞可作为细菌传播载体被吞噬后传递给巨噬细胞[25]。树突状细胞可介导病原体识别,并且能够从外周组织迁移到次级淋巴器官以引发原始T细胞启动免疫反应。研究发现,布鲁氏菌通过含有TIR结构域的Btp1/TcpB蛋白来降低TLR激动剂活性,抑制了TLR4和TLR2信号传导,进而抑制了树突状细胞的成熟,以及IL-12和TNF-α等促炎细胞因子的分泌[18, 26]。自然杀伤细胞(natural killer cell, NK)在感染初期可以通过分泌IFN-γ杀死受感染的宿主细胞而迅速起作用。但在布鲁氏菌感染的早期阶段其功能受到抑制,并不发挥明显的作用[27-28]。
以上研究表明,布鲁氏菌采用一种逃避PRR识别的方法来应对先天免疫系统的捕获。游离的布鲁氏菌可在肝、脾、淋巴结等处进一步扩散和增殖。当细菌数量达到一定程度时引起患者以发热为主的临床症状。此时通常被认为是抗生素治疗的最佳时间。若未及时治疗,随着机体的反应性增强,病原体最终被巨噬细胞和树突状细胞吞噬,其中约10%的布鲁氏菌并未被杀灭,到达复制生态位继续存活[29]。这可能是布鲁氏菌病慢性化的关键因素。
2.2 适应性免疫由于布鲁氏菌的细胞内寄生特征,细胞免疫在适应性免疫中发挥主要作用,体液免疫起到辅助作用。其过程主要分为3个步骤[30-31]:(1) CD4+ T细胞、CD8+ T细胞和γδT淋巴细胞产生IFN-γ启动巨噬细胞的杀菌功能,从而阻止布鲁氏菌细胞内的存活;(2) CD8+ T细胞和γδT细胞产生的细胞毒作用杀死被布鲁氏菌感染的巨噬细胞;(3) Th1型抗体,如IgG2a和IgG3促进巨噬细胞吞噬作用,吞噬病原体。但在布鲁氏菌感染的过程中,适应性免疫反应也受到了限制。
树突细胞在启动和控制适应性免疫反应的大小和质量方面发挥关键作用[32]。由于布鲁氏菌含有Btp1/TcpB蛋白抑制树突细胞成熟,表现为细胞MHC Ⅱ分子、CD80和CD86共刺激分子的低表达,缺乏促炎细胞因子分泌(如TNFa和IL-12),导致初始T细胞活化减少[26, 33]。在小鼠体内,布鲁氏菌的Btp1/TcpB蛋白还能抑制CD8+ T淋巴细胞对含布鲁氏菌靶细胞的杀伤作用[34]。研究发现,小鼠感染布鲁氏菌后,CD4+ CD25+ T细胞数目增加,限制了效应T淋巴细胞的效能,维持并促进了布鲁氏菌的持续感染[35]。布鲁氏菌感染过程的一个突出特征是,在不需要特异性抗原识别的条件下,诱导机体多克隆抗体的快速产生,特别是IgG2c亚类抗体,并且布鲁氏菌对B细胞的激活高度依赖NK细胞的存在[36]。脯氨酸消旋酶蛋白A (proline racemase protein A, prpA)是布鲁氏菌形成慢性感染所需的毒力因子之一,促进B细胞增殖和特异性抗体IgG2a分泌水平增加,间接促进巨噬细胞的吞噬作用,最终导致布鲁氏菌在巨噬细胞内的大量复制[37]。同时,布鲁氏菌prpA、Btp1/TcpB和LPS可作为免疫调节剂,抑制IFN-γ分泌,促进IL-10分泌,最终影响Th1免疫应答[38]。
由此可见,布鲁氏菌已经发展出多种策略来击败宿主适应性免疫防御机制,主要表现为效应T淋巴细胞的活化受损、巨噬细胞和树突细胞活化的渐进性减少。这可导致细胞内布鲁氏菌清除不足,从而建立慢性感染。体液免疫在整个过程中主要起辅助作用,但研究表明,体液免疫产生的抗体水平可在感染后6–9个月维持较高滴度[39],并一直存在3年左右[40]。当抗体消耗殆尽,机体又可以发生布鲁氏菌的新感染。因此,有效的人体疫苗对布鲁氏菌病防治至关重要。
3 人布鲁氏菌病临床特点及治疗现状人布鲁氏菌病的临床表现形式复杂多样,一般以发热最为常见,伴有乏力、头痛、肌肉酸痛、骨关节痛等症状。但由于症状不典型,又缺乏快速精准的诊断方法,易造成误诊。若治疗不及时,布鲁氏菌及其代谢产物将不断进入血流,反复刺激机体的各组织器官和网状内皮系统,使感染转为慢性。病程超过6个月即为慢性布鲁氏菌病。布鲁氏菌可以侵犯人体几乎所有组织器官,如心血管系统、呼吸系统、神经系统、骨关节、腹膜等,因此慢性布鲁氏菌病常合并多器官并发症。
目前治疗人类布鲁氏菌病的方案仍基于世界卫生组织1986年的建议,包括多西环素6周联合链霉素2–3周或多西环素联合利福平6周[41]。如果链霉素过敏或不可得,庆大霉素可作为替代药物[42]。若合并并发症,包括伴有关节炎、脊柱炎和心内膜炎的病例常用三联治疗方案,链霉素或庆大霉素加多西环素和利福平,至少8周[43],并附加相应的对症治疗。然而,尽管严格使用治疗方法,复发率或临床失败率仍然很高,约为5%–15%[41, 44]。
3.1 抗生素的细胞渗透性对布病治疗的影响布鲁氏菌作为胞内寄生菌,抗生素的低渗透性及细胞内溶酶体酶导致的抗生素不稳定性常常是导致布病治疗失败的重要原因[45]。Mode等[46]研究发现,与单一药物治疗相比,多西环素与链霉素或利福平联合使用可使巨噬细胞内单个抗生素最低抑菌浓度(minimum inhibitory concentration, MIC)降低,能够达到抑菌水平;但是,巨噬细胞内抗生素最低抑菌浓度要高于人血清中该药物的最大可达浓度。因此,使用推荐浓度的抗生素治疗并不能完全阻止布鲁氏菌在细胞中的生长和持续存在。为使抗生素更好地渗透到细胞膜内,研究人员将抗生素装载到纳米载体上。纳米颗粒(nanoparticle, NP)能够通过定制表面电荷来精细调节其在循环系统中的持续时间。当NP带正电荷时,促进细胞内化,从而加速相应药物的治疗作用。相反地,负电荷可延长NP在血液中停留时间,优化其生物利用度;此外,通过提高NP在水环境中的溶解度并改进其药代动力学特征,可以增强所输送的相应药物的效力[47]。纳米载体还具有独特的理化特性,例如具有较大的表面积体积比,防止药物在细胞内溶酶体空泡中失活,能够在细胞内缓慢释放抗生素等潜力,最终增强抗菌效果[48-49]。Bodaghabadi等[50]通过将利福平和复方新诺明分别装载到纳米载体上,作用于感染羊种布鲁氏细胞的巨噬细胞,相较于游离抗生素,装载纳米载体的利福平对巨噬细胞内的布鲁氏菌更有效,复方新诺明负载到纳米颗粒后其功效并未增强。Ghaderkhani等[51]在2019年将利福平负载到固体脂质纳米颗粒(solid lipid nanoparticle, SLN)上,研究其对细胞内布鲁氏菌的抗菌潜力,与未负载相比,负载SLN的利福平抗菌活性显著更高,这证实了SLN递送系统增强利福平对布鲁氏菌的抗菌活性的潜力。在用于治疗布鲁氏菌病的抗生素中,庆大霉素被认为是最有效的药物之一[52]。庆大霉素是一种氨基糖苷类抗生素,具有广谱抗菌活性和高溶解度。然而它不能很好地穿透细胞膜,导致抗生素的细胞内水平较低,这对于治疗细胞内感染来说是一个缺点。Imbuluzqueta等[53]将庆大霉素封装在聚乳酸纳米颗粒中用于治疗感染布鲁氏菌的小鼠,提高了治疗疗效。在另一项体外实验中,载庆大霉素的壳聚糖NP也被证明可有效治疗布鲁氏菌感染的J774A.1小鼠巨噬细胞[54]。
3.2 布鲁氏菌复制生态位对布病治疗的影响研究发现,提高细胞内抗生素的浓度也不能完全抑制布鲁氏菌在巨噬细胞内的复制,在抗生素治疗后布鲁氏菌仍具有生理活性和毒力并可以产生新的感染[46]。这可能与布鲁氏菌的复制生态位有关。大多数液泡内细菌具有在宿主细胞内膜系统生存并复制的能力,该系统是由膜结合细胞器及运输囊泡组成的复杂网络[55]。布鲁氏菌的特殊性囊泡可以主动逃避吞噬溶酶体途径,最终在内质网样的复制生态位中增殖并形成为微菌落[55]。研究发现,虽然布鲁氏菌复制生态位内环境营养物质匮乏且氧张力低[9],但这种恶劣的微环境可诱导细菌virB启动子的转录,形成Ⅳ型分泌系统分泌效应蛋白,干扰宿主细胞的信号通路,促进细菌增殖。其中,吞噬体酸化被认为是诱导virB转录的关键因素[56]。因此,改变布鲁氏菌生态位的微环境也成为消除细胞内布鲁氏菌的新方向。研究发现,在吞噬早期,用巴夫洛霉素抑制感染细胞吞噬体酸化或使用中和剂氯化铵及莫能霉素中和吞噬体pH,均可抑制布鲁氏菌的增殖[57]。羟基氯喹(hydroxychloroquine, HCQ)广泛用作抗疟药,通过抗感染、免疫抑制和免疫调节作用发挥抗疟疾、抗炎、抗肿瘤、免疫调节等多方面的作用[58]。羟基氯喹可提高布鲁氏菌复制生态位内环境的pH,从而间接影响细菌在细胞内的生存和复制。Karimitabar等[59]使用量子点标记的SLN负载链霉素联合HCQ作用于感染布鲁氏菌的巨噬细胞,提高了链霉素对细胞内布鲁氏菌的消除效果。Majzoobi等[60]研究表明,抗生素与HCQ联合使用比单独使用常规的布鲁氏菌病药物治疗布鲁氏菌病更有效。
3.3 细菌耐药及抗生素抵抗菌的存在近年来,世界范围内陆续报道了布鲁氏菌耐药菌株[61-64]。调查研究中国内蒙古自治区患者中分离的85株布鲁氏菌分离株对9种抗生素的抗菌敏感性,发现所有测试的分离株均对米诺环素、司帕沙星、强力霉素、四环素、环丙沙星、庆大霉素和左氧氟沙星敏感,仅1株对利福平耐药,6株对复方新诺明耐药,但在对利福平具有抗性的单个分离株中未观察到rpoB基因突变[65]。另一项研究对中国河北等6个地区提供的羊种布鲁氏菌临床分离株测试临床常见治疗药物敏感度,与标准菌株各药物MIC值相比,临床分离株MIC值大部分与标准菌株差异不显著,均处于敏感水平,部分分离株对复方新诺明等的敏感性较低,但未达耐药水平[66]。近期对从中国东北地区患者分离的布鲁氏菌株进行E-text试纸条抗生素检测,结果61株布鲁氏菌对多西环素、四环素、米诺环素、左氧氟沙星、环丙沙星、庆大霉素、链霉素均敏感,24.6%、86.9%、65.6%、27.9%、3.3%、1.6%的菌株分别对利福平、阿奇霉素、头孢吡肟、头孢哌酮/舒巴坦、头孢噻肟和哌替啶/磺胺甲恶唑耐药[67]。布鲁氏菌病通常需要持续使用抗生素治疗数月,这易导致抗生素耐药性的出现。另外,细菌体外纯培养药敏鉴定结果是否能够真正体现细菌在患者体内的抗生素敏感水平,也是值得我们深思的问题。
抗生素抵抗菌是一种在反复暴露于高于最低抑菌浓度的抗生素后仍能存活且不存在耐药机制的细菌亚群,并且这种抗生素抵抗与所用抗生素的类型无关。在细菌抗生素时间-杀灭测定中,抗生素抵抗细菌群体的杀灭率较敏感群体慢,呈现为双相曲线是细菌“抵抗”的标志[68]。研究发现,在使用含有不同浓度抗生素的肉汤培养基培养布鲁氏菌,以及用不同浓度抗生素处理细胞内布鲁氏菌时均出现抗生素抵抗细菌群[46]。说明在长期使用抗生素治疗布鲁氏菌病时存在抗生素抵抗布鲁氏菌菌群,它们可能是导致布鲁氏菌病慢性化和复发的关键原因之一。
4 展望布鲁氏菌病被认为是全球范围内广泛流行的人畜共患病之一[69-71]。缺乏快速精准的诊断方法和治疗疗效监测指标是临床诊治布鲁氏菌病面临的主要问题[72]。布鲁氏菌的胞内寄生特点不仅能够躲避人体免疫导致疾病慢性化,而且增加了疾病的治疗难度。为解决这一问题,我们重点关注了能够提高细胞膜渗透性的纳米微粒技术,将抗生素负载到纳米颗粒上增加细胞对抗生素的渗透性,提高治疗疗效。其次,布鲁氏菌的细胞内复制生态位微环境也影响着抗生素的抗菌效果。因此,抗生素联合能够破坏生态位微环境pH的化合物HCQ等,不仅抑制了布鲁氏菌在细胞内的增殖,也增强了抗生素的抗菌能力。临床药敏试验方法仅能检测纯培养细菌对抗生素的耐药情况,无法真正检测细菌在细胞内对抗生素的敏感度。常规抗生素耐药和抗生素抵抗菌群的出现是布病治疗面临的新挑战。研发新药物[73]及监测药物对胞内细菌的疗效是治疗细胞内寄生菌的新方向[74]。目前,对布鲁氏菌胞内寄生机制和布鲁氏菌病治疗新策略还需要进一步探索。
[1] |
MORENO E, CLOECKAERT A, MORIYÓN I. Brucella evolution and taxonomy[J]. Veterinary Microbiology, 2002, 90(1/2/3/4): 209-227. |
[2] |
CLOECKAERT A, VERGER JM, GRAYON M, PAQUET JY, GARIN-BASTUJI B, FOSTER G, GODFROID J. Classification of Brucella spp. isolated from marine mammals by DNA polymorphism at the omp2 locus[J]. Microbes and Infection, 2001, 3(9): 729-738. DOI:10.1016/S1286-4579(01)01427-7 |
[3] |
SCHOLZ HC, HUBALEK Z, SEDLÁCEK I, VERGNAUD G, TOMASO H, AL DAHOUK S, MELZER F, KÄMPFER P, NEUBAUER H, CLOECKAERT A, MAQUART M, ZYGMUNT MS, WHATMORE AM, FALSEN E, BAHN P, GÖLLNER C, PFEFFER M, HUBER B, BUSSE HJ, NÖCKLER K. Brucella microti sp. nov., isolated from the common vole Microtus arvalis[J]. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(Pt 2): 375-382. |
[4] |
APARICIO ED. Epidemiology of brucellosis in domestic animals caused by Brucella melitensis, Brucella suis and Brucella abortus[J]. Revue Scientifique et Technique (International Office of Epizootics), 2013, 32(1): 43-51, 53-60. |
[5] |
KAUFMANN AF, FOX MD, BOYCE JM, ANDERSON DC, POTTER ME, MARTONE WJ, PATTON CM. Airborne spread of brucellosis[J]. Annals of the New York Academy of Sciences, 1980, 353: 105-114. DOI:10.1111/j.1749-6632.1980.tb18912.x |
[6] |
PEREIRA CR, de ALMEIDA JVFC, de OLIVEIRA IRC, de OLIVEIRA LF, PEREIRA LJ, ZANGERÔNIMO MG, LAGE AP, DORNELES EMS. Occupational exposure to Brucella spp. : a systematic review and meta-analysis[J]. PLoS Neglected Tropical Diseases, 2020, 14(5): e0008164. DOI:10.1371/journal.pntd.0008164 |
[7] |
HUY TXN, NGUYEN TT, KIM H, REYES AWB, KIM S. Brucella phagocytosis mediated by pathogen-host interactions and their intracellular survival[J]. Microorganisms, 2022, 10(10): 2003. DOI:10.3390/microorganisms10102003 |
[8] |
COPIN R, VITRY MA, MAMBRES DH, MACHELART A, de TREZ C, VANDERWINDEN JM, MAGEZ S, AKIRA S, RYFFEL B, CARLIER Y, LETESSON JJ, MURAILLE E. In situ microscopy analysis reveals local innate immune response developed around Brucella infected cells in resistant and susceptible mice[J]. PLoS Pathogens, 2012, 8(3): e1002575. DOI:10.1371/journal.ppat.1002575 |
[9] |
KÖHLER S, MICHAUX-CHARACHON S, PORTE F, RAMUZ M, LIAUTARD JP. What is the nature of the replicative niche of a stealthy bug named Brucella?[J]. Trends in Microbiology, 2003, 11(5): 215-219. DOI:10.1016/S0966-842X(03)00078-7 |
[10] |
von BARGEN K, GORVEL JP, SALCEDO SP. Internal affairs: investigating the Brucella intracellular lifestyle[J]. FEMS Microbiology Reviews, 2012, 36(3): 533-562. DOI:10.1111/j.1574-6976.2012.00334.x |
[11] |
CELLI J, de CHASTELLIER C, FRANCHINI DM, PIZARRO-CERDA J, MORENO E, GORVEL JP. Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum[J]. The Journal of Experimental Medicine, 2003, 198(4): 545-556. DOI:10.1084/jem.20030088 |
[12] |
STARR T, CHILD R, WEHRLY TD, HANSEN B, HWANG S, LÓPEZ-OTIN C, VIRGIN HW, CELLI J. Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle[J]. Cell Host & Microbe, 2012, 11(1): 33-45. |
[13] |
KO J, GENDRON-FITZPATRICK A, SPLITTER GA. Susceptibility of IFN regulatory factor-1 and IFN consensus sequence binding protein-deficient mice to brucellosis[J]. Journal of Immunology, 2002, 168(5): 2433-2440. DOI:10.4049/jimmunol.168.5.2433 |
[14] |
URIBE-QUEROL E, ROSALES C. Control of phagocytosis by microbial pathogens[J]. Frontiers in Immunology, 2017, 8: 1368. DOI:10.3389/fimmu.2017.01368 |
[15] |
JEAN C. The intracellular life cycle of Brucella spp.[J]. Microbiology Spectrum, 2019, 7(2): 10.1128/microbiolspec.BAI-10.1128/microbiolspec0006-2019. |
[16] |
STARR T, NG TW, WEHRLY TD, KNODLER LA, CELLI J. Brucella intracellular replication requires trafficking through the late endosomal/lysosomal compartment[J]. Traffic, 2008, 9(5): 678-694. DOI:10.1111/j.1600-0854.2008.00718.x |
[17] |
DIACOVICH L, GORVEL JP. Bacterial manipulation of innate immunity to promote infection[J]. Nature Reviews Microbiology, 2010, 8: 117-128. DOI:10.1038/nrmicro2295 |
[18] |
ATLURI VL, XAVIER MN, de JONG MF, den HARTIGH AB, TSOLIS RM. Interactions of the human pathogenic Brucella species with their hosts[J]. Annual Review of Microbiology, 2011, 65: 523-541. DOI:10.1146/annurev-micro-090110-102905 |
[19] |
BARRIONUEVO P, DELPINO MV, VELÁSQUEZ LN, SAMARTINO CG, CORIA LM, IBAÑEZ AE, RODRÍGUEZ ME, CASSATARO J, GIAMBARTOLOMEI GH. Brucella abortus inhibits IFN-γ-induced FcγRI expression and FcγRI-restricted phagocytosis via toll-like receptor 2 on human monocytes/macrophages[J]. Microbes and Infection, 2011, 13(3): 239-250. DOI:10.1016/j.micinf.2010.10.020 |
[20] |
ANDERSEN-NISSEN E, SMITH KD, STROBE KL, RASSOULIAN BARRETT SL, COOKSON BT, LOGAN SM, ADEREM A. Evasion of Toll-like receptor 5 by flagellated bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(26): 9247-9252. |
[21] |
LIU Z, SHEN TF, WEI DW, YU Y, HUANG DS, GUAN P. Analysis of the epidemiological, clinical characteristics, treatment and prognosis of human brucellosis during 2014–2018 in Huludao, China[J]. Infection and Drug Resistance, 2020, 13: 435-445. DOI:10.2147/IDR.S236326 |
[22] |
BARQUERO-CALVO E, CHAVES-OLARTE E, WEISS DS, GUZMÁN-VERRI C, CHACÓN-DÍAZ C, RUCAVADO A, MORIYÓN I, MORENO E. Brucella abortus uses a stealthy strategy to avoid activation of the innate immune system during the onset of infection[J]. PLoS One, 2007, 2(7): e631. DOI:10.1371/journal.pone.0000631 |
[23] |
CHACÓN-DÍAZ C, ALTAMIRANO-SILVA P, GONZÁLEZ-ESPINOZA G, MEDINA MC, ALFARO-ALARCÓN A, BOUZA-MORA L, JIMÉNEZ-ROJAS C, WONG M, BARQUERO-CALVO E, ROJAS N, GUZMÁN-VERRI C, MORENO E, CHAVES-OLARTE E. Brucella canis is an intracellular pathogen that induces a lower proinflammatory response than smooth zoonotic counterparts[J]. Infection and Immunity, 2015, 83(12): 4861-4870. DOI:10.1128/IAI.00995-15 |
[24] |
OLT S, ERGENÇ HS, AÇıKGÖZ SB. Predictive contribution of neutrophil/lymphocyte ratio in diagnosis of brucellosis[J]. BioMed Research International, 2015, 2015: 210502. |
[25] |
MORENO E, BARQUERO-CALVO E. The role of neutrophils in brucellosis[J]. Microbiology and Molecular Biology Reviews: MMBR, 2020, 84(4): e00048-20. |
[26] |
SALCEDO SP, MARCHESINI MI, LELOUARD H, FUGIER E, JOLLY G, BALOR S, MULLER A, LAPAQUE N, DEMARIA O, ALEXOPOULOU L, COMERCI DJ, UGALDE RA, PIERRE P, GORVEL JP. Brucella control of dendritic cell maturation is dependent on the TIR-containing protein Btp1[J]. PLoS Pathogens, 2008, 4(2): e21. DOI:10.1371/journal.ppat.0040021 |
[27] |
SALMERÓN I, RODRÍGUEZ-ZAPATA M, SALMERÓN O, MANZANO L, VAQUER S, ALVAREZ-MON M. Impaired activity of natural killer cells in patients with acute brucellosis[J]. Clinical Infectious Diseases: an Official Publication of the Infectious Diseases Society of America, 1992, 15(5): 764-770. DOI:10.1093/clind/15.5.764 |
[28] |
BALDWIN CL, GOENKA R. Host immune responses to the intracellular bacteria Brucella: does the bacteria instruct the host to facilitate chronic infection?[J]. Critical Reviews in Immunology, 2006, 26(5): 407-442. DOI:10.1615/CritRevImmunol.v26.i5.30 |
[29] |
WATARAI M, MAKINO SI, FUJII Y, OKAMOTO K, SHIRAHATA T. Modulation of Brucella-induced macropinocytosis by lipid rafts mediates intracellular replication[J]. Cellular Microbiology, 2002, 4(6): 341-355. DOI:10.1046/j.1462-5822.2002.00195.x |
[30] |
MARTIROSYAN A, MORENO E, GORVEL JP. An evolutionary strategy for a stealthy intracellular Brucella pathogen[J]. Immunological Reviews, 2011, 240(1): 211-234. DOI:10.1111/j.1600-065X.2010.00982.x |
[31] |
GRILLÓ MJ, BLASCO JM, GORVEL JP, MORIYÓN I, MORENO E. What have we learned from brucellosis in the mouse model?[J]. Veterinary Research, 2012, 43(1): 29. DOI:10.1186/1297-9716-43-29 |
[32] |
KAPSENBERG ML. Dendritic-cell control of pathogen-driven T-cell polarization[J]. Nature Reviews Immunology, 2003, 3: 984-993. DOI:10.1038/nri1246 |
[33] |
BILLARD E, DORNAND J, GROSS A. Brucella suis prevents human dendritic cell maturation and antigen presentation through regulation of tumor necrosis factor alpha secretion[J]. Infection and Immunity, 2007, 75(10): 4980-4989. DOI:10.1128/IAI.00637-07 |
[34] |
DURWARD M, RADHAKRISHNAN G, HARMS J, BAREISS C, MAGNANI D, SPLITTER GA. Active evasion of CTL mediated killing and low quality responding CD8+ T cells contribute to persistence of brucellosis[J]. PLoS One, 2012, 7(4): e34925. DOI:10.1371/journal.pone.0034925 |
[35] |
PASQUALI P, THORNTON AM, VENDETTI S, PISTOIA C, PETRUCCI P, TARANTINO M, PESCIAROLI M, RUGGERI F, BATTISTONI A, SHEVACH EM. CD4+CD25+ T regulatory cells limit effector T cells and favor the progression of brucellosis in BALB/c mice[J]. Microbes and Infection, 2010, 12(1): 3-10. DOI:10.1016/j.micinf.2009.09.005 |
[36] |
GAO N, JENNINGS P, GUO YH, YUAN D. Regulatory role of natural killer (NK) cells on antibody responses to Brucella abortus[J]. Innate Immunity, 2011, 17(2): 152-163. DOI:10.1177/1753425910367526 |
[37] |
SPERA JM, COMERCI DJ, UGALDE JE. Brucella alters the immune response in a prpA-dependent manner[J]. Microbial Pathogenesis, 2014, 67/68: 8-13. DOI:10.1016/j.micpath.2014.01.003 |
[38] |
KIANMEHR Z, SOLEIMANJAHI H, ARDESTANI SK, FOTOUHI F, ABDOLI A. Influence of Brucella abortus lipopolysaccharide as an adjuvant on the immunogenicity of HPV-16 L1VLP vaccine in mice[J]. Medical Microbiology and Immunology, 2015, 204(2): 205-213. DOI:10.1007/s00430-014-0356-z |
[39] |
BAI CL. Epidemiological and clinical-experimental diagnostic characteristics of brucellosis reinfection[J]. Translation of Endemic Diseases, 1989(3): 16-18. (in Chinese) 白常乐. 布氏菌病再感染时的流行病学和临床-实验诊断特点[J]. 地方病译丛, 1989(3): 16-18. |
[40] |
SUN TZ. Reinfection of brucellosis[J]. Translation of Endemic Diseases, 1980(2): 45-46. (in Chinese) 孙天志. 布鲁氏菌病的再感染[J]. 地方病译丛, 1980(2): 45-46. |
[41] |
FAO, WHO. Joint FAO/WHO expert committee on brucellosis[M]. World Health Organization Technical Report Series, 1986, 740: 1-132.
|
[42] |
ROUSHAN MRH, MOHRAZ M, HAJIAHMADI M, RAMZANI A, VALAYATI AA. Efficacy of Gentamicin plus Doxycycline versus Streptomycin plus Doxycycline in the Treatment of Brucellosis in Humans[J]. Clinical Infectious Diseases, 2006, 42(8): 1075-1080. DOI:10.1086/501359 |
[43] |
ALAVI SM, ALAVI L. Treatment of brucellosis: a systematic review of studies in recent twenty years[J]. Caspian Journal of Internal Medicine, 2013, 4(2): 636-641. |
[44] |
del POZO JSG, SOLERA J. Systematic review and meta-analysis of randomized clinical trials in the treatment of human brucellosis[J]. PLoS One, 2012, 7(2): e32090. DOI:10.1371/journal.pone.0032090 |
[45] |
KUNJACHAN S, JOSE S, THOMAS CA, JOSEPH E, KIESSLING F, LAMMERS T. Physicochemical and biological aspects of macrophage-mediated drug targeting in anti-microbial therapy[J]. Fundamental & Clinical Pharmacology, 2012, 26(1): 63-71. |
[46] |
MODE S, KETTERER M, QUÉBATTE M, DEHIO C. Antibiotic persistence of intracellular Brucella abortus[J]. PLoS Neglected Tropical Diseases, 2022, 16(7): e0010635. DOI:10.1371/journal.pntd.0010635 |
[47] |
RAZEI A, JAVANBAKHT M, HAJIZADE A, HEIAT M, ZHAO S, AGHAMOLLAEI H, SAADATI M, KHAFAEI M, ASADI M, CEGOLON L, KEIHAN AH. Nano and microparticle drug delivery systems for the treatment of Brucella infections[J]. Biomedicine & Pharmacotherapy, 2023, 169: 115875. |
[48] |
GIULIETTI S, BIGINI V, SAVATIN DV. ROS and RNS production, subcellular localization, and signaling triggered by immunogenic danger signals[J]. Journal of Experimental Botany, 2023, erad449. |
[49] |
HOSSEINI SM, TAHERI M, NOURI F, FARMANI A, MOEZ NM, ARABESTANI MR. Nano drug delivery in intracellular bacterial infection treatments[J]. Biomedicine & Pharmacotherapy, 2022, 146: 112609. |
[50] |
BODAGHABADI N, HAJIGHOLAMI S, MALEKSHAHI ZV, ENTEZARI M, NAJAFI F, SHIRZAD H, SADEGHIZADEH M. Preparation and evaluation of rifampicin and co-trimoxazole-loaded nanocarrier against Brucella melitensis infection[J]. Iranian Biomedical Journal, 2018, 22(4): 275-282. DOI:10.29252/ibj.22.4.275 |
[51] |
GHADERKHANI J, YOUSEFIMASHOUF R, ARABESTANI M, ROSHANAEI G, ASL SS, ABBASALIPOURKABIR R. Improved antibacterial function of Rifampicin-loaded solid lipid nanoparticles on Brucella abortus[J]. Artificial Cells, Nanomedicine, and Biotechnology, 2019, 47(1): 1181-1193. DOI:10.1080/21691401.2019.1593858 |
[52] |
WARETH G, DADAR M, ALI H, HAMDY MER, AL-TALHY AM, ELKHARSAWI AR, EL TAWAB AAA, NEUBAUER H. The perspective of antibiotic therapeutic challenges of brucellosis in the Middle East and North African countries: current situation and therapeutic management[J]. Transboundary and Emerging Diseases, 2022, 69(5): e1253-68. |
[53] |
IMBULUZQUETA E, GAMAZO C, LANA H, CAMPANERO MÁ, SALAS D, GIL AG, ELIZONDO E, VENTOSA N, VECIANA J, BLANCO-PRIETO MJ. Hydrophobic gentamicin-loaded nanoparticles are effective against Brucella melitensis infection in mice[J]. Antimicrobial Agents and Chemotherapy, 2013, 57(7): 3326-3333. DOI:10.1128/AAC.00378-13 |
[54] |
RAZEI A, CHERAGHALI AM, SAADATI M, RAMANDI MF, PANAHI Y, HAJIZADE A, SIADAT SD, BEHROUZI A. Gentamicin-loaded chitosan nanoparticles improve its therapeutic effects on Brucella-infected J774A. 1 murine cells[J]. Galen Medical Journal, 2019, 8: e1296. DOI:10.31661/gmj.v8i0.1296 |
[55] |
MITCHELL G, CHEN C, PORTNOY DA. Strategies used by bacteria to grow in macrophages[J]. Microbiology Spectrum, 2017, 701-725. |
[56] |
BOSCHIROLI ML, OUAHRANI-BETTACHE S, FOULONGNE V, MICHAUX-CHARACHON S, BOURG G, ALLARDET-SERVENT A, CAZEVIEILLE C, LIAUTARD JP, RAMUZ M, O'CALLAGHAN D. The Brucella suis virB operon is induced intracellularly in macrophages[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(3): 1544-1549. |
[57] |
PORTE F, LIAUTARD JP, KÖHLER S. Early acidification of phagosomes containing Brucella suis is essential for intracellular survival in murine macrophages[J]. Infection and Immunity, 1999, 67(8): 4041-4047. DOI:10.1128/IAI.67.8.4041-4047.1999 |
[58] |
WEI XM, ZHAO YJ, ZHENG LL. Hydroxychloroquine development trend analysis from the perspective of patent[J]. Science Focus, 2020, 15(5): 32-37. (in Chinese) 魏雪梅, 赵亚娟, 郑丽丽. 羟氯喹药物全球专利布局与研发态势分析[J]. 科学观察, 2020, 15(5): 32-37. |
[59] |
KARIMITABAR Z, CHEGINI Z, SHOKOOHIZADEH L, MOEZ NM, ARABESTANI MR, HOSSEINI SM. Use of the quantum dot-labeled solid lipid nanoparticles for delivery of streptomycin and hydroxychloroquine: a new therapeutic approach for treatment of intracellular Brucella abortus infection[J]. Biomedicine & Pharmacotherapy, 2023, 158: 114116. |
[60] |
MAJZOOBI MM, HASHMI SH, EMAMI K, SOLTANIAN AR. Combination of doxycycline, streptomycin and hydroxychloroquine for short-course treatment of brucellosis: a single-blind randomized clinical trial[J]. Infection, 2022, 50(5): 1267-1271. DOI:10.1007/s15010-022-01806-x |
[61] |
SAYAN M, KıLıC S, UYANıK MH. Epidemiological survey of rifampicin resistance in clinic isolates of Brucella melitensis obtained from all regions of Turkey[J]. Journal of Infection and Chemotherapy: Official Journal of the Japan Society of Chemotherapy, 2012, 18(1): 41-46. |
[62] |
JOHANSEN TB, SCHEFFER L, JENSEN VK, BOHLIN J, FERUGLIO SL. Whole-genome sequencing and antimicrobial resistance in Brucella melitensis from a Norwegian perspective[J]. Scientific Reports, 2018, 8: 8538. DOI:10.1038/s41598-018-26906-3 |
[63] |
SHEVTSOV A, SYZDYKOV M, KUZNETSOV A, SHUSTOV A, SHEVTSOVA E, BERDIMURATOVA K, MUKANOV K, RAMANKULOV Y. Antimicrobial susceptibility of Brucella melitensis in Kazakhstan[J]. Antimicrobial Resistance and Infection Control, 2017, 6: 130. DOI:10.1186/s13756-017-0293-x |
[64] |
ALAMIAN S, DADAR M, ETEMADI A, AFSHAR D, ALAMIAN MM. Antimicrobial susceptibility of Brucella spp. isolated from Iranian patients during 2016 to 2018[J]. Iranian Journal of Microbiology, 2019, 11(5): 363-367. |
[65] |
LIU ZG, DI DD, WANG M, LIU RH, ZHAO HY, PIAO DR, ZHAO ZZ, HAO YQ, DU YN, JIANG H, CUI BY, XIA XZ. In vitro antimicrobial susceptibility testing of human Brucella melitensis isolates from Ulanqab of Inner Mongolia, China[J]. BMC Infectious Diseases, 2018, 18(1): 43. DOI:10.1186/s12879-018-2947-6 |
[66] |
YANG XW, JIANG X, AN CH, SUN CY, LI QL, LI WB, CAI YG, JIANG H. Sensitivity of Brucella melitensis isolates to antibiotics in vitro[J]. Disease Surveillance, 2021, 36(12): 1286-1290. (in Chinese) 杨晓雯, 姜霞, 安翠红, 孙长云, 李巧玲, 李文博, 蔡英桂, 姜海. 羊种布鲁氏菌分离株体外抗生素敏感性研究[J]. 疾病监测, 2021, 36(12): 1286-1290. |
[67] |
MA HR, XU HJ, WANG X, BU ZY, YAO T, ZHENG ZR, SUN Y, JI X, LIU J. Molecular characterization and antimicrobial susceptibility of human Brucella in Northeast China[J]. Frontiers in Microbiology, 2023, 14: 1137932. DOI:10.3389/fmicb.2023.1137932 |
[68] |
BALABAN NQ, HELAINE S, LEWIS K, ACKERMANN M, ALDRIDGE B, ANDERSSON DI, BRYNILDSEN MP, BUMANN D, CAMILLI A, COLLINS JJ, DEHIO C, FORTUNE S, GHIGO JM, HARDT WD, HARMS A, HEINEMANN M, HUNG DT, JENAL U, LEVIN BR, MICHIELS J, et al. Definitions and guidelines for research on antibiotic persistence[J]. Nature Reviews Microbiology, 2019, 17: 441-448. DOI:10.1038/s41579-019-0196-3 |
[69] |
XING ZF, WU QH, JIN FZ, SHI G, HUANG CY. Human distribution of brucellosis' in Heilongjiang Province, 1949–2009[J]. Disease Surveillance, 2011, 26(11): 861-863. (in Chinese) 邢智锋, 吴群红, 金福芝, 石刚, 黄纯英. 1949–2009年黑龙江省人间布鲁氏菌病疫情分析[J]. 疾病监测, 2011, 26(11): 861-863. DOI:10.3784/j.issn.1003-9961.2011.11.007 |
[70] |
YUAN S, WAN XY, TANG L, YIN SH, GE JX, XING ZF. Epidemiological characteristics and spatial aggregation of human brucellosis in Heilongjiang Province from 2010 to 2019[J]. Chinese Journal of Public Health Engineering, 2022, 21(6): 889-893. (in Chinese) 袁爽, 万晓宇, 唐磊, 尹世辉, 葛晶雪, 邢智锋. 黑龙江省2010–2019年人间布鲁氏菌病流行病学特征与空间聚集性分析[J]. 中国卫生工程学, 2022, 21(6): 889-893. |
[71] |
GE JX, YIN SH, TANG L, YUAN S, XING ZF. Epidemiological characteristics of human brucellosis in Heilongjiang Province, 2012–2022[J]. Chinese Journal of Public Health Engineering, 2023, 22(6): 729-731, 736. (in Chinese) 葛晶雪, 尹世辉, 唐磊, 袁爽, 邢智锋. 2012–2022年黑龙江省人间布鲁氏菌病流行特征分析[J]. 中国卫生工程学, 2023, 22(6): 729-731, 736. |
[72] |
QURESHI KA, PARVEZ A, FAHMY NA, ABDEL HADY BH, KUMAR S, GANGULY A, ATIYA A, ELHASSAN GO, ALFADLY SO, PARKKILA S, ASPATWAR A. Brucellosis: epidemiology, pathogenesis, diagnosis and treatment-a comprehensive review[J]. Annals of Medicine, 2023, 55(2): 2295398. DOI:10.1080/07853890.2023.2295398 |
[73] |
CZYŻ DM, JAIN-GUPTA N, SHUMAN HA, CROSSON S. A dual-targeting approach to inhibit Brucella abortus replication in human cells[J]. Scientific Reports, 2016, 6: 35835. DOI:10.1038/srep35835 |
[74] |
CHIARAVIGLIO L, KIRBY JE. High-throughput intracellular antimicrobial susceptibility testing of Legionella pneumophila[J]. Antimicrobial Agents and Chemotherapy, 2015, 59(12): 7517-7529. DOI:10.1128/AAC.01248-15 |