扩展功能
文章信息
- 郝紫玉, 邵亚旭, 刘涛, 张爽, 王伟东, 周宁一, 晏磊
- HAO Ziyu, SHAO Yaxu, LIU Tao, ZHANG Shuang, WANG Weidong, ZHOU Ningyi, YAN Lei
- 东北农田黑土固碳微生物研究进展
- Research advances of carbon-fixing microorganisms in the black soil of northeast China
- 微生物学通报, 2024, 51(6): 1873-1886
- Microbiology China, 2024, 51(6): 1873-1886
- DOI: 10.13344/j.microbiol.china.230923
-
文章历史
- 收稿日期: 2023-11-05
- 接受日期: 2024-03-01
- 网络首发日期: 2024-03-27
2. 黑龙江八一农垦大学生命科学技术学院 农业农村部东北平原农业绿色低碳重点实验室, 黑龙江 大庆 163319;
3. 上海交通大学生命科学技术学院 微生物代谢国家重点实验室, 上海 200240
2. Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China;
3. State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
东北黑土是世界四大黑土区之一,总面积达109万km2,耕地面积18.53万km2,覆盖大兴安岭、三江平原以及松辽平原。东北农田黑土素以肥力高著称,土壤腐殖质层最厚可达70‒100 cm,土壤结构疏松多孔[1],机械组成均匀[2],pH值为5.5‒6.5,是自然条件下最肥沃、最稀缺的土壤资源,大豆、玉米、水稻都是农田黑土的重要作物[3-4],在我国粮食安全中具有不可替代的作用。
随着长期集约耕作和过度开发利用,黑土地正面临严重退化,土壤有机碳储量显著下降,土壤侵蚀严重,影响农田生态功能和健康生产[5],土壤碳源/汇的问题也成为学术界的热门话题。微生物驱动土壤物质转化,可以通过合成代谢实现固碳功能,其群落组成变化会直接影响土壤有机碳的固定[6]。研究发现固碳微生物广泛存在于多种生态环境中,目前主要利用分子生物学技术如DNA分子指纹图谱、qPCR、基因芯片和高通量测序等技术对黑土固碳微生物的丰度、群落组成及多样性进行分析,功能基因丰度越高微生物固碳潜力也越大[7]。此外,微生物的固碳途径也会受到环境因素的影响[8]。
目前对碳循环相关微生物研究比较广泛,但是对于东北农田黑土人们更关注黑土面临的退化问题,而对土壤中固碳微生物相关研究还缺乏总结和梳理。因此,本文基于前人的研究结果对我国东北农田黑土碳循环功能微生物分子机制以及调控过程进行综述。针对黑土有机质含量下降的“瓶颈”问题,全面探究黑土微生物固碳能力以及分子机制,为全面评价东北黑土区的生态效应、黑土地温室气体减排、现代绿色循环农业可持续发展提供理论依据和技术支撑。
1 农田黑土固碳微生物驱动的固碳过程及其微生物群落 1.1 黑土微生物固碳过程土壤CO2固定主要是通过从大气中吸收CO2并将其引入土壤中来增加土壤有机碳储存的过程。研究表明,团聚体作为微生物的主要栖息地是土壤碳固存的主要场所,土壤团聚体的稳定性可改善土壤结构,保持有机碳的稳定性[9],黑土中土壤活性有机碳组分包括微生物量碳、水溶性有机碳、易氧化有机碳和颗粒有机碳等作为反映土壤肥力与质量变化的早期预测指标,活性碳库的各组分含量与土壤微生物活性之间存在关联,也可能增加土壤碳排放量[10],除外部因素外,土壤微生物群落在碳循环中起着重要作用。
土壤微生物既可通过分解代谢向大气释放碳,也可通过合成代谢将外源碳转化成某种物质形式储存于土壤中。其活性被认为是土壤中碳储存潜力差异的主要驱动因素[11]。微生物参与的碳循环代谢主要包括3个基本过程:碳固定(无机碳转化为有机碳)、甲烷代谢(产甲烷和甲烷氧化)、碳降解(有机物质的分解)[12]。碳循环代谢具体过程如图 1所示。固碳微生物可以通过已存在的6种途径进行固定(表 1),其中卡尔文循环是第一个报道的碳固定途径[15]。卡尔文循环是微生物参与的CO2固定过程最重要的途径[20],核酮糖-1, 5-二磷酸羧化酶/加氧酶(RubisCO)催化其底物的羧基化和氧化,是卡尔文循环进行CO2固定的关键酶。土壤有机碳与RubisCO酶活性之间的关系呈极显著正相关[21]。
碳循环类型 Type of carbon cycles |
微生物 Microorganisms |
能量来源 Source |
产物 Product |
关键酶 Enzyme |
参考文献 References |
卡尔文循环 Calvin-Benson- Bassham cycle |
藻类、蓝藻、好氧变形 杆菌、紫色细菌 Algae, cyanobacteria, Proteus, purple bacteria |
光能 Light |
3-磷酸甘油酸 3-phosphoglycerate |
核酮糖-1, 5-二磷酸羧化酶/加氧酶、磷酸核酮糖激酶 RubisCO and phosphoribulokinase |
[15] |
还原三羧酸循环 Reductive tricarboxylic acid (rTCA) cycle |
紫色细菌、绿硫细菌、 变形杆菌、产水菌科、 硝化菌 Purple bacteria, green sulfur bacteria, Proteus, Aquificae, nitrifying bacteria |
氢和硫 Hydrogen and sulfur |
CoA | α-酮戊二酸合酶、柠檬酸裂解酶 alpha-ketoglutaric acid and citrate lyase |
[16] |
厌氧乙酰辅酶A Wood-Ljungdahl pathway |
产甲烷菌、硫酸盐还 原菌、产乙酸菌 Methanogenus, sulfate-reducing bacteria, acetogenic bacteria |
氢 Hydrogen |
CoA | 乙酰辅酶A合酶、一氧化碳脱氢酶 Acetyl-CoA synthetase and carbon monoxide dehydrogenase |
[17] |
3-羟基丙酸循环 3-hydroxypropionate bicycle |
绿弯菌门 Chloroflexi |
氢和硫 Hydrogen and sulfur |
丙酮酸 Pyruvic acid |
丙二酰辅酶A还原酶 Malonyl-CoA reductase |
[18] |
3-羟基丙酸/4-羟基丁酸循环 3-hydroxypropionate/ 4-hydroxybutyrate cycle |
绿弯菌门、硫化叶菌目、古细菌、勤奋金属球菌 Chloroflexi, Sulfolobales, archaea, Metallosphaera sedula |
氢和硫 Hydrogen and sulfur |
CoA | 乙酰辅酶A/丙酰辅酶A羧化酶、4-羟基丁酰辅酶A脱氢酶、丙二酰辅酶A还原酶 Acetyl-CoA/propionyl-CoA carboxylase, 4-hydroxybutyryl-CoA dehydratase, malonyl-CoA reductase |
[19] |
二羧酸/4-羟基丁酸循环 Dicarboxylate/ 4-hydroxybutyrate cycle |
古菌、极端嗜热嗜酸菌 Archaea, themophiles |
氢和硫 Hydrogen and sulfur |
CoA | 4-羟基丁酰辅酶A脱氢酶、磷酸烯醇丙酮酸羧化酶 4-hydroxybutyryl-CoA dehydratase, phosphoenolpyruvate carboxykinase |
[20] |
近年来东北黑土微生物固碳能力得到广泛关注[22-25]。cbbL、cbbM基因是RubisCO酶的编码基因,作为固碳相关的生物标志物用于分析不同生态环境中固碳微生物群落多样性以及固碳能力[26],研究表明东北农田土壤中细菌cbbL丰度范围可达2.4×107‒1.9×108 copies/g[27-28]。目前发现东北黑土区碳代谢微生物在门水平上包括变形菌门(Proteobacteria)、蓝细菌门(Cyanobacteria)、放线菌门(Actinobacteria)、绿弯菌门(Chloroflexi)、酸杆菌门(Acidobacteria)[25, 29-30],在纲水平上包括α-变形菌纲(Alphaproteobacteria)、β-变形菌纲(Betaproteobacteria)和γ-变形菌纲(Gammaproteobacteria)等[31],其中硫氧化菌属(Thioalkalivibrio)、硫杆菌属(Thiobacillus)、芽孢杆菌属(Bacillus)、土微菌属(Pedomicrobium)和鞘脂单胞菌属(Sphingomonas)为优势菌属[30]。此外,还有部分真菌也参与碳循环过程,如丛枝菌根真菌(arbuscular mycorrhizal fungi)及其菌丝分泌物能够促进土壤有机碳(soil organic carbon, SOC)的积累和土壤团聚体的聚集[32],对生态系统和土壤碳库的稳定有重要作用。
现阶段对土壤微生物固碳的研究引入了碳同位素技术、气相色谱/质谱、近红外光谱技术和13C核磁共振法等技术手段,这些技术已广泛用于从分子水平来分析有机质的结构特征。例如,Cheng等[33]使用13C标记探究土壤侵蚀和沉降对东北黑土区坡田土壤有机碳动态的影响;徐香茹[9]采用13C示踪不同添加量秸秆对土壤碳组分的分配与固定。运用同位素的标记技术不仅可以测定土壤量和状态,还可以更准确把握碳的来源与动态变化。
2 农田黑土微生物固碳的影响因素黑土中微生物的固碳效果并非一成不变,微生物固碳会受到不同因素的影响[34],气候变化以及土壤状况、植被或土壤管理等的变化可能会进一步改变土壤固碳过程[35]。不同的固碳微生物因其表达不同的固碳途径,从而固碳能力也有差异,不同的影响因素相关关系见图 2。
不同的土地利用方式显著影响了黑土碳代谢微生物群落[38],研究发现,免耕土壤平均CO2释放速率显著低于秋翻和常规耕作[39]。相同土壤中不同耕作处理之间固碳功能基因丰度存在差异,免耕黑土固碳基因主要与土壤可溶性有机碳含量、土壤容重呈现正相关,而常规耕作土壤固碳基因与土壤可溶性有机碳含量呈负相关[39]。研究表明,与裸地相比,轮作种植(玉米-大豆-小麦)可以显著提高土壤有机质含量及土壤微生物丰度[36]。在连作系统中,如长期单一种植玉米、大豆和小麦土壤有机碳会出现不同程度的下降(0‒90 cm土层有机碳下降率分别为0.91%、0.97%和0.48%)[40],小麦连作土壤具有较高的土壤有机碳矿化速率,其次是大豆连作,玉米连作的土壤有机碳矿化速率最低[41]。此外土壤性质会影响固碳微生物类群的变化[42],微生物的分布可能会受到土壤温度、盐度和土壤养分等因子的制约[43],如潮湿的条件可能有利于有机物的积累影响微生物分布[44]。
2.2 施肥措施施肥可以通过改变土壤各活性碳库组分含量与土壤微生物活性影响土壤碳排放量[10]。研究发现通过施用生物炭会增加一些固碳功能微生物的相对丰度,如芽孢杆菌属(Bacillus)和土微菌属(Pedomicrobium)等,但却降低了慢生根瘤菌(Bradyrhizobium)相对丰度[45]。根据相关研究,长期单施化肥条件下,玉米生育期黑土碳排放量显著高于不施肥处理37.36%[10]。此外,长期有机肥与无机肥配施和无机肥配施秸秆处理也显著增加了土壤呼吸及异养呼吸碳累积排放量,分别提高了56.32%‒86.54%和70.01%‒100.93%[46]。
微生物固碳途径也同样受到施肥的影响,研究表明,在东北黑土区化学和有机肥料组合施用显著降低了参与还原乙酰辅酶A途径和CO氧化的基因丰度,同时增加了还原三羧酸(reductive tricarboxylic acid, rTCA)循环的基因丰度[47];李亚男[31]的研究中也发现了施用化肥增加了C4-二羧酸循环代谢途径,而抑制了二羧酸/4-羟基丁酸循环。
2.3 秸秆还田秸秆还田是提升农田土壤有机质的有效措施,秸秆可为土壤微生物提供丰富的碳源和养分,不仅提高土壤自养固碳微生物多样性[48-49],同时使黑土中固碳微生物(如酸杆菌门和绿弯菌门)的相对丰度产生变化[25]。秸秆还田处理下,碳循环过程中新碳形成速率高于老碳分解速率从而提升SOC含量[50],同时使土壤呼吸总量增加4.38%[51]。研究表明,随着秸秆覆盖的增加,变形菌门(Proteobacteria)和拟杆菌门(Bacteroidetes)在碳固定代谢中的作用增强,土壤碳固定功能基因的总丰度降低[52]。此外,秸秆的掺入使不同生态系统间土壤轻组分有机碳含量在不同土壤深度存在差异,且差异随着剖面深度的增加而降低[53],SOC含量及其变异大小也随土壤深度的增加而显著降低[23]。
2.4 冻融作用冻融作用是东北黑土区常见的自然现象,冻融循环中会导致土壤中的水分、温度和气体等因素发生变化,进而引发土壤能量传递和转化等复杂性过程。研究表明,低幅冻融循环(‒5‒5 ℃)和高幅冻融循环(−10‒10 ℃)下土壤的CO2排放量分别是恒温培养的1.64倍和3.18倍[37]。冻融交替作用会降低土壤中微生物残体碳的累积[54-55]。此外,随着温度的升高,冻土层(0‒40 cm)碳循环相关微生物丰度显著提高[56]。宋媛等[57]通过13C标记模拟春季解冻期(单向冻融)可显著改变土壤CO2释放速率及微生物群落结构。
3 固碳微生物对农业及生态环境的贡献 3.1 固碳微生物驱动土壤生产力的提升提升黑土耕地土壤肥力是粮食增产增收的前提,也是维护国家粮食安全的重要保证。根据研究,东北黑土中矿物结合态有机碳的比例最高,其次是占全国耕地面积1/5的水稻土和南方红壤,而西北的灰漠土的比例最低[39]。目前,东北黑土土壤碳汇约为4 Gt,占全国土壤碳汇的5%[40, 58]。
土壤有机碳含量低是限制作物增产的重要因素,土壤有机碳的增产作用存在的最优阈值并不是固定的,而是与气候、土壤以及作物类型有关,玉米的平均最优土壤有机碳含量水平为43.2−43.9 g/kg,而小麦为12.7−13.4 g/kg、水稻为31.2−32.4 g/kg[59]。邱建军等[60]对东北黑土地区的研究表明,土壤有机碳的含量会引起粮食作物的变化,在阈值范围内(有机碳含量为44‒46 t/hm2)农田土壤每固定1.0 tC/(hm2·a)有机碳,粮食作物产量可平均提升约0.7 t/hm2,这意味着作物通过土壤固碳可以实现更大的增产空间。
保护性耕作等农业管理措施通过直接改变有机碳输入或间接改变微生物的环境条件来影响耕作层土壤的碳循环过程,合理的施肥方式如有机无机配施较单施化肥使土壤中相关养分均出现显著提高[61]。现代农业中常常利用化肥与秸秆还田相结合增加黑土有机质含量[62],还通过利用秸秆等农业废弃物为主要原料育苗[49, 63],与微生物协同作用下能提高作物素质并节约成本。
此外,微生物在环境中生长并不是靠单一元素周转而存活的,生物地球化学元素循环例如碳、氮、磷、硫等,存在复杂的耦合关系,微生物可增加土壤的有机碳、氮、钾和土壤呼吸水平[64]。微生物在分解有机碳过程中可以释放出氮素,从而提高土壤中的氮素含量;氮沉降的增加可以促进土壤碳积累,同时有机碳源的输入也会影响氮转化过程[65-66],这种相互作用关系可以促进土壤的肥力和生态系统的稳定性[67]。
东北黑土区有机培肥是改善东北黑土区农田土壤碳含量的有效途径,有机无机配施处理主要通过增加碳向土壤稳定库及粒径较小的团聚体的分配,从而增强了土壤对碳的固持能力,相关研究表明此措施下土壤有机碳年增加量为0.35−0.47 g/kg,同时全氮含量增加46.3%−84.2%,玉米产量稳定系数达到较高水平[68-69]。
3.2 固碳微生物对温室气体排放的影响大气中CO2是主要的温室气体之一,土壤碳循环是调节土壤物质动态和土壤与大气之间气体交换的基本生物地球化学循环[70-71]。微生物在调节气候变化方面至关重要,但它们很少成为气候变化研究的重点。“双碳”目标为农业绿色发展提出了新要求和新目标。黑土在减缓和适应气候变化的工作中发挥关键作用,在东北黑土中除了植被光合作用、凋谢物分解作用,土壤中固碳微生物也是土壤碳固定的重要因素之一。
微生物回收和固定CO2气体的生物固碳方法逐渐成为解决“温室效应”这一重大环境问题的焦点[72-73]。固定CO2的微生物主要为自养菌,其中土壤中固碳菌是重要的一个方面[74-75],数据显示深度为1 m土壤内的有机碳储量为1 505 Pg (1 Pg=1015 g),其储量约是土壤表层植物(620 Pg C)中的2.43倍,也是大气圈碳储量(867 Pg C)的1.71倍[76-77]。研究表明,土壤中CO2的固定量可以达到4.52 g/kg干土[78],微生物固定的碳含量可占总有机碳的0.12%−0.59%[79]。
为了应对气候变化并可持续地从碳循环中受益,微生物利用自然能源固定大气中温室气体的能力是未来可持续发展的一个有效途径。面对温室气体不断加剧的挑战,通过提高土壤有机碳固定水平对于缓解大气温室气体和气候变化有重大的贡献。
4 总结与展望固碳微生物对于黑土养分恢复和作物产量的提升具有不可或缺的作用。卡尔文循环作为自养生物固碳的主要途径,RubisCO I型的大亚基由cbbL基因编码,其作为固碳标志物已广泛用于土壤环境中固碳微生物的种群结构及多样性;固碳微生物可以吸收无机碳并将其转化成有机物,黑土中固碳微生物可能会受到耕作制度、施肥、秸秆还田和冻融等因素的影响。土壤微生物作为碳循环过程的主要驱动者与作物生产和生态环境关系密切,给土壤提供养分提高作物产量的同时降低温室气体,在“碳达峰、碳中和”背景下对实现黑土地保护具有重要意义。
现有研究更关注于黑土退化问题的研究,但是缺少对黑土中固碳微生物的深入挖掘。为加强黑土地保护,全面系统了解黑土固碳微生物物种类型、分布和作用机制,以及其对土壤环境和作物生产的影响至关重要。利用微生物对黑土碳循环进行调节也将成为研究的主要方向,未来应在3个方面进行深入研究。
(1) 深入挖掘东北黑土区固碳微生物资源。立足于东北寒区挖掘低温环境下固碳功能微生物菌群,利用微生物之间的协同作用开发适用于黑土地人工高效碳固定功能菌剂,为解决寒区微生物资源匮乏的问题提供菌种与基因资源;在分子水平上研究固碳微生物基因改造,以提高微生物的固碳能力及非固碳菌向固碳功能菌株的转化,并建立基于东北黑土的微生物资源数据库共享平台,实现资源开放并建立资源网络,对于促进东北地区甚至全国农业可持续发展具有意义。
(2) 前沿技术交叉融合全面解读固碳微生物生命过程。现阶段对土壤有机碳变化速率及潜力估算结果中存在不确定性,目前使用的同位素示踪技术可以揭示土壤微生物的生态过程与功能结构变化,但想要更加系统地阐明微生物生命活动过程及其对土壤中有机碳循环的影响变化,仍需要其他测试技术相辅,综合利用地理信息系统(geographic information system, GIS)、遥感、人工智能、大数据等前沿技术交叉融将成为土壤碳管理的一个新趋势,更加全面地评价我国东北黑土生产对生态环境的综合影响,巩固其生态地位。
(3) 构建基于微生物有机碳循环的黑土管理策略。设计适用于东北黑土地耐低温且活性好的专用型复合微生物肥料(菌肥)有效改良土壤状况,通过农业生产调控固碳菌群的构成及活性。建立智能监测与感知体系对区域土壤的养分状况制定专门的用养模式,并研发自动精准施肥设施智能调节和控制农田施肥,在保护黑土地的同时提高作物产量。
[1] |
YAN L, LA YP, DONG TH, LIU MY, SUN XH, MENG QY, ZHANG YY, ZHANG NW, MENG QF. Soil physical properties and vertical distribution of root systems affected by tillage methods in black soil slope farmlands in Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(1): 125-132. (in Chinese) 闫雷, 喇乐鹏, 董天浩, 刘鸣一, 孙小贺, 孟庆尧, 张钰莹, 张乃文, 孟庆峰. 耕作方式对东北黑土坡耕地土壤物理性状及根系垂直分布的影响[J]. 农业工程学报, 2021, 37(1): 125-132. |
[2] |
LI HQ, LIAO XL, ZHU HS, WEI XR, SHAO MG. Soil physical and hydraulic properties under different land uses in the black soil region of Northeast China[J]. Canadian Journal of Soil Science, 2019, 99(4): 406-419. DOI:10.1139/cjss-2019-0039 |
[3] |
YU ZG, CUI ZD, GONG SY. Building a national industrial belt for food security in Northeast China: basic advantages, bottlenecks and constructing paths[J]. Rural Economy, 2022(5): 50-59. (in Chinese) 余志刚, 崔钊达, 宫思羽. 东北地区建设国家粮食安全产业带: 基础优势、制约瓶颈和建设路径[J]. 农村经济, 2022(5): 50-59. |
[4] |
HAN DH, ZHAO JY, HU Q, PAN XB, WANG P, YI GQ, GUO YD, WANG HR, HE HY, CHEN LX. Analysis of crop yield variation characteristics in Northeast China and the response to meteorological drought[J]. Journal of China Agricultural University, 2021, 26(3): 188-200. (in Chinese) 韩冬荟, 赵金媛, 胡琦, 潘学标, 王萍, 易国庆, 郭颖达, 王浩然, 和骅芸, 陈立新. 东北地区粮食作物产量变化特征及其对气象干旱的响应研究[J]. 中国农业大学学报, 2021, 26(3): 188-200. |
[5] |
LIU XY, LIU P, LIU C. Variation characteristics of organic matters and nutrient elements in typical black soil[J]. Geology and Resources, 2022, 31(4): 500-507. (in Chinese) 刘希瑶, 刘澎, 刘驰. 典型黑土中有机质和养分元素的变化分析[J]. 地质与资源, 2022, 31(4): 500-507. |
[6] |
GAI YS, DOU S. Effects of different CO2 concentrations on humus composition and structural characteristics of humic acid under long-term corn stalk incubation[J]. Journal of Jilin Agricultural University, 2018, 40(6): 716-721. (in Chinese) 盖艳双, 窦森. 不同CO2浓度长期培养玉米秸秆对土壤腐殖质组成和胡敏酸结构特征的影响[J]. 吉林农业大学学报, 2018, 40(6): 716-721. |
[7] |
LIU YY, WANG S, LI SZ, DENG Y. Advances in molecular ecology on microbial functional genes of carbon cycle[J]. Microbiology China, 2017, 44(7): 1676-1689. (in Chinese) 刘洋荧, 王尚, 厉舒祯, 邓晔. 基于功能基因的微生物碳循环分子生态学研究进展[J]. 微生物学通报, 2017, 44(7): 1676-1689. |
[8] |
TANG SR, CHENG WG, HU RG, GUIGUE J, HATTORI S, TAWARAYA K, TOKIDA T, FUKUOKA M, YOSHIMOTO M, SAKAI H, USUI Y, XU XK, HASEGAWA T. Five-year soil warming changes soil C and N dynamics in a single rice paddy field in Japan[J]. The Science of the Total Environment, 2021, 756: 143845. DOI:10.1016/j.scitotenv.2020.143845 |
[9] |
XU XR. Transformation and stabilization characteristics of straw residue inputs in different fertility level soils[D]. Shenyang: Doctoral Dissertation of Shenyang Agricultural University, 2019 (in Chinese). 徐香茹. 秸秆添加量对不同肥力土壤有机碳固定机制影响的研究[D]. 沈阳: 沈阳农业大学博士学位论文, 2019. |
[10] |
HE M, WANG LG, ZHU P, QI RM, WANG YC. Carbon emission characteristics, carbon library components, and enzyme activity under long-term fertilization conditions of black soil[J]. Acta Ecologica Sinica, 2017, 37(19): 6379-6389. (in Chinese) 贺美, 王立刚, 朱平, 戚瑞敏, 王迎春. 长期定位施肥下黑土碳排放特征及其碳库组分与酶活性变化[J]. 生态学报, 2017, 37(19): 6379-6389. |
[11] |
HU GP, LI Y, YE C, LIU LM, CHEN XL. Engineering microorganisms for enhanced CO2 sequestration[J]. Trends in Biotechnology, 2019, 37(5): 532-547. DOI:10.1016/j.tibtech.2018.10.008 |
[12] |
CHENG AQ, KANG WH, LI W, YU LJ. Research progress in the process and mechanisms of autotrophic carbon sequestration driven by soil microorganisms in Karst areas[J]. Acta Microbiologica Sinica, 2021, 61(6): 1525-1535. (in Chinese) 程澳琪, 康卫华, 李为, 余龙江. 岩溶区土壤微生物驱动的自养固碳过程与机制研究进展[J]. 微生物学报, 2021, 61(6): 1525-1535. |
[13] |
SONG J, WAN SQ, PIAO SL, KNAPP AK, CLASSEN AT, VICCA S, CIAIS P, HOVENDEN MJ, LEUZINGER S, BEIER C, KARDOL P, XIA JY, LIU Q, RU JY, ZHOU ZX, LUO YQ, GUO DL, LANGLEY JA, ZSCHEISCHLER J, DUKES JS, et al. A meta-analysis of 1 119 manipulative experiments on terrestrial carbon-cycling responses to global change[J]. Nature Ecology & Evolution, 2019, 3(9): 1309-1320. |
[14] |
YANG Y, LI T, POKHAREL P, LIU LX, QIAO JB, WANG YQ, AN SS, CHANG SX. Global effects on soil respiration and its temperature sensitivity depend on nitrogen addition rate[J]. Soil Biology and Biochemistry, 2022, 174: 108814. DOI:10.1016/j.soilbio.2022.108814 |
[15] |
JENSEN E, CLÉMENT R, MABERLY SC, GONTERO B. Regulation of the Calvin-Benson-Bassham cycle in the enigmatic diatoms: biochemical and evolutionary variations on an original theme[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2017, 372(1728): 20160401. DOI:10.1098/rstb.2016.0401 |
[16] |
ZHANG Y, FERNIE AR. The role of TCA cycle enzymes in plants[J]. Advanced Biology, 2023, 7(8): 2200238. DOI:10.1002/adbi.202200238 |
[17] |
TRISCHLER R, ROTH J, SORBARA MT, SCHLEGEL X, MÜLLER V. A functional Wood-Ljungdahl pathway devoid of a formate dehydrogenase in the gut acetogens Blautia wexlerae, Blautia luti and beyond[J]. Environmental Microbiology, 2022, 24(7): 3111-3123. DOI:10.1111/1462-2920.16029 |
[18] |
ADUHENE AG, CUI HL, YANG HY, LIU CW, SUI GC, LIU CL. Poly(3-hydroxypropionate): biosynthesis pathways and malonyl-CoA biosensor material properties[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 646995. DOI:10.3389/fbioe.2021.646995 |
[19] |
BERG IA, KOCKELKORN D, BUCKEL W, FUCHS G. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea[J]. Science, 2007, 318(5857): 1782-1786. DOI:10.1126/science.1149976 |
[20] |
TANG ZX, FAN FL, WAN YF, WEI W, LAI LM. Abundance and diversity of RuBisCO genes responsible for CO2 fixation in arid soils of Northwest China[J]. Pedosphere, 2015, 25(1): 150-159. DOI:10.1016/S1002-0160(14)60085-0 |
[21] |
LIU M, CAO LH, LIU CX, LIANG CF, QIN H, CHEN JH, SHAO S, XU QF. Characterization of population and community structure of carbon-sequestration bacteria in soils under four types of forest vegetations typical of subtropical zone[J]. Acta Pedologica Sinica, 2021, 58(4): 1028-1039. (in Chinese) 刘茗, 曹林桦, 刘彩霞, 梁辰飞, 秦华, 陈俊辉, 邵帅, 徐秋芳. 亚热带4种典型森林植被土壤固碳细菌群落结构及数量特征[J]. 土壤学报, 2021, 58(4): 1028-1039. |
[22] |
GAO CS, WANG JG. A review of researches on evolution of soil organic carbon in mollisols farmland[J]. Chinese Journal of Eco-Agriculture, 2011, 19(6): 1468-1474. (in Chinese) 高崇升, 王建国. 黑土农田土壤有机碳演变研究进展[J]. 中国生态农业学报, 2011, 19(6): 1468-1474. |
[23] |
YOU MY, HAN XZ, HU N, DU SL, DOANE TA, LI LJ. Profile storage and vertical distribution (0–150 cm) of soil inorganic carbon in croplands in Northeast China[J]. CATENA, 2020, 185: 104302. DOI:10.1016/j.catena.2019.104302 |
[24] |
ZHOU X, CUI JT, LI MT, LIU SX, WANG CY, WANG JH, WU JG, GAO Q. Contribution of soil microorganisms to agricultural resources and environment development in black soil region of Northeast China[J]. Journal of Jilin Agricultural University, 2022, 44(6): 679-687. (in Chinese) 周雪, 崔俊涛, 李明堂, 刘淑霞, 王呈玉, 王继红, 吴景贵, 高强. 土壤微生物助力东北黑土区农业资源与环境保护与发展[J]. 吉林农业大学学报, 2022, 44(6): 679-687. |
[25] |
ZHU FN, LIN XX, GUAN S, DOU S. Deep incorporation of corn straw benefits soil organic carbon and microbial community composition in a black soil of Northeast China[J]. Soil Use and Management, 2022, 38(2): 1266-1279. DOI:10.1111/sum.12793 |
[26] |
TANG HM, WEN L, SHI LH, LI C, CHENG KK, LI WY, XIAO XP. Effects of long-term fertilizer practices on rhizosphere soil autotrophic CO2-fixing bacteria under double rice ecosystem in southern China[J]. Journal of Microbiology and Biotechnology, 2022, 32(10): 1292-1298. DOI:10.4014/jmb.2205.05055 |
[27] |
CHEN XJ, WU XH, JIAN Y, YUAN HZ, ZHOU P, GE TD, TONG CL, ZOU DS, WU JS. Carbon dioxide assimilation potential, functional gene amount and RubisCO activity of autotrophic microorganisms in agricultural soils[J]. Environmental Science, 2014, 35(3): 1144-1150. (in Chinese) 陈晓娟, 吴小红, 简燕, 袁红朝, 周萍, 葛体达, 童成立, 邹冬生, 吴金水. 农田土壤自养微生物碳同化潜力及其功能基因数量、关键酶活性分析[J]. 环境科学, 2014, 35(3): 1144-1150. |
[28] |
WANG R, WU X, LI G, XIU WM, WANG LL, ZHANG GL. Effects of conversion of forest to arable land on the abundance and structure of the cbbL-harboring bacterial community in albic soil of the hilly region of Northeast China[J]. Environmental Science, 2019, 40(12): 5561-5569. (in Chinese) 王蕊, 吴宪, 李刚, 修伟明, 王丽丽, 张贵龙. 林地转型耕地对东北丘陵区白浆土cbbL细菌群落丰度和结构的影响[J]. 环境科学, 2019, 40(12): 5561-5569. |
[29] |
SU X. Effects of carbon addition on carbon pool dynamics and CO2-assimilating bacteria diversity of two typical soils in northeast China[D]. Harbin: Master's Thesis of Harbin Normal University, 2020 (in Chinese). 苏鑫. 碳添加对东北两种典型土壤碳库动态及碳代谢微生物多样性的影响[D]. 哈尔滨: 哈尔滨师范大学硕士学位论文, 2020. |
[30] |
SHEN L. Effects of Pb, La single and combined pollution on carbon metabolism microorganisms in black soil[D]. Harbin: Master's Thesis of Northeast Agricultural University, 2023 (in Chinese). 申璐. Pb、La单一及复合污染对黑土碳代谢微生物的影响[D]. 哈尔滨: 东北农业大学硕士学位论文, 2023. |
[31] |
LI YN. Effects of long-term fertilization on carbon and nitrogen cycle and microbial regulation in black soil[D]. Changchun: Doctoral Dissertation of Jilin Agricultural University, 2023 (in Chinese). 李亚男. 长期施肥对黑土碳、氮循环的影响及微生物调控作用[D]. 长春: 吉林农业大学博士学位论文, 2023. |
[32] |
YANG WY. Biodiversity of arbuscular mycorrhizal fungi in black soil region of Northeast China and the response to soil organic carbon[D]. Harbin: Doctoral Dissertation of University of Chinese Academy of Sciences (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences), 2022 (in Chinese). 杨文莹. 我国东北黑土区丛枝菌根真菌多样性及其对土壤有机碳的响应[D]. 哈尔滨: 中国科学院大学(中国科学院东北地理与农业生态研究所)博士学位论文, 2022. |
[33] |
CHENG SL, FANG HJ, ZHU TH, ZHENG JJ, YANG XM, ZHANG XP, YU GR. Effects of soil erosion and deposition on soil organic carbon dynamics at a sloping field in Black Soil region, Northeast China[J]. Soil Science and Plant Nutrition, 2010, 56(4): 521-529. DOI:10.1111/j.1747-0765.2010.00492.x |
[34] |
DAI SS. The major drivers, mineralization and sequestration of organic carbon in cultivable black soil of northeast China[D]. Harbin: Doctoral Dissertation of University of Chinese Academy of Sciences, 2023 (in Chinese). 戴闪闪. 农田黑土有机碳的主要影响因素、矿化及固定[D]. 哈尔滨: 中国科学院大学博士学位论文, 2023. |
[35] |
TIEFENBACHER A, SANDÉN T, HASLMAYR HP, MILOCZKI J, WENZEL W, SPIEGEL H. Optimizing carbon sequestration in croplands: a synthesis[J]. Agronomy, 2021, 11(5): 882. DOI:10.3390/agronomy11050882 |
[36] |
HU F, WANG F, HAN XZ, XU M, FU YH, YAN J, JIA ZJ, TIEDJE J, JIANG X. Succession of microbial community in typical black soil under different land use pattern[J]. Acta Pedologica Sinica, 2022, 59(5): 1238-1247. (in Chinese) 胡芳, 王芳, 韩晓增, 许敏, 付玉豪, 严君, 贾仲君, Tiedje James M, 蒋新. 不同土地利用方式下典型黑土区土壤微生物群落演替规律[J]. 土壤学报, 2022, 59(5): 1238-1247. |
[37] |
WANG X, LI F, ZHAO SX. Freeze-thaw regime effects on soil CO2 emission: a review[J]. Chinese Journal of Soil Science, 2022, 53(3): 728-737. (in Chinese) 王旭, 李斐, 赵世翔. 冻融交替对土壤CO2排放影响的研究进展[J]. 土壤通报, 2022, 53(3): 728-737. |
[38] |
JIA PL, FENG HY, LI M. Soil microbial diversity of black soil under different land use patterns in Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(20): 171-178. (in Chinese) 贾鹏丽, 冯海艳, 李淼. 东北黑土区不同土地利用方式下农田土壤微生物多样性[J]. 农业工程学报, 2020, 36(20): 171-178. |
[39] |
WANG Q, LIU HW, JIA SX, SHEN JG, CHEN XW, ZHANG SX, ZHANG Y, GAO Y, LIANG AZ. Effect of conservation tillage on microbial functional genes related to carbon cycle of black soil[J]. Acta Ecologica Sinica, 2023, 43(11): 4760-4771. (in Chinese) 王倩, 刘红文, 贾淑霞, 申建国, 陈学文, 张士秀, 张延, 高燕, 梁爱珍. 保护性耕作对东北黑土微生物碳循环功能基因的影响[J]. 生态学报, 2023, 43(11): 4760-4771. |
[40] |
HAN GQ. Development of soil carbon sink and protection and utilization of black soil based on the vision of "double carbon"[J]. Data, 2021(9): 56-59. (in Chinese) 韩贵清. 基于"双碳"目标愿景下的土壤碳汇发展与黑土保护利用[J]. 数据, 2021(9): 56-59. |
[41] |
DAI SS, HE P, YOU MY, LI LJ. The presence of soybean, but not soybean cropping frequency has influence on SOM priming in crop rotation systems[J]. Plant and Soil, 2023, 487(1): 511-520. |
[42] |
ZHOU LY, JU JS, MA XL, SUN WJ, WANG LR, WEI L. Research progress of carbon sequestration potential of autotrophic microorganisms in farmland soil and influencing factors[J]. Shandong Agricultural Sciences, 2023, 55(6): 157-165. (in Chinese) 周连玉, 巨家升, 马学兰, 孙文娟, 王龙瑞, 魏乐. 农田土壤自养微生物固碳潜力及影响因素的研究进展[J]. 山东农业科学, 2023, 55(6): 157-165. |
[43] |
ZHAO S, LIU JJ, BANERJEE S, ZHOU N, ZHAO ZY, ZHANG K, HU MF, TIAN CY. Biogeographical distribution of bacterial communities in saline agricultural soil[J]. Geoderma, 2020, 361: 114095. DOI:10.1016/j.geoderma.2019.114095 |
[44] |
CHEN YL, KOU D, LI F, DING JZ, YANG GB, FANG K, YANG YH. Linkage of plant and abiotic properties to the abundance and activity of N-cycling microbial communities in Tibetan permafrost-affected regions[J]. Plant and Soil, 2019, 434(1): 453-466. |
[45] |
YAO Q, LIU JJ, YU ZH, LI YS, JIN J, LIU XB, WANG GH. Three years of biochar amendment alters soil physiochemical properties and fungal community composition in a black soil of Northeast China[J]. Soil Biology and Biochemistry, 2017, 110: 56-67. DOI:10.1016/j.soilbio.2017.03.005 |
[46] |
HE M, WANG LG, WANG YC, SHEN X, ZHANG YT, ZHU P. Characteristic of black soil respiration and its influencing factors under long-term fertilization regimes[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(4): 151-161. (in Chinese) 贺美, 王立刚, 王迎春, 沈欣, 张亦涛, 朱平. 长期定位施肥下黑土呼吸的变化特征及其影响因素[J]. 农业工程学报, 2018, 34(4): 151-161. |
[47] |
HU XJ, GU HD, LIU JJ, WEI D, ZHU P, CUI XA, ZHOU BK, CHEN XL, JIN J, LIU XB, WANG GH. Metagenomics reveals divergent functional profiles of soil carbon and nitrogen cycling under long-term addition of chemical and organic fertilizers in the black soil region[J]. Geoderma, 2022, 418: 115846. DOI:10.1016/j.geoderma.2022.115846 |
[48] |
PANDEY D, AGRAWAL M, BOHRA JS. Effects of conventional tillage and no tillage permutations on extracellular soil enzyme activities and microbial biomass under rice cultivation[J]. Soil and Tillage Research, 2014, 136: 51-60. DOI:10.1016/j.still.2013.09.013 |
[49] |
ZHANG S, ZHENG AW, LIU T, YAN L. Optimization of tomato seedling matrix formula with corn stalk as main material[J]. Jiangsu Agricultural Sciences, 2023, 51(19): 138-145. (in Chinese) 张爽, 郑安旺, 刘涛, 晏磊. 以玉米秸秆为主料的番茄育苗基质配方优化[J]. 江苏农业科学, 2023, 51(19): 138-145. |
[50] |
HAO XX, HAN XZ, WANG C, YAN J, LU XC, CHEN X, ZOU WX. Temporal dynamics of density separated soil organic carbon pools as revealed by δ13C changes under 17 years of straw return[J]. Agriculture, Ecosystems & Environment, 2023, 356: 108656. |
[51] |
LUO LZ, LI Y, JIANG TM. Research on the carbon-sink effect of straw returning[J]. Hubei Agricultural Sciences, 2013, 52(10): 2238-2241. (in Chinese) 罗龙皂, 李渝, 蒋太明. 秸秆还田固碳增汇效果研究进展[J]. 湖北农业科学, 2013, 52(10): 2238-2241. |
[52] |
CAI LJ. Effect of long-term residue mulching on organic carbon and microbial carbon metabolism in No-tillage black soil farmland[D]. Shenyang: Doctoral Dissertation of Shenyang Agricultural University, 2023 (in Chinese). 蔡丽君. 秸秆长期免耕覆盖对黑土有机碳和微生物碳代谢的影响[D]. 沈阳: 沈阳农业大学博士学位论文, 2023. |
[53] |
LI M, HAN XZ, DU SL, LI LJ. Profile stock of soil organic carbon and distribution in croplands of Northeast China[J]. CATENA, 2019, 174: 285-292. DOI:10.1016/j.catena.2018.11.027 |
[54] |
GUO XL. Effects of water and nitrogen on soil organic carbon mineralization and carbon sequestration under freeze-thaw cycles[D]. Harbin: Master's Thesis of University of Chinese Academy of Sciences (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences), 2020 (in Chinese). 郭晓丽. 冻融循环下水分和氮素对黑土有机碳矿化和固碳能力的影响[D]. 哈尔滨: 中国科学院大学(中国科学院东北地理与农业生态研究所)硕士学位论文, 2020. |
[55] |
CAO XX, LIU LJ, ZHA LX, LU XY, CHANG K, XU YD. Soil microbial residual carbon accumulation as affected by freeze-thaw intensity and maize straw incorporation[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(12): 2152-2160. (in Chinese) 曹鑫鑫, 刘丽君, 查丽霞, 卢溆阳, 常坤, 徐英德. 强冻融作用下土壤微生物残体碳的累积特征及其对玉米秸秆输入的响应[J]. 植物营养与肥料学报, 2022, 28(12): 2152-2160. |
[56] |
JIANG L. Effects of increasing temperature on soil carbon and nitrogen transformation and its microbial mechanisms in A peatland of the great hing'an mountains[D]. Harbin: Master's Thesis of University of Chinese Academy of Sciences, 2020 (in Chinese). 蒋磊. 增温对大兴安岭泥炭沼泽土壤碳氮转化的影响及其微生物机制[D]. 哈尔滨: 中国科学院大学硕士学位论文, 2020. |
[57] |
SONG Y, LIU HM, ZHANG H, LI XW, HU YX. Unidirectional freeze-thaw induced perturbations on layer-specific organic carbon mineralization of a mollisol[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(20): 132-139. (in Chinese) 宋媛, 刘会敏, 张辉, 栗现文, 胡亚鲜. 黑土单向冻融过程对不同土层有机碳矿化的影响[J]. 农业工程学报, 2023, 39(20): 132-139. |
[58] |
WANG YL, WU PN, MEI FJ, LING Y, QIAO YB, LIU CS, LEGHARI SJ, GUAN XK, WANG TC. Does continuous straw returning keep China farmland soil organic carbon continued increase? A meta-analysis[J]. Journal of Environmental Management, 2021, 288: 112391. DOI:10.1016/j.jenvman.2021.112391 |
[59] |
MA YQ, WOOLF D, FAN MS, QIAO L, LI R, LEHMANN J. Global crop production increase by soil organic carbon[J]. Nature Geoscience, 2023, 16: 1159-1165. DOI:10.1038/s41561-023-01302-3 |
[60] |
QIU JJ, WANG LG, LI H, TANG HJ, van RANST E. Modeling the impacts of soil organic carbon content of croplands on crop yields in China[J]. Scientia Agricultura Sinica, 2009, 42(1): 154-161. (in Chinese) 邱建军, 王立刚, 李虎, 唐华俊, van RANST E. 农田土壤有机碳含量对作物产量影响的模拟研究[J]. 中国农业科学, 2009, 42(1): 154-161. |
[61] |
ZHANG J. The effect and mechanism of fertilizer treatments on the turnover of black soil carbon and nitrogen[D]. Baoding: Doctoral Dissertation of Hebei Agricultural University, 2022 (in Chinese). 张杰. 施肥措施对黑土碳氮周转的影响及机制研究[D]. 保定: 河北农业大学博士学位论文, 2022. |
[62] |
BERHANE M, XU M, LIANG ZY, SHI JL, WEI GH, TIAN XH. Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: a meta-analysis[J]. Global Change Biology, 2020, 26(4): 2686-2701. DOI:10.1111/gcb.15018 |
[63] |
YAN L, YANG J, WANG WD, LIU T, SHAO YX, HE SJ, ZHENG AW. Bacterium capable of being used for seedling culture, matrix and seedling culture method: CN114467646B[P]. 2023-03-03 (in Chinese). 晏磊, 杨健, 王伟东, 刘涛, 邵亚旭, 贺双俊, 郑安旺. 一株可用于育苗的细菌、基质及育苗的方法: CN114467646B[P]. 2023-03-03. |
[64] |
LIANG GP, WU XP, CAI AD, DAI HC, ZHOU LP, CAI DX, HOUSSOU A, GAO LL, WANG BS, LI SP, SONG XJ, WU HJ. Correlations among soil biochemical parameters, crop yield, and soil respiration vary with growth stage and soil depth under fertilization[J]. Agronomy Journal, 2021, 113(3): 2450-2462. DOI:10.1002/agj2.20699 |
[65] |
ZOU XF, HE X, LI MG, BAO LF, WANG XL, ZHANG Q, SHI ZF, NI M, YANG JD, YANG MY, ZHU HY, YANG PW. Diversity of carbon and nitrogen microbial communities in soil of rice-rape rotation farmland[J]. Environmental Science & Technology, 2021, 44(10): 27-35. (in Chinese) 邹雪峰, 何翔, 李铭刚, 包玲凤, 王雪丽, 张庆, 施竹凤, 倪明, 杨济达, 杨明英, 朱红业, 杨佩文. 稻油轮作农田土壤碳氮微生物群落多样性特征[J]. 环境科学与技术, 2021, 44(10): 27-35. |
[66] |
GUO JR, SONG ZW, PENG XX, ZHU P, GAO HJ, PENG C, ZHANG WJ. Evaluation in soil carbon and nitrogen characteristics under long-term cropping regimes in black soil region of Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(6): 178-185. (in Chinese) 郭金瑞, 宋振伟, 彭宪现, 朱平, 高洪军, 彭畅, 张卫建. 东北黑土区长期不同种植模式下土壤碳氮特征评价[J]. 农业工程学报, 2015, 31(6): 178-185. |
[67] |
WEN XL, ZHOU YC, LIANG XL, LI JX, HUANG YT, LI QL. A novel carbon-nitrogen coupled metabolic pathway promotes the recyclability of nitrogen in composting habitats[J]. Bioresource Technology, 2023, 381: 129134. DOI:10.1016/j.biortech.2023.129134 |
[68] |
ZHANG XZ, GAO HJ, PENG C, LI Q, ZHU P, GAO Q. Variation trend of soil organic carbon, total nitrogen and the stability of maize yield in black soil under long-term organic fertilization[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(9): 1473-1481. (in Chinese) 张秀芝, 高洪军, 彭畅, 李强, 朱平, 高强. 长期有机培肥黑土有机碳、全氮及玉米产量稳定性的变化特征[J]. 植物营养与肥料学报, 2019, 25(9): 1473-1481. |
[69] |
GAO Y, ZHANG Y, ZHANG Y, CHEN XW, LIANG AZ. Interactive effects of tillage practices and cropping systems on the interannual variation of soil carbon, nitrogen content and corn yield in mollisols[J]. Soils and Crops, 2020, 9(4): 323-334. (in Chinese) 高燕, 张延, 张旸, 陈学文, 梁爱珍. 耕作方式和种植模式对黑土碳氮含量及玉米产量年际变化的交互效应[J]. 土壤与作物, 2020, 9(4): 323-334. |
[70] |
WANG H, ZHAO WW, JIA LZ. Progress and prospect of soil water erosion research over past decade based on the bibliometrics analysis[J]. Science of Soil and Water Conservation, 2021, 19(1): 141-151. (in Chinese) 王涵, 赵文武, 贾立志. 近10年土壤水蚀研究进展与展望: 基于文献计量的统计分析[J]. 中国水土保持科学(中英文), 2021, 19(1): 141-151. |
[71] |
GAO JL, SONG YY, SONG CC, GONG C, MA XY, GAO SQ, LIU ZD. Change in nitrogen availability of northern peatlands and its effect on carbon sink function[J]. Chinese Journal of Applied Ecology, 2022, 33(10): 2663-2669. (in Chinese) 高晋丽, 宋艳宇, 宋长春, 宫超, 马秀艳, 高思齐, 刘桢迪. 北方泥炭地氮素有效性的变化及其对碳汇功能的影响[J]. 应用生态学报, 2022, 33(10): 2663-2669. |
[72] |
SHIVELY JM, ENGLISH RS, BAKER SH, CANNON GC. Carbon cycling: the prokaryotic contribution[J]. Current Opinion in Microbiology, 2001, 4(3): 301-306. DOI:10.1016/S1369-5274(00)00207-1 |
[73] |
RICHARDS KR. A brief overview of carbon sequestration economics and policy[J]. Environmental Management, 2004, 33(4): 545-558. |
[74] |
ZHOU S, WEI BQ, ZHANG Q, JIANG XJ, LIN DC, GAN YK, MO ZZ. Isolation, identification and validation of the facultative fixed carbon and nitrogen bacteria: a type of microorganisms that can fix CO2 and N2 at the same time[J]. Acta Scientiae Circumstantiae, 2013, 33(4): 1043-1050. (in Chinese) 周盛, 韦彬勤, 张琼, 蒋小娟, 林冬婵, 甘耀坤, 莫昭展. 一种能同时固定CO2和N2的微生物: 兼性固CO2、N2菌的分离鉴定及其验证实验[J]. 环境科学学报, 2013, 33(4): 1043-1050. |
[75] |
GUO J, FAN FF, WANG LG, WU AL, ZHENG J. Isolation, identification of carbon-fixing bacteria and determination of their carbon-fixing abilities[J]. Biotechnology Bulletin, 2019, 35(1): 90-97. (in Chinese) 郭珺, 樊芳芳, 王立革, 武爱莲, 郑军. 固碳微生物菌株的分离鉴定及其固碳能力测定[J]. 生物技术通报, 2019, 35(1): 90-97. |
[76] |
GERKE J. The central role of soil organic matter in soil fertility and carbon storage[J]. Soil Systems, 2022, 6(2): 33. DOI:10.3390/soilsystems6020033 |
[77] |
GEORGIOU K, JACKSON RB, VINDUŠKOVÁ O, ABRAMOFF RZ, AHLSTRÖM A, FENG WT, HARDEN JW, PELLEGRINI AFA, POLLEY HW, SOONG JL, RILEY WJ, TORN MS. Global stocks and capacity of mineral-associated soil organic carbon[J]. Nature Communications, 2022, 13: 3797. DOI:10.1038/s41467-022-31540-9 |
[78] |
HART KM, OPPENHEIMER SF, MORAN BW, ALLEN CCR, KOULOUMBOS V, SIMPSON AJ, KULAKOV LA, BARRON L, KELLEHER BP. CO2 uptake by a soil microcosm[J]. Soil Biology and Biochemistry, 2013, 57: 615-624. DOI:10.1016/j.soilbio.2012.10.036 |
[79] |
YUAN H, GE T, CHEN C, O'DONNELL AG, WU J. Significant role for microbial autotrophy in the sequestration of soil carbon[J]. Applied and Environmental Microbiology, 2012, 78(7): 2328-2336. DOI:10.1128/AEM.06881-11 |