微生物学通报  2024, Vol. 51 Issue (1): 1−16

扩展功能

文章信息

吴朋徽, 刘耀, 张磊, 肖芃颖, 张玥
WU Penghui, LIU Yao, ZHANG Lei, XIAO Pengying, ZHANG Yue
微藻两阶段培养技术研究进展
Progress in two-stage culture of microalgae
微生物学通报, 2024, 51(1): 1-16
Microbiology China, 2024, 51(1): 1-16
DOI: 10.13344/j.microbiol.china.230471

文章历史

收稿日期: 2023-06-12
接受日期: 2023-08-21
网络首发日期: 2023-09-11
微藻两阶段培养技术研究进展
吴朋徽 , 刘耀 , 张磊 , 肖芃颖 , 张玥     
重庆理工大学化学化工学院, 重庆    400054
摘要: 微藻细胞富含油脂、淀粉及其他高值代谢物,可用于食品、饲料、化学品和能源的生产。但在规模化培养中,微藻的高生长速率和高产物含量难以兼得,制约了其商业化应用。通过微藻的两阶段培养技术可以将生长和产物积累的时期分离,从而同时获得较高的微藻生物量和产物含量。该技术具有产品得率高、节能减排、适用范围广的优点,是推进微藻商业化的关键之一。本综述总结了现有微藻两阶段培养技术的优势和产品类型,解析了目前微藻两阶段培养技术的限制因素及发展前景,并提出微藻两阶段培养中存在阶段转换时间尚不明确、中间采收步骤成本高这两个限制该技术应用的关键瓶颈,从而为未来微藻两阶段培养技术规模化生产方案的科学决策与实施提供参考。
关键词: 微藻    两阶段培养    油脂    淀粉    氢气    虾青素    
Progress in two-stage culture of microalgae
WU Penghui , LIU Yao , ZHANG Lei , XIAO Pengying , ZHANG Yue     
School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
Abstract: Microalgae are rich in lipids, starch and other high-value metabolites that can be used in the production of food, feed, chemicals, and energy. However, the trade-off between the growth and product accumulation of microalgae in large-scale culture restricts the commercial application of microalgae. The two-stage culture of microalgae can overcome this problem by separating cell growth from product accumulation. It is one of the key means to promote the commercialization of microalgae, with high productivity, low energy consumption, emission reduction, and a wide application range. This review summarizes the advantages and product types of the existing two-stage culture technology of microalgae, analyzes the limiting factors, and discusses the prospects for the future of this technology. Moreover, this paper points out that the unclear stage transition time and high cost of intermediate harvesting are two bottlenecks that limit the application of this technology. This review provides a theoretical foundation and technical means for the decision-making and implementation of a large-scale production plan for the two-stage culture of microalgae in the future.
Keywords: microalgae    two-stage culture    lipid    starch    hydrogen    astaxanthin    

微藻富含脂类、蛋白质、碳水化合物和其他高值化合物,包括虾青素、类胡萝卜素、叶黄素、茉莉酸、多不饱和脂肪酸等[1-2]。与传统作物相比,微藻具有生长速度快、光合效率高、固碳能力强的特点,每培养生产1 t微藻最高可以捕获1.83 t CO2[3]。微藻可在海水、盐碱地、滩涂和荒漠中生长,而且还可以利用废气中CO2和废水中氮、磷等营养物质,在生产高值产品的同时去除污染物。因此,微藻被认为是一种可以用于食品、饲料、化学品和能源的可持续生产的重要原料。

尽管微藻具有诸多优点,但目前微藻的相关产品产量低,并且微藻生物质生产以及下游相关工艺成本较高,阻碍了各种微藻生物产品的商业化。研究发现,在规模化培养过程中微藻的代谢产物含量低,难以满足工业化生产的需求,是导致生产成本过高的关键[4-7]。微藻的代谢产物如脂类、类胡萝卜素和碳水化合物等的合成往往在营养剥夺、极端辐照和高温等应激条件下得到增强,而这些条件会抑制或阻止微藻的生长。因此,微藻的快速生长和产物积累难以同时兼得,制约了微藻的商业化生产。

为了同时获得较高的生物量和产物积累,近年来研究人员提出了两阶段培养技术,通过将微藻生长和产物积累的两个时期分离,从而兼得较高的微藻生物量和产物含量;该模式分为两个阶段,在阶段Ⅰ通过优化生长条件获得大量微藻生物量,随后收集微藻细胞,在阶段Ⅱ通过改变生长方式(光自养、异养和混合)、操作方式(分批、半分批、补料分批和连续培养)、理化条件(养分、光照强度、盐度、温度和pH值)等方法,强化微藻细胞内代谢物的生产[8-10]。该技术具有如下优点:(1) 产品得率高。例如,在微藻生产油脂的过程中,通过两阶段培养技术可以将微藻生长和油脂积累的时期分离,获得较高的油脂产率;相较于单独培养,两阶段培养技术微藻的油脂产率可提高1倍以上[11-14]。(2) 节能减排。通过生命周期分析发现,两阶段培养模式具有能耗低、碳足迹小的优点;利用两阶段培养模式培养普通小球藻(Chlorella vulgaris)来制备生物柴油,其整个过程的能耗和碳排放量分别比石化柴油减少38%和42%[15]。(3) 适用范围广。两阶段培养模式允许整合不同的培养方式,构建适合不同种类微藻的培养方案。例如,普通小球藻(C. vulgaris)异养下生长快,自养下含油量高,通过“异养-自养”的培养方式可将其油脂产率从一步培养法的35 mg/(L·d)提升至85.43 mg/(L·d)[8]。眼点拟微球藻(Nannochloropsis oculata)在蓝光(465 nm)下生长快,在绿光(520 nm)下油脂合成速率高,通过构建“蓝光-绿光”的两阶段培养模式,将其油脂产率提高1倍[16]。总而言之,微藻的两阶段培养模式具有产品得率高、节能环保和适用范围广的优点,应用前景广阔。

相较于微藻的单独培养,两阶段培养需要更多的系统单元和操作步骤,工艺流程相对复杂,待优化的技术环节增多。现有研究已经报道了多种微藻两阶段培养技术,综合分析现有的微藻两阶段培养技术有助于识别生产工艺中存在的技术瓶颈,明确两阶段培养技术的商业化应用潜能。本文总结近年来微藻两阶段培养技术的应用现状,解析目前微藻两阶段技术应用的限制因素及发展前景,为今后微藻两阶段培养规模化生产方案的科学决策与实施提供参考。

1 利用微藻两阶段培养技术生产生物能源

“双碳”目标推动构建清洁低碳安全高效的能源体系。国家发改委和国家能源局发布的《能源生产和消费革命战略(2016−2030)》(https://www.ndrc.gov.cn/xxgk/zcfb/tz/201704/t20170425_962953.html)中明确提出到2030年使我国非化石能源的消费比重达到20%,同时单位国内生产总值CO2排放比2005年下降60%−65%。《世界与中国能源展望》报告(https://tech.gmw.cn/ny/2021-12/28/content_35412672.htm)指出要实现2060年碳中和目标,能源结构多元化、清洁能源对高碳能源规模化替代将成为重要的碳减排途径。微藻胞内富含油脂、淀粉等高能量化合物,是制备生物柴油、生物乙醇的良好原料[17]。特别是利用微藻两阶段培养技术生产油脂的相关研究广泛开展。此外,微藻还可以产氢。氢能则是未来实现碳中和的关键。下面将介绍利用两阶段培养技术生产微藻油脂、淀粉及氢气的相关研究报道。

1.1 油脂

微藻油脂含量高,其油脂中富含三酰甘油,三酰甘油是制备生物柴油的理想原料[18]。微藻的固碳和产脂能力是传统油料作物的数十倍[19]。当前,通过培养微藻生产生物柴油的技术路线已经打通,但生产成本较高。2022年,我国微藻生物柴油的生产成本约合1.99美元/kg[4],远高于石化柴油的市售价格(约0.85美元/kg)。生物量和油脂含量是影响微藻油脂产率的两大因素,二者一般存在“此消彼长”的关系[20],导致在微藻培养过程中难以获得较高的油脂产率,制约了微藻生物柴油的商业化发展。两阶段培养技术能够兼顾微藻的生长和油脂积累,成为近年来产油微藻培养工艺中的研究热点。如图 1所示,目前微藻的两阶段培养产脂技术主要通过耦合胁迫、耦合废水处理,或是通过代谢转换,以及利用强化生长或油脂合成的诱导剂,在获得较高生物量的同时获得较高的油脂含量。下面对这几种微藻两阶段培养产脂技术进行介绍。

图 1 利用微藻两阶段培养产脂的相关技术 Figure 1 Related techniques of lipid production using microalgae two-stage culture.

1.1.1 耦合胁迫手段的两阶段培养产脂技术

在适宜培养条件下,微藻生长速度快,生物量高但油脂含量低;在受到环境压力(胁迫)时,微藻生长减缓,但会合成大量油脂来储存碳和能量。研究发现,营养成分、培养条件的变化均可以影响微藻油脂合成,其中缺氮、缺磷、高光和高盐等胁迫已经被证明是诱导微藻油脂合成的有效方式[21-22]。微藻的油脂含量通常占细胞干重的20%−50%,而通过胁迫诱导微藻产脂,虽然降低了微藻的生长速率,但却可以显著提高微藻胞内油脂含量,最大可达细胞干重的80%[23]。例如,在莱茵衣藻(Chlamydomonas reinhardtii)中,已报道缺氮[24-25]、缺铁[26]、高温[27]、高盐[28]和低浓度CO2[29]等胁迫方式能够促进产脂;在蛋白核小球藻(Chlorella pyrenoidosa)中已报道缺氮[30-31]、缺磷[30-31]、缺硫[31]、高光[30]和高盐[30]等胁迫方式下藻细胞内油脂含量明显升高。这些研究表明尽管胁迫手段不同,但不同种类的胁迫最终都可促进微藻产脂。同时,在蛋白核小球藻中发现不同胁迫条件下藻细胞内活性氧的浓度和油脂含量呈高度正相关[30-31]。活性氧除了具有氧化作用外,也是生物细胞内广泛存在的信号分子。因此,活性氧可能作为中间因子介导不同种类的胁迫,从而促进微藻产脂。

结合微藻生物量和油脂含量这种“此消彼长”的特性,研究人员开发了两阶段培养技术,首先在第Ⅰ阶段通过适宜的培养条件获得大量微藻生物量,在第Ⅱ阶段耦合胁迫,提高这些微藻的油脂含量,从而兼得较高的生物量和油脂含量,获得较高的油脂产率。通过在第Ⅱ阶段应用不同的胁迫方法,可以构建多种类型的两阶段培养技术。如表 1所示,相较于单独培养,利用微藻的两阶段培养技术所得油脂产率大幅提升。

表 1 耦合胁迫手段的微藻两阶段培养技术 Table 1 Two-stage culture technology of microalgae coupled with stress
物种
Species
诱导模式
Induction mode
单阶段培养油脂产率
Lipid productivity of one stage culture (mg/(L·d))
两阶段培养油脂产率
Lipid productivity of two stage culture (mg/(L·d))
参考文献
References
Chromochloris zofingiensis High salinity and high light 120.00 510.00 [32]
Chlorella protothecoides Nitrogen deficiency and osmotic pressure 110.80 177.30 [33]
Monoraphidium sp. QLY-1 Cadmium stress 69.83 96.75 [34]
Monoraphidium sp. QLY-1 High salinity 74.84 92.62 [35]
Parachlorella kessleri R-3 Cadmium stress 105.22 131.79 [36]
Chlorella pyrenoidosa Nitrogen deficiency 49.78 84.59 [31]
Chlorella pyrenoidosa Phosphorus deficiency 49.78 69.40 [31]
Chlorella pyrenoidosa High concentration of sulfur 49.78 83.49 [31]
Tetradesmus obliquus Ultrasound and nitrogen stress 27.46 86.97 [37]
Tribonema utriculosum High concentration of nitrogen 118.76 145.71 [38]
Chlorella vulgaris High concentration of CO2 26.70 43.70 [39]
Chlorella sorokiniana FC6 IITG High concentration of acetic acid 111.80 550.00 [40]
Scenedesmus obliquus Nitrogen deficiency 21.50 29.50 [41]

1.1.2 耦合废水处理的两阶段培养产脂技术

废水中含有大量的氮、磷等元素以及含碳物质,在废水流中培养微藻可以降低异养/混合营养培养中有机碳的成本,同时处理废水并减少生产微藻生物量所需的淡水[42-43]。通常在第Ⅰ阶段进行废水的生物修复,在第Ⅱ阶段进行压力诱导,以获得所需生化成分含量。有研究表明,可以采用啤酒厂废水进行微藻两阶段培养产脂并实现废水的生物修复;在第Ⅰ阶段,采用厌氧消化处理后的啤酒废水进行小球藻(Chlorella sp.)异养培养,其废水的C: N: P为16:3:1;在第Ⅱ阶段,添加C: N: P为133:2:1的啤酒原料废水,通过降低氮磷比实现后期的脂质积累[9]。Pittman等研究表明,利用啤酒废水进行小球藻(Chlorella sp.)的两阶段培养,其生物量产量和脂质生产力均高于相关研究中的单一培养[44]。此外,啤酒废水中的总氮和总磷含量也显著降低,其除氮和除磷效率分别达到87%和80%[9]。在另外一项研究中,观察到原壳藻(Auxenochlorella protothecoides)可以在城市废水中以异养模式生长,在第Ⅰ阶段无任何生长抑制;在废水中的碳源耗尽后,通过补充1%−5% CO2以及光照进行第Ⅱ阶段的光合培养,结果表明在第Ⅱ阶段,供应5%的CO2会获得最大的油脂产率,还能有效降低城市废水中磷、氮和化学需氧量的含量[45]。此外,研究发现微藻可以有效地固定工厂烟气中的CO2,并且还能有效降低烟气中的其他有害物质[46-47]。将微藻的两阶段培养与富含CO2的烟道气整合,可以同步实现能源产出和工业烟道气的生物治理。

1.1.3 基于代谢转换的两阶段培养产脂技术

微藻可以采用不同的培养模式进行生长,如光自养、异养或混合营养[48]。光自养是一种有效的转化方式,但在经济上难以实现商业化。在自养模式中,微藻通过光合作用将简单的无机营养物质转化为原料。光照是决定微藻自养生长的重要决定因素。在培养初期,培养液中微藻的生物量浓度低,细胞数目少,光可以穿透培养液,使微藻充分地进行光合作用;而在培养的中后期,由于微藻的生物量浓度增大,细胞数目增多,光线被遮蔽从而导致大量微藻细胞难以获得充足的光照,影响了光合作用的进行,此时若将微藻细胞收集起来并转移到第Ⅱ阶段进行异养或混合营养培养则可以继续保持较高的生长速率[49-50]。微藻的这种自养-异养两阶段培养技术,由于后期使用异养或混合营养培养从而减少了微藻对光的需求,可以持续获得大量微藻生物量。此外,与异养相比,在混合营养模式下通常可以获得更高的微藻生物量及油脂含量[51]。Ge等[52]考察了两种不同模式(自养-混合营养和自养-异养)下普通小球藻(C. vulgaris)的培养效果,发现自养-混养模式比自养-异养模式表现出更高的油脂产率。

通过微藻的异养-自养两阶段培养技术也可以获得较高的油脂产率。Fan等[53]利用异养-自养模式培养蛋白核小球藻(C. pyrenoidosa),发现异养条件下蛋白核小球藻(C. pyrenoidosa)不仅能够快速生长,还能够大量合成淀粉;在蛋白核小球藻(C. pyrenoidosa)从异养进入光自养后,由于光照刺激,藻细胞内脂肪酸合成、淀粉降解等代谢途径中的相关基因表达量上调,细胞内的淀粉分解,而淀粉分解后的碳重新被用于合成油脂;经此方法后,蛋白核小球藻(C. pyrenoidosa)的生物质和油脂产率分别是单独培养的1.91倍和1.66倍,效果显著。

1.1.4 基于应激诱导剂的两阶段培养产脂技术

植物激素可以降低细胞氧化损伤促进生长,也可以通过调控细胞代谢进而影响油脂合成。将植物激素(黄腐酸、水杨酸、茉莉酸、富里酸和脱落酸等)与微藻的两阶段培养技术耦合可以获得更好的生物质和油脂产量。例如,Zhao等[54]利用异养-缺氮模式培养单针藻(Monoraphidium sp.),于第Ⅱ阶段缺氮培养过程中添加褪黑素,褪黑素可以抑制微藻胞内活性氧的产生,进而缓解缺氮对生长的抑制作用,使其油脂产量提高1.22倍。在单针藻(Monoraphidium sp.) FXY-10的异养-光自养培养模式的第Ⅱ阶段光自养过程中添加富里酸,可将单针藻的油脂产率从未添加前的43.06 mg/(L·d)提高至120.79 mg/(L·d)[55]。此外,蛋白核小球藻(C. pyrenoidosa)、莱茵衣藻(C. reinhardtii)等藻株在高盐度环境下也会合成油脂[28, 30]。在第Ⅱ阶段培养过程中,通过添加NaCl进行盐胁迫可以有效促进产脂,但外源添加植物激素或NaCl的养殖用水排放后会增加对环境产生的负面影响。

1.2 淀粉

微藻淀粉可开发为生物乙醇、食品和生物塑料。营养胁迫是促进微藻淀粉合成的有效手段,通过缺氮/限氮可使淀粉积累达到微藻细胞干重的50%以上[56]。然而,营养胁迫会抑制藻类细胞的生长,限制淀粉的生产速度。相较于油脂,微藻细胞内的淀粉更易分解。在受到营养胁迫时,微藻通常会首先合成淀粉来储存能量,在营养物质完全耗尽后,会分解淀粉供能继而维持细胞生存[57]。因此,淀粉是微藻细胞内易于利用的高能储存物,在利用营养胁迫等手段诱导微藻合成淀粉时要适度地限制胁迫强度和胁迫时间。此外,淀粉和油脂作为微藻细胞内的能量储存物,相互之间会竞争胞内的碳和能量,利用基因工程等工具使更多的碳和能量用于淀粉或油脂的生产,从而最大化目标产物,是目前研究的热点[58]

目前已有部分研究使用微藻的两阶段培养技术生产淀粉。Cheng等[56]利用两阶段培养技术培养小球藻(Chlorella sp.) AE10生产淀粉,通过在第Ⅱ阶段使用缺氮、高光和高浓度CO2,将细胞内的淀粉含量提高至60.3%,其两阶段培养的淀粉产率达311 mg/(L·d)。Chong等[59]在第Ⅰ阶段提供的有利生长条件下,获得较高的盐生小球藻(Chlorella salina)生物量,随后在第Ⅱ阶段通过氮硫限制来增强盐生小球藻(C. salina)淀粉的积累。培养结束后,其两阶段培养体系中盐生小球藻(C. salina)的淀粉浓度达30.51 mg/L,远高于相同培养参数下单阶段培养中的淀粉浓度16.77 mg/L[59]。这表明两阶段培养淀粉生产的策略强调物理化学生长条件的控制。未来可以进一步探索使用多种代谢模式或培养系统的策略,并通过基因工程的手段抑制淀粉降解酶,以实现最大化淀粉生产的目标。

1.3 氢气

某些微藻菌株具有通过光生物学过程产H2的能力。已有文献报道莱茵衣藻(C. reinhardtii)在缺硫条件下进行光合产氢[60-61]。培养基中缺乏硫会抑制光系统Ⅱ (photosystem Ⅱ, PSII),从而导致莱茵衣藻(C. reinhardtii)停止生成氧气。然而,好氧呼吸不受硫缺乏的影响,这导致培养液中的溶解氧被消耗,形成厌氧状态,厌氧则诱导了氢化酶介导光合产氢[62]。此外,某些种类的蓝藻具有通过直接和间接生物光解产生H2的能力。例如,多变鱼腥藻(Anabaena variabilis)已被开发用于在厌氧和缺氮条件下通过固氮酶的活性生产H2[63]。Yoon等[64]采用两阶段策略,利用多变鱼腥藻(A. variabilis)生产H2,在第Ⅱ阶段的厌氧环境中通过使用缺氮和高光胁迫,强化H2的生产。然而,利用微藻生产H2受到生产成本高和产品储存方法效率低的限制,相关研究的开展对于实现微藻氢能源的应用至关重要。

2 利用微藻两阶段培养技术生产其他高值产品

除了富含油脂和淀粉外,微藻胞内富含一些高值代谢物,包括虾青素、β-胡萝卜素、叶黄素,以及一些重要的多不饱和脂肪酸,如二十二碳六烯酸(docosahexaenoic acid, DHA)和二十碳五烯酸(eicosapentaenoic acid, EPA)等,这些代谢物可应用于制药、营养品和化妆品行业。利用两阶段培养技术生产这些相关微藻制品的研究也已逐步开展。

2.1 虾青素

虾青素是一种酮式类胡萝卜素,具有优异的抗氧化能力。能够改善炎症,保护免受紫外线介导的光氧化,以及治疗老年性黄斑变性、阿尔茨海默病和帕金森病。雨生红球藻(Haematococcus pluvialis)是富含虾青素的藻种,其胞内虾青素的含量能够达到细胞干重的3%−5%[65]。目前,利用雨生红球藻(H. pluvialis)生产虾青素一般是分两阶段进行的。第Ⅰ阶段在最佳生长条件下进行光自养生产;随后在第Ⅱ阶段提供应激条件,如高光强、高温、营养缺乏或高盐度,以诱导虾青素积累[66-68]。美国Cyanotech公司使用封闭式光生物反应器自养培养雨生红球藻(H. pluvialis),随后将这些藻细胞转移至开放式池塘,通过外界光、温度等因素促进虾青素的生产[69-70]。瑞典AstaReal公司首先在小规模的玻璃反应器中自养培养雨生红球藻(H. pluvialis),然后将其转移到内部照明的发酵罐中,并在发酵罐中控制生长条件以促进虾青素的生物合成[70]。此外,在第Ⅰ阶段还可采用异养条件培养微藻,异养条件下微藻能够获得大量碳源,其生长情况一般会优于自养。据此,Wan等[71]设计了用于虾青素合成的异养-稀释-光自养的两阶段培养技术,首先在异养条件下获得大量雨生红球藻(H. pluvialis)生物量,随后对这些藻细胞进行稀释,然后通过光自养促进虾青素的生产;在第Ⅰ阶段异养培养结束后,雨生红球藻(H. pluvialis)的生物量浓度达到26 g/L,在第Ⅱ阶段光自养培养结束后,其两阶段培养的虾青素产率达6.4 mg/(L·d),显著高于单独混养培养下的虾青素产率3.2 mg/(L·d)。尽管取得了较高的虾青素得率,但在异养培养过程中,保持无菌条件将是一个重大挑战,因为有机碳的存在增加了异养细菌污染培养的风险。

尽管雨生红球藻(H. pluvialis)胞内虾青素含量较高,但其生长速率较慢,使得在培养过程中存在污染风险。佐芬根色绿球藻(Chlorella zofingiensis)分裂较快,其污染风险较小,并且可以合成一定量的虾青素。Chen等[72]利用两阶段培养技术培养佐芬根色绿球藻(C. zofingiensis)生产虾青素,结果表明两阶段培养的虾青素产量比传统分批培养法提高了74%。此外,Zhang等[73]采用光生物反应器,利用异养-稀释-光自养的方法培养佐芬根色绿球藻(C. zofingiensis)生产虾青素,其最终虾青素产率达到5.24 mg/(L·d),高于采用同样培养方法的雨生红球藻(H. pluvialis)的虾青素产率4.4 mg/(L·d)[74]。这些研究表明,佐芬根色绿球藻(C. zofingiensis)在两阶段虾青素生产中有可能替代雨生红球藻(H. pluvialis)。

2.2 β-胡萝卜素

β-胡萝卜素是维生素A的前体,也是一种抗氧化剂,在食品工业中可用作天然着色剂。杜氏盐藻(Dunaliella salina)可在极端盐度、高光强、高温和营养损耗等应激条件下产生β-胡萝卜素,最大可达细胞干重的14%[75],是提取天然β-胡萝卜素的理想原料。β-胡萝卜素的商业化生产多是采用单阶段培养,通过高温、高盐等策略刺激微藻细胞合成β-胡萝卜素。目前仍有一些利用微藻两阶段培养技术生产β-胡萝卜素的相关探索。Ben-Amotz等[76]在富含硝酸盐的培养基中培养杜氏盐藻(D. salina),以获得较多的生物量,随后将藻细胞转移到池塘中,用缺氮培养基进行培养,发现其第Ⅰ阶段和第Ⅱ阶段的β-胡萝卜素产率高达450 mg/(m2·d)和300 mg/(m2·d),分别比传统培养下的产率高125%和50%。Tafreshi等[77]采用两阶段培养技术在室外开放池塘中培养杜氏盐藻(D. salina),在第Ⅰ阶段,将盐藻细胞置于含有2 mol/L NaCl的富含营养的培养基中生长,以获得所需的生物量;在第Ⅱ阶段,将盐藻细胞置于含2.5 mol/L NaCl的营养缺乏培养基上诱导盐藻细胞合成β-胡萝卜素,获得杜氏盐藻(D. salina)的最大β-胡萝卜素含量7.1 mg/L,其两阶段培养的β-胡萝卜素产率为0.35 mg/(L·d);此外,杜氏盐藻(D. salina)具备一定的耐盐能力,能够在盐度胁迫下保持生长的同时合成β-胡萝卜素。因此,高盐度也被认为是目前适合利用杜氏盐藻(D. salina)生产β-胡萝卜素的培养条件。

2.3 叶黄素

叶黄素是一种类胡萝卜素,因其明亮的黄色而用于制药、食品和饲料工业。它是一种有效的活性物质,有利于改善心血管疾病、癌症和老年性黄斑变性。叶黄素是由栅藻(Scenedesmus sp.)、小球藻(Chlorella sp.)等微藻在高温、营养限制和低光强条件下合成的[2]。但与雨生红球藻(H. pluvialis)和杜氏盐藻(D. salina)胞内的虾青素和β-胡萝卜素含量相比,微藻中叶黄素的含量相对较低,仅占细胞干重的0.2%−1.7%[78]。Ho等[79]利用两阶段培养技术培养斜生栅藻(Scenedesmus obliquus),在第Ⅱ阶段将光照强度从300 μmol/(m2·s)降至75 μmol/(m2·s),并通过氮缺乏促进叶黄素的合成,其最终叶黄素含量达细胞干重的0.47%,叶黄素产率为4.23 mg/(L·d)。Flórez-Miranda等[80]利用异养光诱导策略来提高栅藻(Scenedesmus incrassatulus)的生物量和叶黄素产量,在第Ⅱ阶段光诱导24 h后,其叶黄素含量比第Ⅰ阶段提高7倍,产率达3.10 mg/(L·d)。在Chen等[81]的研究中,采用两阶段策略,通过混养培养提高索罗金小球藻(Chlorella sorokiniana) MB-1在第Ⅰ阶段的生物量,在光自养条件下优化第Ⅱ阶段叶黄素积累,其叶黄素产率达7.62 mg/(L·d),比传统半连续培养模式的产率高32.7%。因此,与传统光自养培养相比,可以采用两阶段培养技术,在两个培养阶段通过耦合异养、混养或其他操作模式获得较高的叶黄素产量。

2.4 多不饱和脂肪酸

微藻含有丰富的多不饱和脂肪酸,包括omega-3脂肪酸EPA和DHA,这些脂肪酸对健康有显著益处,包括改善心血管健康、降低高血脂含量、降低中风风险和促进发育等。Chi等[82]通过两阶段培养技术培养裂壶藻(Schizochytrium limacinum)来生产DHA,在第Ⅰ阶段通过提高溶氧促进微藻的生长,在第Ⅱ阶段通过降低溶氧来促进微藻合成DHA,在该培养方式下获得了最大的生物量浓度37.9 g/L和DHA浓度6.56 g/L。Qu等[83]利用类似技术,在两阶段培养过程中通过调控溶氧使裂壶藻(Schizochytrium sp.)合成DHA,其DHA产率达111 mg/(L·h),比单独培养中高32.14%。除了溶氧外,利用低温也可以有效提高微藻胞内多不饱和脂肪酸浓度。Mitra等[84]利用微拟球藻(Nannochloropsis sp.)生产EPA,在第Ⅱ阶段通过降低培养温度和光强提高EPA的产率,发现其两阶段培养法的EPA产率达10.9 mg/(L·d),约为单独培养的3.4倍。然而需要进一步的研究来评估这一策略的经济可行性,因为低温与高能源成本相关,特别是在较高的外界环境温度下。

3 微藻两阶段培养技术的前景分析

通过两阶段培养技术能够同时获得较高的微藻生物量和产物得率,是提升微藻产品得率的有效手段[20, 85-86]。但相较于一步培养法,两阶段培养技术需要更多的系统单元和操作步骤,工艺流程相对复杂,待优化的技术环节增多,进而增加了相应的生产成本[87]。例如,添加应激诱导剂会增加化学成本,将第Ⅰ阶段培养液中的藻细胞转移至第Ⅱ阶段培养过程中会增加离心和泵送成本。因此,在构建商业化两阶段培养过程中要进行全面的技术经济分析,确定两阶段培养系统的产量优势是否可以抵消相应的生产成本。

通过将两阶段培养技术与废水处理相结合,利用废水作为营养源,可以降低两阶段培养的生产成本。废水(无有机碳源)可用于促进光养微藻的生长,而含有有机碳的废水可用作混合营养/异养培养基中的营养源[88]。此外,含有CO2和有机气体的工厂烟气也被认为是微藻生产过程中的经济选择[89]。Hu等[45]发现在两阶段培养模式中利用CO2培养微藻不仅可以获得更高的生物质产率,还能增强废水中有机物质的去除能力。据报道,利用烟气中的CO2可以降低19%−39%的成本,而同时利用废水和烟气则可将生产成本降低35%−86%[90]

尽管目前针对微藻的两阶段培养技术已经开展了较为广泛的研究,但目前该技术的应用仍存在一些瓶颈。

首先,目前两阶段培养技术存在阶段转换时间不明确的问题。微藻两阶段培养技术的核心思想是在第Ⅰ阶段通过优化生长条件获得较大的生物量,随后在第Ⅱ阶段通过改变培养策略获得较高的代谢物含量,从而得到较高的产品得率。因此,目前微藻的两阶段培养往往基于经验选择在第Ⅰ阶段的生物量浓度最大时间进行阶段转换。然而,目前有部分研究报道与此不一致。例如,在一些微藻油脂生产的相关研究中,Heidari等[91]利用两阶段培养模式培养普通小球藻(C. vulgaris),发现第Ⅰ阶段培养中的第6天是生物量浓度最大时间,但在第4天进行阶段转换,所得油脂产率却高于在第6天进行阶段转换的结果;Yang等[92]对单针藻(Monoraphidium dybowskii)进行户外培养,分别在第Ⅰ阶段培养的指数生长末期(12 d)和稳定期(15 d)进行采收,随后在第Ⅱ阶段利用20 g/L NaCl胁迫3 d,发现尽管在第12天收集的单针藻生物量浓度低于第15天,但经NaCl处理后该组的油脂产率却更高;在蛋白核小球藻(C. pyrenoidosa)的两阶段培养模式研究中也发现了类似规律[93],分别于第Ⅰ阶段培养的第48小时和第96小时进行采收,发现尽管第48小时的生物量浓度低于第96小时(1.05 g/L vs 1.36 g/L),但经第Ⅱ阶段缺氮或高光强胁迫处理后,其油脂产率却更高。基于目前第Ⅰ阶段是为了获得最大微藻生物量的认识,迄今两阶段培养技术的相关研究,几乎都选择在生物量浓度最大时间进行阶段转换。上述研究表明,在生物量浓度最大时间进行阶段转换,所得油脂产率并非最高,并且导致培养时间过长,严重影响产脂效率。因此,在未来规模化生产中,不应直接以生物量浓度最大时间作为阶段转换时间,要依据不同的藻株、工艺来优化明确获得最优阶段转换时间,提高生产效率。

其次,两阶段培养过程中进行阶段转换时,需在两个阶段之间增加采收步骤,用于收集第Ⅰ阶段的微藻生物量,随后将这些微藻细胞重新悬浮于第Ⅱ阶段的培养基中。通过技术经济分析发现,采收过程所产生的成本可以占到微藻生物柴油总成本的20%−30%[94]。目前,微藻的主要采收方法包括离心、膜过滤以及絮凝[95-96]。离心法节约时间但耗能大,而且需要额外添加专业设备,提高了生产成本[20]。膜过滤法节约时间,但也存在过滤膜易被有机污染、膜系统运行成本高的缺点[94, 97]。絮凝法进行采收时间相对较长、药剂用量大,并且药剂中多含有金属离子或有机高分子,对藻细胞有毒性并且存在环境风险[94]。近年来,一些学者尝试在第Ⅰ阶段培养结束后不收集微藻细胞,而直接向培养基中添加诱导剂或更改培养条件,从而在促进产脂的同时简化中间采收步骤。例如,在第Ⅰ阶段培养结束后直接添加NaCl[98]、CaCl2[99]和植物激素[100]或者降低培养温度[84]来诱导产脂。因此,在第Ⅰ阶段培养后不收集微藻细胞,通过添加外源诱导剂或者改变环境参数,构建无需中间采收步骤的两阶段培养模式,可降低生产成本,具有良好的发展前景。

4 结论

微藻的两阶段培养技术具有产品得率高、节能环保和适用范围广的优点,应用前景广阔。通过在微藻的两阶段培养技术中耦合废水、废气,可以进一步地降低生产成本。然而,目前微藻的两阶段培养技术尚存在阶段转换时间不明确和中间采收步骤成本高的问题,严重影响了生产效率。提高微藻两阶段培养技术的经济可行性成为了关键挑战。这一问题可以通过两方面来解决:(1) 改进目的产物生成诱导策略、优化转换时间并耦合废水废气进行生产,提高产率从而降低其生产成本;(2) 改进两阶段培养技术的中间采收步骤,优先使用外源诱导剂,以提高经济可行性。

REFERENCES
[1]
WEI YL, JIANG GQ, PENG J, LU F, CHEN YC, LI D, XU HG. A review of nutrition and health functions of Spirulina and its application in food industry[J]. Science and Technology of Food Industry, 2022, 43(8): 406-415. (in Chinese)
魏艳丽, 姜国庆, 彭坚, 鲁绯, 陈玉川, 李东, 许洪高. 螺旋藻的营养健康功能及在食品中应用研究进展[J]. 食品工业科技, 2022, 43(8): 406-415.
[2]
LIU QQ, HU XL, YANG YJ, DONG JW, GAO Z, QIAN PK, DENG XY. Growth and metabolites of Chlorella sorokiniana regulated by sodium acetate[J]. Microbiology China, 2021, 48(10): 3580-3587. (in Chinese)
刘巧巧, 胡小丽, 杨钰娟, 董京伟, 高正, 钱平康, 邓祥元. 乙酸钠调控小球藻生长及代谢产物[J]. 微生物学通报, 2021, 48(10): 3580-3587.
[3]
ARORA P, CHANCE R, HENDRIX H, REALFF MJ, THOMAS VM, YUAN YH. Life cycle greenhouse gas emissions of different CO2 supply options for an algal biorefinery[J]. Journal of CO2 Utilization, 2020, 40: 101213. DOI:10.1016/j.jcou.2020.101213
[4]
SUN J, XIONG XQ, WANG MD, DU H, LI JT, ZHOU DD, ZUO J. Microalgae biodiesel production in China: a preliminary economic analysis[J]. Renewable and Sustainable Energy Reviews, 2019, 104: 296-306. DOI:10.1016/j.rser.2019.01.021
[5]
LI-BEISSON YH, THELEN JJ, FEDOSEJEVS E, HARWOOD JL. The lipid biochemistry of eukaryotic algae[J]. Progress in Lipid Research, 2019, 74: 31-68. DOI:10.1016/j.plipres.2019.01.003
[6]
GOH BHH, ONG HC, CHEAH MY, CHEN WH, YU KL, MAHLIA TMI. Sustainability of direct biodiesel synthesis from microalgae biomass: a critical review[J]. Renewable and Sustainable Energy Reviews, 2019, 107: 59-74. DOI:10.1016/j.rser.2019.02.012
[7]
YU DJ, SHI DJ, HE PM, JIA R. Progress in large-scale culture of microalgae[J]. Acta Microbiologica Sinica, 2021, 61(2): 333-345. (in Chinese)
于殿江, 施定基, 何培民, 贾睿. 微藻规模化培养研究进展[J]. 微生物学报, 2021, 61(2): 333-345.
[8]
FAN JH, HUANG JK, LI YG, HAN FF, WANG J, LI XW, WANG WL, LI SL. Sequential heterotrophy-dilution-photoinduction cultivation for efficient microalgal biomass and lipid production[J]. Bioresource Technology, 2012, 112: 206-211. DOI:10.1016/j.biortech.2012.02.046
[9]
FAROOQ W, LEE YC, RYU BG, KIM BH, KIM HS, CHOI YE, YANG JW. Two-stage cultivation of two Chlorella sp. strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity[J]. Bioresource Technology, 2013, 132: 230-238. DOI:10.1016/j.biortech.2013.01.034
[10]
CHU FF, CHENG J, ZHANG XD, YE Q, ZHOU JH. Enhancing lipid production in microalgae Chlorella PY-ZU1 with phosphorus excess and nitrogen starvation under 15% CO2 in a continuous two-step cultivation process[J]. Chemical Engineering Journal, 2019, 375: 121912. DOI:10.1016/j.cej.2019.121912
[11]
ZHAO YT, QIAO TS, GU D, ZHU LY, YU XY. Stimulating biolipid production from the novel alga Ankistrodesmus sp. by coupling salt stress and chemical induction[J]. Renewable Energy, 2022, 183: 480-490. DOI:10.1016/j.renene.2021.11.034
[12]
GAO G, WU M, FU QQ, LI XS, XU JT. A two-stage model with nitrogen and silicon limitation enhances lipid productivity and biodiesel features of the marine bloom-forming diatom Skeletonema costatum[J]. Bioresource Technology, 2019, 289: 121717. DOI:10.1016/j.biortech.2019.121717
[13]
XIE Z, PEI HY, ZHANG LJ, YANG ZG, NIE CL, HOU QJ, YU Z. Accelerating lipid production in freshwater alga Chlorella sorokiniana SDEC-18 by seawater and ultrasound during the stationary phase[J]. Renewable Energy, 2020, 161: 448-456. DOI:10.1016/j.renene.2020.07.038
[14]
NAYAK M, SUH WI, CHANG YK, LEE BS. Exploration of two-stage cultivation strategies using nitrogen starvation to maximize the lipid productivity in Chlorella sp. HS2[J]. Bioresource Technology, 2019, 276: 110-118. DOI:10.1016/j.biortech.2018.12.111
[15]
ADESANYA VO, CADENA E, SCOTT SA, SMITH AG. Life cycle assessment on microalgal biodiesel production using a hybrid cultivation system[J]. Bioresource Technology, 2014, 163: 343-355. DOI:10.1016/j.biortech.2014.04.051
[16]
RA CH, KANG CH, JUNG JH, JEONG GW, KIM SK. Effects of light-emitting diodes (LEDs) on the accumulation of lipid content using a two-phase culture process with three microalgae[J]. Bioresource Technology, 2016, 212: 254-261. DOI:10.1016/j.biortech.2016.04.059
[17]
ZHAO YT, LI T, XU JW, ZHAO P, YU XY. Research progress of microalgae-based carbohydrates for biofuel production[J]. Chemical Industry and Engineering Progress, 2014, 33(4): 878-882, 920. (in Chinese)
赵永腾, 李涛, 徐军伟, 赵鹏, 余旭亚. 微藻碳水化合物生产生物燃料的研究进展[J]. 化工进展, 2014, 33(4): 878-882, 920.
[18]
LI C, PING WX, GE JP, LIN YM. Advances in the co-culture of microalgae with other microorganisms and applications[J]. Chinese Journal of Biotechnology, 2022, 38(2): 518-530. (in Chinese)
李畅, 平文祥, 葛菁萍, 林宜萌. 微藻与其他微生物共培养的研究进展及应用[J]. 生物工程学报, 2022, 38(2): 518-530.
[19]
NAZLOO EK, MOHEIMANI NR, ENNACERI H. Biodiesel production from wet microalgae: progress and challenges[J]. Algal Research, 2022, 68: 102902. DOI:10.1016/j.algal.2022.102902
[20]
AZIZ MMA, KASSIM KA, SHOKRAVI Z, JAKARNI FM, LIU HY, ZAINI N, TAN LS, ISLAM ABMS, SHOKRAVI H. Two-stage cultivation strategy for simultaneous increases in growth rate and lipid content of microalgae: a review[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109621. DOI:10.1016/j.rser.2019.109621
[21]
DAI CM, GAO BY, SU M, HUANG LD, WANG FF, ZHAO W, ZHANG CW. Effects of light intensity and nitrogen concentration on the growth and biochemical composition of filamentous green alga Zygnema sp.[J]. Microbiology China, 2020, 47(1): 172-181. (in Chinese)
戴晨明, 高保燕, 苏敏, 黄罗冬, 王飞飞, 赵伟, 张成武. 光强及氮浓度对丝状绿藻双星藻生长及生化组成的影响[J]. 微生物学通报, 2020, 47(1): 172-181.
[22]
YANG JS, KONG XX, LI JY, YUAN HL. Physiological response and resistance mechanism of oleaginous microalgae Auxenochlorella protothecoides UTEX 2341 under cadmium treatment[J]. Microbiology China, 2019, 46(10): 2504-2511. (in Chinese)
杨金水, 孔祥雪, 李金玉, 袁红莉. 产油微藻Auxenochlorella protothecoides UTEX 2341对镉胁迫的生理响应及抗性机理[J]. 微生物学通报, 2019, 46(10): 2504-2511.
[23]
YADAV G, SHANMUGAM S, SIVARAMAKRISHNAN R, KUMAR D, MATHIMANI T, BRINDHADEVI K, PUGAZHENDHI A, RAJENDRAN K. Mechanism and challenges behind algae as a wastewater treatment choice for bioenergy production and beyond[J]. Fuel, 2021, 285: 119093. DOI:10.1016/j.fuel.2020.119093
[24]
MENG YY, CHEN HY, LIU J, ZHANG CY. Melatonin facilitates the coordination of cell growth and lipid accumulation in nitrogen-stressed Chlamydomonas reinhardtii for biodiesel production[J]. Algal Research, 2020, 46: 101786. DOI:10.1016/j.algal.2019.101786
[25]
CHEN H, ZHENG YL, ZHAN J, HE CL, WANG Q. Comparative metabolic profiling of the lipid-producing green microalga Chlorella reveals that nitrogen and carbon metabolic pathways contribute to lipid metabolism[J]. Biotechnology for Biofuels, 2017, 10(1): 1-20.
[26]
DEVADASU E, SUBRAMANYAM R. Enhanced lipid production in Chlamydomonas reinhardtii caused by severe iron deficiency[J]. Frontiers in Plant Science, 2021, 12: 615577. DOI:10.3389/fpls.2021.615577
[27]
LÉGERET B, SCHULZ-RAFFELT M, NGUYEN HM, AUROY P, BEISSON F, PELTIER G, BLANC G, LI-BEISSON Y. Lipidomic and transcriptomic analyses of Chlamydomonas reinhardtii under heat stress unveil a direct route for the conversion of membrane lipids into storage lipids[J]. Plant, Cell & Environment, 2016, 39(4): 834-847.
[28]
ATIKIJ T, SYAPUTRI Y, IWAHASHI H, PRANEENARARAT T, SIRISATTHA S, KAGEYAMA H, WADITEE-SIRISATTHA R. Enhanced lipid production and molecular dynamics under salinity stress in green microalga Chlamydomonas reinhardtii (137C)[J]. Marine Drugs, 2019, 17(8): 484. DOI:10.3390/md17080484
[29]
ABREU IN, AKSMANN A, BAJHAIYA AK, BENLLOCH R, GIORDANO M, POKORA W, SELSTAM E, MORITZ T. Changes in lipid and carotenoid metabolism in Chlamydomonas reinhardtii during induction of CO2-concentrating mechanism: cellular response to low CO2 stress[J]. Algal Research, 2020, 52: 102099. DOI:10.1016/j.algal.2020.102099
[30]
ZHANG L, LIAO CM, YANG YW, WANG YZ, DING K, HUO DQ, HOU CJ. Response of lipid biosynthesis in Chlorella pyrenoidosa to intracellular reactive oxygen species level under stress conditions[J]. Bioresource Technology, 2019, 287: 121414. DOI:10.1016/j.biortech.2019.121414
[31]
ZHANG L, WANG N, YANG M, DING K, WANG YZ, HUO DQ, HOU CJ. Lipid accumulation and biodiesel quality of Chlorella pyrenoidosa under oxidative stress induced by nutrient regimes[J]. Renewable Energy, 2019, 143: 1782-1790. DOI:10.1016/j.renene.2019.05.081
[32]
KOU YP, LIU MJ, SUN PP, DONG ZQ, LIU J. High light boosts salinity stress-induced biosynthesis of astaxanthin and lipids in the green alga Chromochloris zofingiensis[J]. Algal Research, 2020, 50: 101976. DOI:10.1016/j.algal.2020.101976
[33]
WANG T, TIAN XW, LIU TT, WANG ZJ, GUAN WY, GUO MJ, CHU J, ZHAUNG YP. A two-stage fed-batch heterotrophic culture of Chlorella protothecoides that combined nitrogen depletion with hyperosmotic stress strategy enhanced lipid yield and productivity[J]. Process Biochemistry, 2017, 60: 74-83. DOI:10.1016/j.procbio.2017.05.027
[34]
ZHAO YT, SONG XT, YU L, HAN BY, LI T, YU XY. Influence of cadmium stress on the lipid production and cadmium bioresorption by Monoraphidium sp. QLY-1[J]. Energy Conversion and Management, 2019, 188: 76-85. DOI:10.1016/j.enconman.2019.03.041
[35]
QIAO TS, ZHAO YT, ZHONG DB, YU XY. Hydrogen peroxide and salinity stress act synergistically to enhance lipids production in microalga by regulating reactive oxygen species and calcium[J]. Algal Research, 2021, 53: 102017. DOI:10.1016/j.algal.2020.102017
[36]
SONG XT, LIU BF, KONG FY, SONG QQ, REN NQ, REN HY. Simultaneous chromium removal and lipid accumulation by microalgae under acidic and low temperature conditions for promising biodiesel production[J]. Bioresource Technology, 2023, 370: 128515. DOI:10.1016/j.biortech.2022.128515
[37]
WEI Q, YAO JJ, CHEN RG, YANG SR, TANG YH, MA XM. Low-frequency ultrasound and nitrogen limitation induced enhancement in biomass production and lipid accumulation of Tetradesmus obliquus FACHB-12[J]. Bioresource Technology, 2022, 358: 127387. DOI:10.1016/j.biortech.2022.127387
[38]
WANG FF, GAO BY, DAI CM, SU M, ZHANG CW. Comprehensive utilization of the filamentous oleaginous microalga Tribonema utriculosum for the production of lipids and chrysolaminarin in a biorefinery concept[J]. Algal Research, 2020, 50: 101973. DOI:10.1016/j.algal.2020.101973
[39]
CUI HW, MENG FP, LI F, WANG YJ, DUAN WY, LIN YC. Two-stage mixotrophic cultivation for enhancing the biomass and lipid productivity of Chlorella vulgaris[J]. AMB Express, 2017, 7(1): 1-11. DOI:10.1186/s13568-016-0313-x
[40]
KUMAR V, MUTHURAJ M, PALABHANVI B, GHOSHAL AK, DAS D. High cell density lipid rich cultivation of a novel microalgal isolate Chlorella sorokiniana FC6 IITG in a single-stage fed-batch mode under mixotrophic condition[J]. Bioresource Technology, 2014, 170: 115-124. DOI:10.1016/j.biortech.2014.07.066
[41]
ÁLVAREZ-DÍAZ PD, RUIZ J, ARBIB Z, BARRAGÁN J, GARRIDO-PÉREZ MC, PERALES JA. Wastewater treatment and biodiesel production by Scenedesmus obliquus in a two-stage cultivation process[J]. Bioresource Technology, 2015, 181: 90-96. DOI:10.1016/j.biortech.2015.01.018
[42]
PAN Y, WANG HS, LIU ZW, YAN H. Advances in biological wastewater treatment technology of microalgae[J]. Chinese Journal of Applied Ecology, 2019, 30(7): 2490-2500. (in Chinese)
潘禹, 王华生, 刘祖文, 闫海. 微藻废水生物处理技术研究进展[J]. 应用生态学报, 2019, 30(7): 2490-2500.
[43]
FENG SR, FENG PZ, ZHU SN, WANG ZM, YUAN ZH. Nutrient removal and biomass production from dairy farm liquid digestate treatment using microalga Chlorella vulgaris[J]. CIESC Journal, 2019, 70(1): 227-233. (in Chinese)
冯思然, 丰平仲, 朱顺妮, 王忠铭, 袁振宏. 小球藻对奶牛场沼液处理能力及生物质生产的探究[J]. 化工学报, 2019, 70(1): 227-233.
[44]
PITTMAN JK, DEAB AP, OSUNDEKO O. The potential of sustainable algal biofuel production using wastewater resources[J]. Bioresource Technology, 2011, 102(1): 17-25. DOI:10.1016/j.biortech.2010.06.035
[45]
HU B, MIN M, ZHOU WG, LI YC, MOHR M, CHENG YL, LEI HW, LIU YH, LIN XY, CHEN P, RUAN R. Influence of exogenous CO2 on biomass and lipid accumulation of microalgae Auxenochlorella protothecoides cultivated in concentrated municipal wastewater[J]. Applied Biochemistry and Biotechnology, 2012, 166(7): 1661-1673. DOI:10.1007/s12010-012-9566-2
[46]
LEONG YK, CHANG JS. Waste stream valorization-based low-carbon bioeconomy utilizing algae as a biorefinery platform[J]. Renewable and Sustainable Energy Reviews, 2023, 178: 113245. DOI:10.1016/j.rser.2023.113245
[47]
QIN ZF, LIAO RH, MA WF. Research progress on absorption-microalgae fixation of low concentration CO2 and synchronous oil production in gas power plant[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 94-106. (in Chinese)
秦振芳, 廖日红, 马伟芳. 吸收-微藻法固定燃气电厂低浓度CO2同步产油技术研究进展[J]. 化工进展, 2023, 42(1): 94-106.
[48]
XIE YQ, YU BQ, JIN CL, MIAO L, ZHOU XJ. Large-scale cultivation of microalgae for bio-energy utilization[J]. Modern Chemical Industry, 2019, 39(8): 27-32. (in Chinese)
谢雅清, 郁彬琦, 靳翠丽, 缪莉, 周晓见. 微藻规模化培养与生物能源开发[J]. 现代化工, 2019, 39(8): 27-32.
[49]
HENA S, FATIHAH N, TABASSUM S, ISMAIL N. Three stage cultivation process of facultative strain of Chlorella sorokiniana for treating dairy farm effluent and lipid enhancement[J]. Water Research, 2015, 80: 346-356. DOI:10.1016/j.watres.2015.05.001
[50]
XIAO YB, HE X, MA Q, LU Y, BAI F, DAI JB, WU QY. Photosynthetic accumulation of lutein in Auxenochlorella protothecoides after heterotrophic growth[J]. Marine Drugs, 2018, 16(8): 283. DOI:10.3390/md16080283
[51]
PARK S, KIM J, PARK Y, KIM S, CHO S, YU J, KANG CM, LEE T. Comparison of trophic modes to maximize biomass and lipid productivity of Micractinium inermum NLP-F014[J]. Biotechnology and Bioprocess Engineering, 2018, 23(2): 238-245. DOI:10.1007/s12257-017-0489-1
[52]
GE SJ, QIU S, TREMBLAY D, VINER K, CHAMPAGNE P, JESSOP PG. Centrate wastewater treatment with Chlorella vulgaris: simultaneous enhancement of nutrient removal, biomass and lipid production[J]. Chemical Engineering Journal, 2018, 342: 310-320. DOI:10.1016/j.cej.2018.02.058
[53]
FAN JH, NING K, ZENG XW, LUO YC, WANG DM, HU JQ, LI J, XU H, HUANG JK, WAN MX, WANG WL, ZHANG DJ, SHEN GM, RUN CL, LIAO JJ, FANG L, HUANG S, JING XY, SU XQ, WANG AH, et al. Genomic foundation of starch-to-lipid switch in oleaginous Chlorella spp.[J]. Plant Physiology, 2015, 169(4): 2444-2461. DOI:10.1104/pp.15.01174
[54]
ZHAO YT, LI DF, XU JW, ZHAO P, LI T, MA HX, YU XY. Melatonin enhances lipid production in Monoraphidium sp. QLY-1 under nitrogen deficiency conditions via a multi-level mechanism[J]. Bioresource Technology, 2018, 259: 46-53. DOI:10.1016/j.biortech.2018.03.014
[55]
CHE RQ, DING K, HUANG L, ZHAO P, XU JW, LI T, MA HX, YU XY. Enhancing biomass and oil accumulation of Monoraphidium sp. FXY-10 by combined fulvic acid and two-step cultivation[J]. Journal of the Taiwan (China) Institute of Chemical Engineers, 2016, 67: 161-165. DOI:10.1016/j.jtice.2016.06.035
[56]
CHENG DJ, LI DJ, YUAN YZ, ZHOU L, LI XY, WU T, WANG L, ZHAO QY, WEI W, SUN YH. Improving carbohydrate and starch accumulation in Chlorella sp. AE10 by a novel two-stage process with cell dilution[J]. Biotechnology for Biofuels, 2017, 10(1): 1-14.
[57]
LI TT, GARGOURI M, FENG J, PARK JJ, GAO DF, MIAO C, DONG T, GANG DR, CHEN SL. Regulation of starch and lipid accumulation in a microalga Chlorella sorokiniana[J]. Bioresource Technology, 2015, 180: 250-257. DOI:10.1016/j.biortech.2015.01.005
[58]
ZHANG LJ, PEI HY, CHEN SQ, JIANG LQ, HOU QJ, YANG ZG, YU Z. Salinity-induced cellular cross-talk in carbon partitioning reveals starch-to-lipid biosynthesis switching in low-starch freshwater algae[J]. Bioresource Technology, 2018, 250: 449-456. DOI:10.1016/j.biortech.2017.11.067
[59]
CHONG JF, FADHULLAH W, LIM V, LEE CK. Two-stage cultivation of the marine microalga Chlorella salina for starch and carbohydrate production[J]. Aquaculture International, 2019, 27(5): 1269-1288. DOI:10.1007/s10499-019-00385-3
[60]
KING SJ, JERKOVIC A, BROWN LJ, PETROLL K, WILLOWS RD. Synthetic biology for improved hydrogen production in Chlamydomonas reinhardtii[J]. Microbial Biotechnology, 2022, 15(7): 1946-1965. DOI:10.1111/1751-7915.14024
[61]
BAN SD, LIN WT, LUO ZW, LUO JF. Improving hydrogen production of Chlamydomonas reinhardtii by reducing chlorophyll content via atmospheric and room temperature plasma[J]. Bioresource Technology, 2019, 275: 425-429. DOI:10.1016/j.biortech.2018.12.062
[62]
KOSOUROV S, PATRUSHEVA E, GHIRARDI ML, SEIBERT M, TSYGANKOV A. A comparison of hydrogen photoproduction by sulfur-deprived Chlamydomonas reinhardtii under different growth conditions[J]. Journal of Biotechnology, 2007, 128(4): 776-787. DOI:10.1016/j.jbiotec.2006.12.025
[63]
KHETKORN W, RASTOGI RP, INCHAROENSAKDI A, LINDBLAD P, MADAMWAR D, PANDEY A, LARROCHE C. Microalgal hydrogen production-a review[J]. Bioresource Technology, 2017, 243: 1194-1206. DOI:10.1016/j.biortech.2017.07.085
[64]
YOON JH, SHIN JH, KIM MS, SIM SJ, PARK TH. Evaluation of conversion efficiency of light to hydrogen energy by Anabaena variabilis[J]. International Journal of Hydrogen Energy, 2006, 31(6): 721-727. DOI:10.1016/j.ijhydene.2005.06.023
[65]
LI X, WANG XQ, DUAN CL, YI SS, GAO ZQ, XIAO CW, AGATHOS SN, WANG GC, LI J. Biotechnological production of astaxanthin from the microalga Haematococcus pluvialis[J]. Biotechnology Advances, 2020, 43: 107602. DOI:10.1016/j.biotechadv.2020.107602
[66]
YU WJ, ZHANG LT, ZHAO J, LIU JG. Enhancement of astaxanthin accumulation in Haematococcus pluvialis by exogenous oxaloacetate combined with nitrogen deficiency[J]. Bioresource Technology, 2022, 345: 126484. DOI:10.1016/j.biortech.2021.126484
[67]
SUNG YJ, SIM SJ. Multifaceted strategies for economic production of microalgae Haematococcus pluvialis-derived astaxanthin via direct conversion of CO2[J]. Bioresource Technology, 2022, 344: 126255. DOI:10.1016/j.biortech.2021.126255
[68]
LI QQ, YOU JK, QIAO TS, ZHONG DB, YU XY. Sodium chloride stimulates the biomass and astaxanthin production by Haematococcus pluvialis via a two-stage cultivation strategy[J]. Bioresource Technology, 2022, 344: 126214. DOI:10.1016/j.biortech.2021.126214
[69]
OLAIZOLA M, HUNTLEY ME. Recent advances in commercial production of astaxanthin from microalgae[J]. Biomaterials and Bioprocessing, 2003, 9: 143-164.
[70]
BARRE SL, BATES SS. Blue Biotechnology: Production and Use of Marine Molecules[M]. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018.
[71]
WAN MX, ZHANG Z, WANG J, HUANG JK, FAN JH, YU AQ, WANG WL, LI YG. Sequential Heterotrophy-dilution-photoinduction cultivation of Haematococcus pluvialis for efficient production of astaxanthin[J]. Bioresource Technology, 2015, 198: 557-563. DOI:10.1016/j.biortech.2015.09.031
[72]
CHEN T, WANG Y. Optimized astaxanthin production in Chlorella zofingiensis under dark condition by response surface methodology[J]. Food Science and Biotechnology, 2013, 22(5): 1-8.
[73]
ZHANG Z, HUANG JJH, SUN DZ, LEE YK, CHEN F. Two-step cultivation for production of astaxanthin in Chlorella zofingiensis using a patented energy-free rotating floating photobioreactor (RFP)[J]. Bioresource Technology, 2017, 224: 515-522. DOI:10.1016/j.biortech.2016.10.081
[74]
HATA N, OGBONNA JC, HASEGAWA Y, TARODA H, TANAKA H. Production of astaxanthin by Haematococcus pluvialis in a sequential heterotrophic-photoautotrophic culture[J]. Journal of Applied Phycology, 2001, 13(5): 395-402. DOI:10.1023/A:1011921329568
[75]
POURKARIMI S, HALLAJISANI A, ALIZADEHDAKHEL A, NOURALISHAHI A, GOLZARY A. Factors affecting production of beta-carotene from Dunaliella salina microalgae[J]. Biocatalysis and Agricultural Biotechnology, 2020, 29: 101771. DOI:10.1016/j.bcab.2020.101771
[76]
BEN-AMOTZ A. New mode of Dunaliella biotechnology: two-phase growth for β-carotene production[J]. Journal of Applied Phycology, 1995, 7(1): 65-68. DOI:10.1007/BF00003552
[77]
TAFRESHI AH, SHARIATI M. Pilot culture of three strains of Dunaliella salina for β-carotene production in open ponds in the central region of Iran[J]. World Journal of Microbiology and Biotechnology, 2006, 22(9): 1003-1006. DOI:10.1007/s11274-006-9145-1
[78]
FU YL, WANG YN, YI LB, LIU J, YANG SF, LIU B, CHEN F, SUN H. Lutein production from microalgae: a review[J]. Bioresource Technology, 2023, 376: 128875. DOI:10.1016/j.biortech.2023.128875
[79]
HO SH, XIE YP, CHAN MC, LIU CC, CHEN CY, LEE DJ, HUANG CC, CHANG JS. Effects of nitrogen source availability and bioreactor operating strategies on lutein production with Scenedesmus obliquus FSP-3[J]. Bioresource Technology, 2015, 184: 131-138. DOI:10.1016/j.biortech.2014.10.062
[80]
FLÓREZ-MIRANDA L, CAÑIZARES-VILLANUEVA RO, MELCHY-ANTONIO O, MARTÍNEZ-JERÓNIMO F, FLORES-ORTÍZ CM. Two stage heterotrophy/ photoinduction culture of Scenedesmus incrassatulus: potential for lutein production[J]. Journal of Biotechnology, 2017, 262: 67-74. DOI:10.1016/j.jbiotec.2017.09.002
[81]
CHEN CY, LIU CC. Optimization of lutein production with a two-stage mixotrophic cultivation system with Chlorella sorokiniana MB-1[J]. Bioresource Technology, 2018, 262: 74-79. DOI:10.1016/j.biortech.2018.04.024
[82]
CHI ZY, LIU Y, FREAR C, CHEN SL. Study of a two-stage growth of DHA-producing marine algae Schizochytrium limacinum SR21 with shifting dissolved oxygen level[J]. Applied Microbiology and Biotechnology, 2009, 81(6): 1141-1148. DOI:10.1007/s00253-008-1740-7
[83]
QU L, JI XJ, REN LJ, NIE ZK, FENG Y, WU WJ, OUYANG PK, HUANG H. Enhancement of docosahexaenoic acid production by Schizochytrium sp. using a two-stage oxygen supply control strategy based on oxygen transfer coefficient[J]. Letters in Applied Microbiology, 2011, 52(1): 22-27. DOI:10.1111/j.1472-765X.2010.02960.x
[84]
MITRA M, PATODAR SK, MISHRA S. Integrated process of two stage cultivation of Nannochloropsis sp. for nutraceutically valuable eicosapentaenoic acid along with biodiesel[J]. Bioresource Technology, 2015, 193: 363-369. DOI:10.1016/j.biortech.2015.06.033
[85]
LIYANAARACHCHI VC, PREMARATNE M, ARIYADASA TU, NIMARSHANA PHV, MALIK A. Two-stage cultivation of microalgae for production of high-value compounds and biofuels: a review[J]. Algal Research, 2021, 57: 102353. DOI:10.1016/j.algal.2021.102353
[86]
NAGAPPAN S, DEVENDRAN S, TSAI PC, DAHMS HU, PONNUSAMY VK. Potential of two-stage cultivation in microalgae biofuel production[J]. Fuel, 2019, 252: 339-349. DOI:10.1016/j.fuel.2019.04.138
[87]
RUIZ J, OLIVIERI G, VREE JD, BOSMA R, WILLEMS P, REITH JH, EPPINK MHM, KLEINEGRIS DMM, WIJFFELS RH, BARBOSA MJ. Towards industrial products from microalgae[J]. Energy & Environmental Science, 2016, 9(10): 3036-3043.
[88]
CHEN GY, ZHAO L, QI Y. Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: a critical review[J]. Applied Energy, 2015, 137: 282-291. DOI:10.1016/j.apenergy.2014.10.032
[89]
HUANG Y, PENG HY, FU JW, ZHU XQ, XIA A, ZHU X, LIAO Q. Progress on the reduction and utilization of CO2 in flue gas from coal-fired power plant by microalgae photosynthesis[J]. Clean Coal Technology, 2022, 28(9): 55-68. (in Chinese)
黄云, 彭虹艳, 富经纬, 朱贤青, 夏奡, 朱恂, 廖强. 微藻光合减排燃煤电厂烟气CO2及资源化利用研究进展[J]. 洁净煤技术, 2022, 28(9): 55-68.
[90]
JUDD SJ, AL MOMANI FAO, ZNAD H, AL KETIFE AMD. The cost benefit of algal technology for combined CO2 mitigation and nutrient abatement[J]. Renewable and Sustainable Energy Reviews, 2017, 71: 379-387. DOI:10.1016/j.rser.2016.12.068
[91]
HEIDARI M, KARIMINIA HR, SHAYEGAN J. Effect of culture age and initial inoculum size on lipid accumulation and productivity in a hybrid cultivation system of Chlorella vulgaris[J]. Process Safety and Environmental Protection, 2016, 104: 111-122. DOI:10.1016/j.psep.2016.07.012
[92]
YANG HJ, HE QN, HU CX. Lipid accumulation by NaCl induction at different growth stages and concentrations in photoautotrophic two-step cultivation of Monoraphidium dybowskii LB50[J]. Bioresource Technology, 2015, 187: 221-227. DOI:10.1016/j.biortech.2015.03.125
[93]
ZHAO TT, LIU MX, ZHAO TT, CHEN AL, ZHANG L, LIU H, DING K, XIAO PY. Enhancement of lipid productivity in Chlorella pyrenoidosa by collecting cells at the maximum cell number in a two-stage culture strategy[J]. Algal Research, 2021, 55: 102278. DOI:10.1016/j.algal.2021.102278
[94]
FASAEI F, BITTER JH, SLEGERS PM, VAN BOXTEL AJB. Techno-economic evaluation of microalgae harvesting and dewatering systems[J]. Algal Research, 2018, 31: 347-362. DOI:10.1016/j.algal.2017.11.038
[95]
ANANTHI V, BALAJI P, SINDHU R, KIM SH, PUGAZHENDHI A, ARUN A. A critical review on different harvesting techniques for algal based biodiesel production[J]. Science of the Total Environment, 2021, 780: 146467. DOI:10.1016/j.scitotenv.2021.146467
[96]
CHEN J, LENG LJ, YE CS, LU Q, ADDY M, WANG JH, LIU J, CHEN P, RUAN R, ZHOU WG. A comparative study between fungal pellet- and spore-assisted microalgae harvesting methods for algae bioflocculation[J]. Bioresource Technology, 2018, 259: 181-190. DOI:10.1016/j.biortech.2018.03.040
[97]
MILLEDGE JJ, HEAVEN S. A review of the harvesting of micro-algae for biofuel production[J]. Reviews in Environmental Science and Bio/Technology, 2013, 12(2): 165-178. DOI:10.1007/s11157-012-9301-z
[98]
PANCHA I, CHOKSHI K, MAURYA R, TRIVEDI K, PATIDAR SK, GHOSH A, MISHRA S. Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077[J]. Bioresource Technology, 2015, 189: 341-348. DOI:10.1016/j.biortech.2015.04.017
[99]
HANG LT, MORI K, TANAKA Y, MORIKAWA M, TOYAMA T. Enhanced lipid productivity of Chlamydomonas reinhardtii with combination of NaCl and CaCl2 stresses[J]. Bioprocess and Biosystems Engineering, 2020, 43(6): 971-980. DOI:10.1007/s00449-020-02293-w
[100]
SUN XM, REN LJ, JI XJ, HUANG H. Enhancing biomass and lipid accumulation in the microalgae Schizochytrium sp. by addition of fulvic acid and EDTA[J]. AMB Express, 2018, 8(1): 1-11. DOI:10.1186/s13568-017-0531-x