微生物学通报  2021, Vol. 48 Issue (4): 1314−1322

扩展功能

文章信息

王伟刚, 杨靖, 牛亚楠, 赵建宏
WANG Weigang, YANG Jing, NIU Yanan, ZHAO Jianhong
艰难类梭菌芽胞形成和萌发相关调控的研究进展
Advances in regulation of Clostridioides difficile sporulation and germination
微生物学通报, 2021, 48(4): 1314-1322
Microbiology China, 2021, 48(4): 1314-1322
DOI: 10.13344/j.microbiol.china.200596

文章历史

收稿日期: 2020-06-12
接受日期: 2020-08-30
网络首发日期: 2020-11-06
艰难类梭菌芽胞形成和萌发相关调控的研究进展
王伟刚1,2 , 杨靖1,2 , 牛亚楠1,2 , 赵建宏1,2     
1. 河北医科大学第二医院    河北  石家庄    050000;
2. 河北省临床检验中心    河北  石家庄    050000
摘要: 艰难类梭菌(Clostridioides difficile)是一种革兰氏阳性、可产毒素的专性厌氧菌,是引起抗生素相关性腹泻的主要致病菌。芽胞是造成艰难类梭菌传播和感染复发的重要因素,其形成和萌发在感染的发展过程中起到重要作用。近年来,越来越多的艰难类梭菌芽胞形成和萌发的具体机制被阐明。本文就近年来艰难类梭菌芽胞形成和萌发的相关分子调控机制的研究进展进行综述,以期为开发针对芽胞的有效治疗手段提供思路。
关键词: 艰难类梭菌    芽胞形成    芽胞萌发    调控机制    
Advances in regulation of Clostridioides difficile sporulation and germination
WANG Weigang1,2 , YANG Jing1,2 , NIU Yanan1,2 , ZHAO Jianhong1,2     
1. The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China;
2. Hebei Clinical Laboratory Center, Shijiazhuang, Hebei 050000, China
Abstract: Clostridioides difficile is a Gram-positive, toxin-producing obligate anaerobic bacterium, which is the main pathogen causing antibiotic-associated diarrhea. Spore is an important factor causing spread of C. difficile and infection recurrence. Sporulation and germination of C. difficile play an important role in the development of infection. In recent years, more and more specific mechanisms of C. difficile spore formation and germination have been elucidated. In this article, we reviewed the recent research progress on the molecular regulation mechanisms of C. difficile sporulation and germination to provide ideas for the development of effective treatments targeting spores.
Keywords: Clostridioides difficile    sporulation    spore germination    regulatory mechanism    

艰难类梭菌(Clostridioides difficile)是一种革兰氏阳性、可产毒素并在极端环境下形成芽胞的专性厌氧菌,曾称为艰难梭菌(Clostridium difficile)[1]。2016年Lawson等[1]提出将原属于梭菌科梭菌属的艰难梭菌归属于消化链球菌科下的新属类梭菌属;同年,ICSP (International Committee on Systematics of Prokaryotes)发布正式更名公告。2018年,美国CLSI (Clinical and Laboratory Standards Institute)将艰难梭菌更名为艰难类梭菌[2]

艰难类梭菌感染(Clostridioides difficile Infection,CDI)近年来在西方的数次暴发流行引起了高度关注;CDI是由于产毒素艰难类梭菌的过度定殖以及引起的肠道菌群失调所引起,其症状轻者表现为发热、腹痛、腹泻等,重者会引发伪膜性肠炎、中毒性巨结肠、感染性休克等,甚至引起死亡[3]。由于艰难类梭菌休眠芽胞体对于常规的消毒手段具有较高的抗性,因此极易在公共场所传播,是造成社区感染和院内感染的重要病原体[4-5]。当艰难类梭菌暴露在极端环境时,其营养细胞会快速形成芽胞休眠体并可在体外传播;当芽胞感受到萌发刺激物(Germinants)如初级胆汁酸、钙离子等的刺激后,芽胞会启动萌发过程,最终形成营养细胞。这一过程在CDI的致病过程中至关重要,但其分子机制尚不明确[6]。目前针对CDI的一线治疗药物,如万古霉素、非达霉素等均针对其营养细胞(Vegetative Cell),对芽胞并没有作用,因此阐明艰难类梭菌芽胞形成和萌发的分子机制对于开发更为有效的治疗手段至关重要[7]。艰难类梭菌芽胞的形成和萌发过程有别于其他芽胞形成菌,与其他芽胞形成菌如枯草芽胞杆菌、蜡样芽胞杆菌等相比,其关键调节通路的起始条件、分子机制及其相互作用等还未能完全阐明[8]。本文将针对艰难类梭菌芽胞形成和萌发过程中的相关分子机制研究进行总结和论述。

1 艰难类梭菌芽胞形成过程及其相关分子机制 1.1 艰难类梭菌芽胞的形成过程

艰难类梭菌芽胞由多层结构构成,由内到外分别为核心(Core)、内膜(Inner Membrane)、菌体细胞壁(Germ Cell Wall)、皮质层(Cortex)、外膜(Outer Membrane)、被衣层(Spore Coat)和某些型别具有的外壁层(Exosporium)[6]。当艰难类梭菌在受到外界环境如营养匮乏和群体感应等刺激后,会激活芽胞形成调节通路;艰难类梭菌芽胞形成过程首先会发生形态学变化形成隔膜,此时菌体以不对称分裂的形式分隔为较小的前芽胞(Forespore,FS)和较大的母细胞(Mother Cell,MC)两部分;紧接着母细胞会将前芽胞内吞,母细胞中的前芽胞会形成皮质层、芽胞被衣层和外壁层(某些型别)以形成成熟的芽胞;最终母细胞裂解,将成熟的芽胞释放到外部环境中[8] (图 1)。

图 1 艰难类梭菌芽胞的形成和萌发过程示意图 Figure 1 Schematic diagram of the sporulation and germination process of C. difficile spore 注:黑色箭头:芽胞形成过程;红色箭头:芽胞萌发过程。芽胞形成过程中,Ⅰ为不对称分裂期,营养细胞以不对称二分裂形式分裂为母细胞(MC)和前芽胞(FS);Ⅱ为吞噬期,MC将FS内吞;Ⅲ为皮质层形成阶段;Ⅳ为芽胞被衣层形成阶段,芽胞体在此成熟;Ⅴ为母细胞裂解阶段,将成熟芽胞释放到外界环境中。芽胞萌发过程中,A为芽胞体受到外界萌发物刺激激活萌发过程;B为皮层水解过程,核心水化并恢复活性,重新形成营养细胞 Note: Black arrow: Process of sporulation; Red arrow: Process of spore germination. In the process of spore formation, Ⅰ is the asymmetric division stage, and the vegetative cells divide into mother cell (MC) and forespore (FS) in the form of asymmetric two divisions; Ⅱ is the engulfment stage, where MC engulf FS; Ⅲ is the formation of cortex layer stage; Ⅳ is the stage of spore coat formation, where the spores mature; Ⅴ is the stage of mother cell lysis, which releases mature spores into the external environment. During the germination process of spores, A means that the spore is stimulated by external germinants to activate the process of germination; B is the cortex hydrolysis process, the core is hydrated and restored to activity, and vegetative cells are formed again
1.2 艰难类梭菌芽胞形成的关键分子及其调节机制

1.2.1 芽胞形成转录因子Spo0A及其磷酸转运系统

转录调节因子Spo0A (Stage 0 Sporulation Protein A)在芽胞的成胞过程中必须经组氨酸磷酸化形成其活性形式Spo0A-P来发挥生物学效应[9]。Spo0A的失活可导致艰难类梭菌失去形成芽胞的能力,但与枯草芽胞杆菌相比,艰难类梭菌中并未发现类似的磷酸激酶和磷酸转运系统,而是存在5种假定的组氨酸激酶CD1352、CD1492、CD1579、CD1949和CD2492;研究发现CD2492的失活可使艰难类梭菌产胞量相较对照组降低72%;而另一个激酶CD1579则可在体外直接使Spo0A磷酸化[10]。另一项研究发现组氨酸激酶CD1492的敲除株则表现出了更强的芽胞形成能力,并且Spo0A相关基因的转录更为活跃,这表明CD1492在调节Spo0A磷酸化影响芽胞形成过程中起到负向调控作用[11]

Spo0A通过特异性RNA聚合酶σ因子实现对艰难类梭菌芽胞形成过程的调控,其中SigE、SigF、SigG和SigK尤为重要。SigF和SigG主要在前芽胞体中发挥作用,而SigE和SigK则存在于母细胞当中[12]。在成胞过程中,SigF和SigE主要在母细胞吞噬前芽胞之前调控芽胞的形成,其中SigF参与SpoIIR、SpoIIQ、SpoIVB等蛋白的转录表达过程,这些蛋白是参与母细胞和前芽胞间联系的主要调控因子;SigE在前芽胞内吞、皮层和被衣蛋白合成、下游SigK的产生以及芽胞成熟过程中发挥调节代谢和产能的作用[13-14]。在吞噬作用完成后芽胞则主要受SigG和SigK的调控,SigG主要负责转录生成应激反应蛋白,如小酸溶芽胞蛋白(Small Acid Soluble Spore Protein,SASP)、吡啶二羧酸(Dipicolinic Acid,DPA)的摄取以及皮层的修饰;SigK在芽胞被衣及外壁层的生成及成熟芽胞释放到外环境时发挥作用[15] (图 2)。

图 2 艰难类梭菌芽胞形成主要通路示意图 Figure 2 Schematic diagram of the main pathways of C. difficile spore formation 注:蓝色:营养细胞阶段;绿色:母细胞对前芽胞吞噬作用前阶段;黄色:母细胞对前芽胞吞噬作用后阶段 Note: Vegetative cell stage in blue, stage of pre-engulfment of forespore by mother cell in green, stage of post-engulfment of forespore by mother cell in yellow

1.2.2 RR-1586

由组氨酸激酶和反应调节子(Response Regulator,RR)组成的双组分调节系统是细菌信号转导的主要手段,RR通过与位于被调节基因上游的RR特异性结合位点结合来实现转录调控。有研究通过高通量筛选发现RR-1586对艰难类梭菌芽胞形成有较大影响[16]。Hebdon等通过细菌单杂交和生物信息学分析在艰难类梭菌R20291中对RR-1586的结合位点进行分析,鉴定出14个基因靶点,其中包括芽胞形成相关基因CDR20291_0523 (CotJC1)、CDR20291_3401 (SpoIIR)和芽胞萌发相关基因CDR20291_0477 (SleB);除此之外,靶基因中还包括编码磷酸离子转运蛋白、亚精胺/腐胺的生物合成和转运通路、ABC (ATP Binding Cassettee)转运系统(也曾被报道与芽胞形成和萌发相关)的相关基因[17]

1.2.3 负向调控因子CodY和CcpA

营养匮乏是艰难类梭菌芽胞形成的一个重要的激发因素。CodY (GTP-Sensing Transcriptional Pleiotropic Repressor)和CcpA (Catabolite Control Protein A)作为营养调节蛋白在芽胞形成菌中普遍存在,它们通过感应环境中的营养物质来调控毒素的表达[18]。研究表明CodY和CcpA在芽胞形成过程中发挥着负向调控的作用[19-20]。CodY在CD012和CD027这2株菌中均表现出显著的调节芽胞形成的能力;CodY的敲除株表现出芽胞形成能力的上升,其中oppsinR这2个产胞起始的相关基因位点受到了CodY的调控,CodY发挥着特异基因的负向调节作用[19]。多效调控因子CcpA除了调节碳水化合物代谢外,还直接抑制芽胞形成中的关键调节因子Spo0A和SigF,起到负向调控芽胞形成的作用[20]。营养匮乏刺激艰难类梭菌芽胞形成的假说由来已久,营养调节相关基因对于艰难类梭菌芽胞形成的负向调节作用也为假说提供了有力佐证。

1.2.4 RstA

研究鉴定发现了一个与其他芽胞形成菌相似的芽胞形成相关基因CD3668,该基因位点被命名为rstA (Regulator of Sporulation and Toxins),其表达的RstA蛋白在促进艰难类梭菌芽胞形成的同时,还可以通过影响sigD的转录来抑制艰难类梭菌的运动和产毒能力[21]。在C. difficile高产毒株CD RT027型和R20291型中的进一步研究发现,在R20291艰难类梭菌中,敲除rstA对于成胞和产毒相关基因的影响更大,但是未发现对动力相关基因的表达产生影响,证明了RstA对于芽胞形成和产毒的影响与菌株相关[22]

1.2.5 CamA

DNA甲基化是研究最深入的表观遗传调控机制之一,DNA甲基化调控包括DNA复制和修复、细胞周期、染色体分离和基因表达等多个生物学过程,但DNA甲基化对艰难类梭菌生物机能、遗传学和基因进化等诸多方面均未有系统性的研究[23]

对36株艰难类梭菌的DNA甲基化分析研究发现,所有艰难类梭菌存在一个高度保守的甲基转移酶(C. difficile Adenine Methyltransferase A)基因camA,将CD630菌株的camA敲除后其芽胞形成量减少约50%,感染动物模型粪便中芽胞也随之减少;由于CamA仅存在于艰难类梭菌和极少数梭菌属细菌中,并且camA对于艰难类梭菌的整体适应性影响较小,将其作为艰难类梭菌特异性药物靶点产生耐药的几率较低,可以避免目前CDI治疗过程中常见的肠道菌群紊乱等副作用的发生[24]

1.2.6 sin位点

枯草芽胞杆菌中,sin (Sporulation Inhibitor)位点编码的sinRsinI基因有抑制芽胞形成的作用;SinR蛋白主要调控芽胞形成、生物膜形成和自噬,SinI是SinR的阻遏蛋白,两者相互作用决定SinR能否发挥抑制生物学的功能[25]

艰难类梭菌的基因组中有2个sinR的同源基因sinRsinR'。SinRR'蛋白具有调节包括芽胞形成、运动、代谢、膜运输、应激反应和毒素生成等多种功能[26]。研究发现,sinRR'敲除株无法形成芽胞,而且spo0A及其下游基因在转录和蛋白表达水平上皆大幅下调,sinRR'的敲除极大地影响了艰难类梭菌的芽胞形成,单独表达SinR的sinR'单敲除株的产胞、产毒素和运动能力均都明显增高;艰难类梭菌的sinR对于产胞、产毒素和动力等通路具有明显的正向调控作用,sinR'具有负向调控作用[26]。进一步研究显示,SinR'蛋白是通过MD结合域(Multimerization Domain,MD)与SinR蛋白结合实现对SinR的阻遏效应[27]

总而言之,艰难类梭菌中SinR在毒素产生、芽胞形成和运动能力等通路中起正向调控作用,而SinR'主要通过MD结合域与SinR结合,从而起到抑制上述生物学功能的作用。虽然sinRsinR'已被证明对艰难类梭菌中诸多生物学功能具有重要影响,但其作用机制还需要进一步明确和探索。

1.2.7 皮质层和芽胞被衣层相关蛋白

艰难类梭菌皮质层为芽胞特异性修饰的交联肽聚糖结构,肽聚糖在维持形状和硬度、防止渗透溶解中至关重要;芽胞形成过程中,肽聚糖促使母细胞吞噬前芽胞并最终形成具有耐热性的肽聚糖芽胞皮层[28]。UDP-N-乙酰氨基烯醇丙酮酰转移酶(UDP-N-Acetylglucosamine1-Carboxyvinyltransferase,MurA)和UDP-N-乙酰氨基甲酸酯L-丙氨酸连接酶(UDP-N-Acetylmuramate-L-Alanine Ligase,MurC)是艰难类梭菌芽胞形成中催化肽聚糖前体合成第1步和第3步中的关键酶;抑制murAmurC表达后,CD630菌株的芽胞形成量均出现减少,表明MurA和MurC同样是艰难类梭菌芽胞形成过程中的关键转录调节子[28]。胞壁-δ-内酰胺(Muramic- δ-Lactams)是艰难类梭菌皮质层中具有重要作用的组成部分(约占24%),N-脱乙酰酶PdaA1和PdaA2是胞壁-δ-内酰胺合成所需酶;在PdaA1敲除株中,发生了严重的胞壁-δ-内酰胺修饰障碍,并且敲除株的芽胞形成率降低、对热处理抗性降低、芽胞萌发和产毒发生延迟[29]。皮质层生成过程中所需的关键酶对艰难类梭菌营养细胞的生长和芽胞的形成意义重大,有望成为抗菌药物的重要靶点。

芽胞被衣层是保护芽胞体免受酶、化学物质和杀菌剂攻击的重要结构,在艰难类梭菌芽胞被衣层蛋白中,CotA、CotE和CotL具有重要作用。CotA受到翻译后修饰,维持芽胞被衣层结构的稳定性;在对cotA进行敲除后,芽胞体对溶菌酶和乙醇的敏感性显著上升,并通过透射电镜观察发现cotA敲除株的芽胞被衣层缺少电子致密的最外层,表明缺乏CotA在艰难类梭菌芽胞被衣层最外层的装配中具有重要作用,并且结构上的重大缺陷使得芽胞体的功能受到严重影响[30]。CotE是位于芽胞表面的双功能蛋白,其N端和C端分别具有过氧化还原酶和几丁质酶结构域;在体外实验中,CotE通过与黏蛋白的直接作用使芽胞与黏液结合,并促进黏液的降解;在动物模型中,CotE的缺乏使得艰难类梭菌的产毒和定殖能力均发生下降,这提示芽胞不仅仅是病原体散播的媒介,还可能直接参与感染的发生和发展[31]。CotL是芽胞被衣层装配所必需的蛋白,cotL的表达受到SigE和SigK的双重调控;cotL的敲除使芽胞被衣层和外壁层中的蛋白大幅减少并且发生定位错误,使得芽胞体结构发生显著缺陷,降低了芽胞对溶菌酶的抗性;与此同时,在cotL突变株中多个萌发相关蛋白发生下调和间接降低了芽胞萌发效率[32]。芽胞被衣层蛋白的缺失对芽胞的结构和功能产生诸多影响,但通常并不会使芽胞形成数量减少。

2 艰难类梭菌芽胞萌发过程及其相关分子机制 2.1 艰难类梭菌芽胞的萌发过程

芽胞萌发是CDI致病过程中最为重要的一步,艰难类梭菌通过粪口途径进入人体肠道,萌发为有定殖能力并可产毒素的营养细胞后,可引起肠道炎症导致腹泻[33]。与其他芽胞形成菌类似,芽胞萌发感受到特异性萌发信号后,会启动萌发信号级联反应进入萌发过程,过程包括皮层的降解、释放Ca-DPA (Calcium Dipicolonic Acid)、核心水化作用,以及与染色体结合的SASPs的降解反应(图 3)[34-36]

图 3 艰难类梭菌芽胞萌发通路示意图 Figure 3 Schematic diagram of C. difficile spore germination pathway

萌发受体感知萌发刺激物是芽胞萌发过程的第1步[6]。艰难类梭菌芽胞萌发特异性受体CspC (Clostridial Serine Protease C)对宿主体内的胆汁酸盐(包括牛磺胆酸盐、胆酸及其一系列的衍生物)产生应答,氨基酸(甘氨酸、丙氨酸)和Ca2+作为共萌发物协同胆汁酸共同启动萌发过程,三者的协同作用可以大大降低芽胞对萌发刺激物的浓度需求;芽胞萌发的效率与环境pH值相关,当环境pH值处在6.5-8.5之间时,萌发效率可达到最高[37-41]。鹅脱氧胆酸盐则是艰难类梭菌芽胞萌发有效的竞争性抑制剂,其与受体的结合能力甚至超过了刺激萌发能力最强的牛磺胆酸盐,但上述协同作用可以抵消这种抑制效应[42]。感知萌发信号后,芽胞会发生皮质层水解,核心的Ca-DPA与外部环境中的水分发生置换使核心重新水化,恢复代谢并重新生长为营养细胞状态[6] (图 1)。

2.2 艰难类梭菌芽胞萌发的分子生物学机制

2.2.1 艰难类梭菌芽胞萌发的主要通路

在众多芽胞形成菌(如枯草芽胞杆菌、产气荚膜梭菌等)中,感知萌发信号的主要受体是Ger (Spore Germination Protein)型受体,但艰难类梭菌并没有gerA编码的同源受体,而是含有枯草杆菌蛋白酶样的丝氨酸蛋白酶蛋白CspA、CspB和CspC,其中CspA和CspC缺乏完整的催化三联体,因此被认为是假蛋白酶[43]。对CspC的编码序列进行敲除后艰难类梭菌芽胞失去了萌发功能且对萌发物的特异性发生了改变[44]。CspA则在芽胞形成过程中调控CspC的含量,从而在艰难类梭菌芽胞的萌发中发挥重要作用;CspA表达的缺失导致突变株的萌发效率仅为野生株的1%,而且CspC的表达量大幅下降[45]。Csp蛋白酶家族中唯一一个具有完整催化三联体的CspB,主要通过去除pro-SleC抑制性的前体肽以激活SleC从而在萌发过程中发挥重要作用[46]

枯草芽胞杆菌的皮质水解过程主要是通过释放DPA触发皮质水解酶SleB和CwlJ激活皮质层水解,而艰难类梭菌则是通过CspB蛋白酶激活皮质水解酶SleC实现皮层水解[47]。在艰难类梭菌中,皮质水解酶以YabG依赖的方式去除前域生成pro-SleC酶原,当受到萌发物诱导后,酶原在萌发物质的诱导下以蛋白水解的方式去除抑制性前肽,生成有活性的皮质水解酶SleC,SleC通过识别皮层肽聚糖的胞壁-δ-内酰胺实现对皮质层的特异性水解[48]

Ca-DPA是一种芽胞特异性分子,其含量占到芽胞干重的5%-15%,对维持芽胞的稳定状态有重要作用[49]。皮质层水解后,芽胞内膜渗透压发生变化,机械敏感蛋白SpoVAC (Stage V Sporulation Protein AC)将Ca-DPA从核心释放出来,并与环境中的水发生置换入核使核心水化,芽胞的代谢功能由此恢复并生长成营养细胞状态[50]

2.2.2 gerGgerS对艰难类梭菌芽胞萌发的调控作用

GerG (CD0311)是一种艰难类梭菌特异性的凝胶形成蛋白,敲除gerG后会出现萌发缺陷且对胆酸盐的感知响应能力下降,这可能与敲除gerG后CspC、CspB和CspA装配到芽胞时发生障碍有关[51]。GerS (CD3464)是消化链球菌科特异性的脂蛋白,gerS的敲除株可发生严重的萌发障碍并失去水解皮层的能力,但依然具有激活SleC的能力;GerS与CwlD、PdaA同样是产生胞壁-δ-内酰胺的必要条件,gerS的敲除引起了皮质层产生胞壁-δ-内酰胺障碍,导致SleC无法识别皮质层的基质,最终产生严重的萌发障碍[52-53]。由于GerG和GerS都具有极高的种属特异性,未来可能会成为新的CDI特异性治疗靶点。

3 总结与展望

一直以来,存在于食物或医院、社区等环境中的芽胞是引起食物中毒、环境获得性感染等疾病的主要传染媒介,如何抑制芽胞形成菌的形成与萌发也一直都是芽胞形成细菌的研究热点。艰难类梭菌作为一种专性厌氧菌,对其进行培养和分子生物学研究较为困难,所以与其他芽胞形成菌相比,艰难类梭菌相关机制的研究略显滞后。因此,如何借鉴其他芽胞形成菌的研究手段来阐明艰难类梭菌芽胞的相关机制是急需思考和解决的问题。

在CDI中,虽然毒素是引起感染的直接致病因素,但是抗性极高的芽胞体才是引起流行传播和高复发率的关键所在。尽管越来越多的分子机制逐渐被发现,但是其在整个通路中的具体作用机制和各分子之间的相互作用并未完全阐明,还有许多关键问题需要探究,比如:刺激芽胞形成的具体条件,参与芽胞形成关键蛋白Spo0A磷酸化的各种蛋白及其作用,芽胞萌发时胆酸盐受体CspC与下游通路的相互作用,以及共萌发物Ca2+和甘氨酸等的确切受体等。因此,还需要大量的研究进一步对艰难类梭菌芽胞形成和萌发的分子机制进行探究,并开发针对这些机制的有效治疗手段,以实现对CDI的有效防治。

REFERENCES
[1]
Lawson PA, Citron DM, Tyrrell KL, Finegold SM. Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O'Toole 1935) Prévot 1938[J]. Anaerobe, 2016, 40: 95-99. DOI:10.1016/j.anaerobe.2016.06.008
[2]
Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published[J]. International Journal of Systematic and Evolutionary Microbiology, 2018, 68(9): 2707-2709. DOI:10.1099/ijsem.0.002945
[3]
Cheng JW, Liu WE, Ma XJ, Xiao M, Zhang L, Zhang LP, Zhao JH, Zhuo C. Expert consensus on diagnosis and treatment of C. difficile infection in China[J]. Medical Journal of Peking Union Medical College Hospital, 2017, 8(Z1): 131-138. (in Chinese)
程敬伟, 刘文恩, 马小军, 肖盟, 张丽, 张莉萍, 赵建宏, 卓超. 中国成人艰难梭菌感染诊断和治疗专家共识[J]. 协和医学杂志, 2017, 8(Z1): 131-138.
[4]
Martin JSH, Monaghan TM, Wilcox MH. Clostridium difficile infection: epidemiology, diagnosis and understanding transmission[J]. Nature Reviews Gastroenterology & Hepatology, 2016, 13(4): 206-216.
[5]
Yuille S, Mackay WG, Morrison DJ, Tedford MC. Drivers of Clostridioides difficile hypervirulent ribotype 027 spore germination, vegetative cell growth and toxin production in vitro[J]. Clinical Microbiology and Infection, 2020, 26(7): 941.
[6]
Gil F, Lagos-Moraga S, Calderón-Romero P, Pizarro-Guajardo M, Paredes-Sabja D. Updates on Clostridium difficile spore biology[J]. Anaerobe, 2017, 45: 3-9. DOI:10.1016/j.anaerobe.2017.02.018
[7]
Zhai Y, Qiang CX, Zhao JH. Research progress of spore inhibitors targeting Clostridioides difficile[J]. Chinese Journal of Infection and Chemotherapy, 2019, 19(4): 449-454. (in Chinese)
翟宇, 强翠欣, 赵建宏. 艰难梭菌芽孢抑制剂的研究进展[J]. 中国感染与化疗杂志, 2019, 19(4): 449-454.
[8]
Ramos-Silva P, Serrano M, Henriques AO. From root to tips: sporulation evolution and specialization in Bacillus subtilis and the intestinal pathogen Clostridioides difficile[J]. Molecular Biology and Evolution, 2019, 36(12): 2714-2736. DOI:10.1093/molbev/msz175
[9]
Deakin LJ, Clare S, Fagan RP, Dawson LF, Pickard DJ, West MR, Wren BW, Fairweather NF, Dougan G, Lawley TD. The Clostridium difficile spo0A gene is a persistence and transmission factor[J]. Infection and Immunity, 2012, 80(8): 2704-2711. DOI:10.1128/IAI.00147-12
[10]
Underwood S, Guan S, Vijayasubhash V, Baines SD, Graham L, Lewis RJ, Wilcox MH, Stephenson K. Characterization of the sporulation initiation pathway of Clostridium difficile and its role in toxin production[J]. Journal of Bacteriology, 2009, 191(23): 7296-7305. DOI:10.1128/JB.00882-09
[11]
Childress KO, Edwards AN, Nawrocki KL, Anderson SE, Woods EC, McBride SM. The phosphotransfer protein CD1492 represses sporulation initiation in Clostridium difficile[J]. Infection and Immunity, 2016, 84(12): 3434-3444. DOI:10.1128/IAI.00735-16
[12]
Fimlaid KA, Bond JP, Schutz KC, Putnam EE, Leung JM, Lawley TD, Shen A. Global analysis of the sporulation pathway of Clostridium difficile[J]. PLoS Genetics, 2013, 9(8): e1003660. DOI:10.1371/journal.pgen.1003660
[13]
Haraldsen JD, Sonenshein AL. Efficient sporulation in Clostridium difficile requires disruption of the sigmaK gene[J]. Molecular Microbiology, 2003, 48(3): 811-821. DOI:10.1046/j.1365-2958.2003.03471.x
[14]
Saujet L, Pereira FC, Henriques AO, Martin-Verstraete I. The regulatory network controlling spore formation in Clostridium difficile[J]. FEMS Microbiology Letters, 2014, 358(1): 1-10. DOI:10.1111/1574-6968.12540
[15]
Edwards AN, McBride SM. Initiation of sporulation in Clostridium difficile: a twist on the classic model[J]. FEMS Microbiology Letters, 2014, 358(2): 110-118. DOI:10.1111/1574-6968.12499
[16]
Dembek M, Barquist L, Boinett CJ, Cain AK, Mayho M, Lawley TD, Fairweather NF, Fagan RP. High-throughput analysis of gene essentiality and sporulation in Clostridium difficile[J]. mBio, 2015, 6(2): e02383.
[17]
Hebdon SD, Menon SK, Richter-Addo GB, Karr EA, West AH. Regulatory targets of the response regulator RR_1586 from Clostridioides difficile identified using a bacterial one-hybrid screen[J]. Journal of Bacteriology, 2018, 200(23): e00351-18.
[18]
Jeckelmann JM, Erni B. Carbohydrate transport by group translocation: the bacterial phosphoenolpyruvate: sugar phosphotransferase system[A]//Kuhn A. Bacterial Cell Walls and Membranes. Subcellular Biochemistry[M]. Cham: Springer, 2019, 92: 223-274
[19]
Nawrocki KL, Edwards AN, Daou N, Bouillaut L, McBride SM. CodY-dependent regulation of sporulation in Clostridium difficile[J]. Journal of Bacteriology, 2016, 198(15): 2113-2130. DOI:10.1128/JB.00220-16
[20]
Antunes A, Camiade E, Monot M, Courtois E, Barbut F, Sernova NV, Rodionov DA, Martin-Verstraete I, Dupuy B. Global transcriptional control by glucose and carbon regulator CcpA in Clostridium difficile[J]. Nucleic Acids Research, 2012, 40(21): 10701-10718. DOI:10.1093/nar/gks864
[21]
Edwards AN, Tamayo R, McBride SM. A novel regulator controls Clostridium difficile sporulation, motility and toxin production[J]. Molecular Microbiology, 2016, 100(6): 954-971. DOI:10.1111/mmi.13361
[22]
Edwards AN, Krall EG, McBride SM. Strain-dependent RstA regulation of Clostridioides difficile toxin production and sporulation[J]. Journal of Bacteriology, 2020, 202(2): e00586-19.
[23]
Casadesús J. Bacterial DNA methylation and methylomes[A]//Jeltsch A, Jurkowska R. DNA Methyltransferases: Role and Function. Advances in Experimental Medicine and Biology[M]. Cham: Springer, 2016, 945: 35-61
[24]
Oliveira PH, Ribis JW, Garrett EM, Trzilova D, Kim A, Sekulovic O, Mead EA, Pak T, Zhu SJ, Deikus G, et al. Epigenomic characterization of Clostridioides difficile finds a conserved DNA methyltransferase that mediates sporulation and pathogenesis[J]. Nature Microbiology, 2020, 5(1): 166-180. DOI:10.1038/s41564-019-0613-4
[25]
Voigt CA, Wolf DM, Arkin AP. The Bacillus subtilis sin operon: an evolvable network motif[J]. Genetics, 2005, 169(3): 1187-1202. DOI:10.1534/genetics.104.031955
[26]
Girinathan BP, Ou JJ, Dupuy B, Govind R. Pleiotropic roles of Clostridium difficile sin locus[J]. PLoS Pathogens, 2018, 14(3): e1006940. DOI:10.1371/journal.ppat.1006940
[27]
Ciftci Y, Girinathan BP, Dhungel BA, Hasan MK, Govind R. Clostridioides difficile SinR' regulates toxin, sporulation and motility through protein-protein interaction with SinR[J]. Anaerobe, 2019, 59: 1-7. DOI:10.1016/j.anaerobe.2019.05.002
[28]
Tocheva EI, López-Garrido J, Hughes HV, Fredlund J, Kuru E, Vannieuwenhze MS, Brun YV, Pogliano K, Jensen GJ. Peptidoglycan transformations during Bacillus subtilis sporulation[J]. Molecular Microbiology, 2013, 88(4): 673-686. DOI:10.1111/mmi.12201
[29]
Coullon H, Rifflet A, Wheeler R, Janoir C, Boneca IG, Candela T. N-Deacetylases required for muramic-δ-lactam production are involved in Clostridium difficile sporulation, germination, and heat resistance[J]. Journal of Biological Chemistry, 2018, 293(47): 18040-18054. DOI:10.1074/jbc.RA118.004273
[30]
Permpoonpattana P, Phetcharaburanin J, Mikelsone A, Dembek M, Tan S, Brisson MC, La Ragione R, Brisson AR, Fairweather N, Hong HA, et al. Functional characterization of Clostridium difficile spore coat proteins[J]. Journal of Bacteriology, 2013, 195(7): 1492-1503. DOI:10.1128/JB.02104-12
[31]
Hong HA, Ferreira WT, Hosseini S, Anwar S, Hitri K, Wilkinson AJ, Vahjen W, Zentek J, Soloviev M, Cutting SM. The spore coat protein CotE facilitates host colonization by Clostridium difficile[J]. The Journal of Infectious Diseases, 2017, 216(11): 1452-1459. DOI:10.1093/infdis/jix488
[32]
Feliciano CA, Douché T, Gianetto QG, Matondo M, Martin-Verstraete I, Dupuy B. CotL, a new morphogenetic spore coat protein of Clostridium difficile[J]. Environmental Microbiology, 2019, 21(3): 984-1003. DOI:10.1111/1462-2920.14505
[33]
Mileto S, Das A, Lyras D. Enterotoxic clostridia: Clostridioides difficile infections[J]. Microbiology Spectrum, 2019. DOI:10.1128/microbiolspec.GPP3-0015-2018
[34]
Paredes-Sabja D, Setlow P, Sarker MR. Germination of spores of Bacillales and Clostridiales species: mechanisms and proteins involved[J]. Trends in Microbiology, 2011, 19(2): 85-94. DOI:10.1016/j.tim.2010.10.004
[35]
Moir A, Cooper G. Spore germination[J]. Microbiology Spectrum, 2015. DOI:10.1128/microbiolspec.TBS-0014-2012
[36]
Kalamara M, Spacapan M, Mandic-Mulec I, Stanley-Wall NR. Social behaviours by Bacillus subtilis: quorum sensing, kin discrimination and beyond[J]. Molecular Microbiology, 2018, 110(6): 863-878. DOI:10.1111/mmi.14127
[37]
Donnelly ML, Forster ER, Rohlfing AE, Shen A. Differential effects of 'resurrecting' Csp pseudoproteases during Clostridioides difficile spore germination[J]. The Biochemical Journal, 2020, 477(8): 1459-1478. DOI:10.1042/BCJ20190875
[38]
Allegretti JR, Kearney S, Li N, Bogart E, Bullock K, Gerber GK, Bry L, Clish CB, Alm E, Korzenik JR. Recurrent Clostridium difficile infection associates with distinct bile acid and microbiome profiles[J]. Alimentary Pharmacology and Therapeutics, 2016, 43(11): 1142-1153. DOI:10.1111/apt.13616
[39]
Shrestha R, Sorg JA. Hierarchical recognition of amino acid co-germinants during Clostridioides difficile spore germination[J]. Anaerobe, 2018, 49: 41-47. DOI:10.1016/j.anaerobe.2017.12.001
[40]
Bhattacharjee D, Mcallister KN, Sorg JA. Germinants and their receptors in clostridia[J]. Journal of Bacteriology, 2016, 198(20): 2767-2775. DOI:10.1128/JB.00405-16
[41]
Kochan TJ, Shoshiev MS, Hastie JL, Somers MJ, Plotnick YM, Gutierrez-Munoz DF, Foss ED, Schubert AM, Smith AD, Zimmerman SK, et al. Germinant synergy facilitates Clostridium difficile spore germination under physiological conditions[J]. mSphere, 2018, 3(5): e00335-18.
[42]
Sharma SK, Yip C, Esposito EX, Sharma PV, Simon MP, Abel-Santos E, Firestine SM. The design, synthesis, and characterizations of spore germination inhibitors effective against an epidemic strain of Clostridium difficile[J]. Journal of Medicinal Chemistry, 2018, 61(15): 6759-6778. DOI:10.1021/acs.jmedchem.8b00632
[43]
Kevorkian Y, Shen A. Revisiting the role of Csp family proteins in regulating Clostridium difficile spore germination[J]. Journal of Bacteriology, 2017, 199(22): e00266-17.
[44]
Rohlfing AE, Eckenroth BE, Forster ER, Kevorkian Y, Donnelly ML, De La Puebla HB, Doublié S, Shen A. The CspC pseudoprotease regulates germination of Clostridioides difficile spores in response to multiple environmental signals[J]. PLoS Genetics, 2019, 15(7): e1008224. DOI:10.1371/journal.pgen.1008224
[45]
Kevorkian Y, Shirley DJ, Shen A. Regulation of Clostridium difficile spore germination by the CspA pseudoprotease domain[J]. Biochimie, 2016, 122: 243-254. DOI:10.1016/j.biochi.2015.07.023
[46]
Adams CM, Eckenroth BE, Putnam EE, Doublié S, Shen A. Structural and functional analysis of the CspB protease required for Clostridium spore germination[J]. PLoS Pathogens, 2013, 9(2): e1003165. DOI:10.1371/journal.ppat.1003165
[47]
Francis MB, Allen CA, Sorg JA. Spore cortex hydrolysis precedes dipicolinic acid release during Clostridium difficile spore germination[J]. Journal of Bacteriology, 2015, 197(14): 2276-2283. DOI:10.1128/JB.02575-14
[48]
Gutelius D, Hokeness K, Logan SM, Reid CW. Functional analysis of SleC from Clostridium difficile: an essential lytic transglycosylase involved in spore germination[J]. Microbiology, 2014, 160(1): 209-216. DOI:10.1099/mic.0.072454-0
[49]
Donnelly ML, Fimlaid KA, Shen A. Characterization of Clostridium difficile spores lacking either SpoVAC or dipicolinic acid synthetase[J]. Journal of Bacteriology, 2016, 198(11): 1694-1707. DOI:10.1128/JB.00986-15
[50]
Francis MB, Sorg JA. Dipicolinic acid release by germinating Clostridium difficile spores occurs through a mechanosensing mechanism[J]. mSphere, 2016, 1(6): e00306-16.
[51]
Donnelly ML, Li W, Li YQ, Hinkel L, Setlow P, Shen A. A Clostridium difficile-specific, gel-forming protein required for optimal spore germination[J]. mBio, 2017, 8(1): e02085-16.
[52]
Fimlaid KA, Jensen O, Donnelly ML, Francis MB, Sorg JA, Shen A. Identification of a novel lipoprotein regulator of Clostridium difficile spore germination[J]. PLoS Pathogens, 2015, 11(10): e1005239. DOI:10.1371/journal.ppat.1005239
[53]
Diaz OR, Sayer CV, Popham DL, Shen A. Clostridium difficile lipoprotein GerS is required for cortex modification and thus spore germination[J]. mSphere, 2018, 3(3): e00205-18.