微生物学通报  2021, Vol. 48 Issue (3): 820−829

扩展功能

文章信息

其力格尔, Sadia Nawab, 范殊璇, 曹博, 李雨昕, 田明振, 张商浩, 马伟, 邓子新
BAO Qelger, Sadia Nawab, FAN Shuxuan, CAO Bo, LI Yuxin, TIAN Mingzhen, ZHANG Shanghao, MA Wei, DENG Zixin
ω-3多不饱和脂肪酸抗肿瘤新途径——抑制具核梭杆菌黏附宿主细胞
New anti-tumor mechanism of ω-3 polyunsaturated fatty acids—inhibiting Fusobacterium nucleatum adherence to host cells
微生物学通报, 2021, 48(3): 820-829
Microbiology China, 2021, 48(3): 820-829
DOI: 10.13344/j.microbiol.china.200337

文章历史

收稿日期: 2020-04-03
接受日期: 2020-05-22
网络首发日期: 2020-09-07
ω-3多不饱和脂肪酸抗肿瘤新途径——抑制具核梭杆菌黏附宿主细胞
其力格尔1 , Sadia Nawab1 , 范殊璇1 , 曹博2 , 李雨昕3 , 田明振1 , 张商浩2 , 马伟1 , 邓子新1     
1. 上海交通大学生命科学技术学院微生物代谢国家重点实验室    上海    200240;
2. 上海交通大学致远学院    上海    200240;
3. 上海市民办平和双语学校    上海    200000
摘要: 【背景】 大量文献报道ω-3多不饱和脂肪酸尤其是二十二碳六烯酸(Docosahexaenoic Acid,DHA)与二十碳五烯酸(Eicosapentaenoic Acid,EPA)具有抗肿瘤作用,但是其抗肿瘤机制还不够完善。【目的】 探究ω-3多不饱和脂肪酸、具核梭杆菌以及结直肠癌三者之间的关联。【方法】 在检测二十二碳六烯酸、二十碳五烯酸、α-亚麻酸(α-Linolenic Acid,ALA)等ω-3多不饱和脂肪酸对人结直肠腺癌细胞Caco-2、正常结肠上皮细胞NCM460生长影响的基础上,检测DHA等3种多不饱和脂肪酸对具核梭杆菌黏附人体细胞以及Fap2FadARadD等具核梭杆菌毒力关键基因表达的影响。【结果】 30 µg/mL的DHA、EPA、ALA对Caco-2生长抑制分别为9.09%、4.95%、7.52%,而对NCM460生长抑制达31.15%、25.48%、29.11%,而且相关抑制作用仅具有浓度依赖性而无时间依赖性。经30 μg/mL的DHA、EPA、ALA预处理的具核梭杆菌黏附Caco-2细胞的能力分别下降81.04% (P=0)、93.63% (P=0)和68.63% (P=0);而共培养时加入DHA、EPA、ALA对具核梭杆菌黏附Caco-2细胞的能力没有显著影响。同时,30 µg/mL DHA处理导致F. nucleatumFap2基因显著下降10.22% (P=0.027);30 µg/mL EPA处理导致FadAFap2基因分别显著下降23.49% (P=0)、15.09% (P=0.003);30 µg/mL ALA处理导致FadA基因显著下降26.75% (P=0.012)。【结论】 综合上述实验结果以及DHA、EPA、ALA仅能短时间抑制具核梭杆菌生长等文献报道,我们认为,DHA、EPA等ω-3多不饱和脂肪酸并非简单地直接杀伤或抑制肿瘤细胞和F. nucleatum;抑制FadAFap2等黏附相关基因表达,降低F. nucleatum黏附宿主细胞能力是其抗肿瘤作用的关键组成部分。ω-3多不饱和脂肪酸等活性物质对F. nucleatum等在结直肠肿瘤发生、发展中发挥重要作用的肠道细菌的影响与机制应深入开展研究。
关键词: ω-3多不饱和脂肪酸    具核梭杆菌    结直肠癌    黏附    
New anti-tumor mechanism of ω-3 polyunsaturated fatty acids—inhibiting Fusobacterium nucleatum adherence to host cells
BAO Qelger1 , Sadia Nawab1 , FAN Shuxuan1 , CAO Bo2 , LI Yuxin3 , TIAN Mingzhen1 , ZHANG Shanghao2 , MA Wei1 , DENG Zixin1     
1. Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
2. Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China;
3. Shanghai Pinghe School, Shanghai 200000, China
Abstract: [Background] The antitumor mechanism of ω-3 polyunsaturated fatty acids represented by DHA and EPA has not been fully investigated. [Objective] To explore the relationship among ω-3 polyunsaturated fatty acids, Fusobacterium nucleatum and colorectal cancer. [Methods] After the suppressive effect of ω-3 polyunsaturated fatty acids (DHA, EPA, ALA) on human colon cancer cell line, Caco-2, and normal colon epithelium cell line, NCM460, was assayed, we investigated the impact of these ω-3 polyunsaturated fatty acids on F. nucleatum, including growth, adhesive ability to Caco-2 cells, and the expression of virulence genes such as Fap2, FadA and RadD. [Results] After treated with 30 μg/mL DHA, EPA or ALA respectively, the growth of Caco-2 cells were suppressed 9.09%, 4.95% and 7.52% correspondingly, meanwhile the growth of NCM460 cells were suppressed 31.15%, 25.48%, 29.11%, and only dose-dependent effect was identified. After treated with 30 μg/mL DHA, EPA and ALA for 12 hours, the adhesive ability of F. nucleatum to Caco-2 cells was inhibited by 81.04% (P=0), 93.63% (P=0) and 68.63% (P=0) respectively, which was consistent with the transcriptive level assay results of FadA, Fap2 in F. nucleatum. The expression of Fap2 was considerably suppressed by 10.22% (P=0.027) after 30 µg/mL DHA treatment; FadA, Fap2 were markedly suppressed by 23.49% (P=0) and 15.09% (P=0.003) by 30 µg/mL EPA; and for 30 µg/mL ALA treatment, FadA was significantly suppressed by 26.75% (P=0.012). [Conclusion] Based on our above results and previous reports that DHA, EPA and ALA only inhibited the growth of F. nucleatum temporally, we proposed that ω-3 polyunsaturated fatty acids i-e EPA and DHA significantly attenuated the adhesive ability of F. nucleatum to host cells via suppressing the expression of adhesion-related genes such as FadA, Fap2, which made major contribution to their antitumor activity, rather than inhibiting the growth of tumor cells and F. nucleatum directly. The effects and mechanisms of ω-3 polyunsaturated fatty acids i-e DHA and EPA on gut bacterium i-e F. nucleatum that play important roles in the initiation and progression of colorectal tumors deserve further research.
Keywords: ω-3 polyunsaturated fatty acids    Fusobacterium nucleatum    colorectal cancer    adhesion    

许多体内外以及临床研究表明,二十二碳六烯酸(Docosahexaenoic Acid,DHA)、二十碳五烯酸(Eicosapentaenoic Acid,EPA)等ω-3多不饱和脂肪酸具有显著的预防及治疗肿瘤发生和发展的作用[1-4]。如喂食富含DHA食物的神经母细胞瘤移植瘤大鼠肿瘤生长速度显著减慢[5];补充DHA的乳腺癌化疗患者中,血浆、红细胞中DHA水平高的患者相对于含量低的患者,肿瘤进展延迟和总生存期延长[6]。结直肠癌[7]、胃肠癌[8]、乳腺癌[9]等多种肿瘤研究均表明ω-3多不饱和脂肪酸通过增加细胞膜流动性[10]、抗炎活性[11]、减少促进致癌物前列腺素E2的合成[7]、增加细胞内ROS水平[12]等途径抑制肿瘤细胞生长[13]、诱导肿瘤细胞凋亡[13]。然而,Hanson等2020年针对108 194人的研究结果显示,补充DHA、EPA、ALA对肿瘤发生以及肿瘤患者死亡风险几乎没有影响[14]。如此矛盾的相关研究报道揭示不饱和脂肪酸对肿瘤发生、发展作用的复杂性,暗示可能存在未知途径与作用。

Bray等2018年的研究报道显示,全球结直肠癌发病率和死亡率分别位于恶性肿瘤的第3位与第2位[15]。近年来肠道微生物菌群功能或结构失调与结直肠癌之间存在密切关联的研究报道越来越多[16-20]。其中,Chen等发现相较于健康志愿者,结直肠癌患者的组织样本中FusobacteriumPorphyromonasPeptostreptococcusGemellaMogibacteriumKlebsiella等属菌的丰度显著增加,同时,FeacalibacteriumBlautiaLachnospiraBifidobacteriumAnaerostipes等属菌丰度显著减少[21]

近年来,对革兰氏阴性专性厌氧的具核梭杆菌(F. nucleatum)与结直肠癌(Colorectal Cancer,CRC)等肿瘤发生、发展[22]、化疗耐药等密切相关[23-25],引起了国内外专家的广泛关注。研究表明,F. nucleatum菌体[26-29]、表面蛋白[30-37]及脂多糖[38]等代谢物分别具有促进肿瘤细胞侵袭、诱发炎症反应、促进细胞生长分裂、免疫细胞招募等多样、全局的作用[39]

F. nucleatum表面蛋白FadA与结直肠癌细胞表面的E-钙黏蛋白结合能激活β-Catenin信号通路,促进肿瘤细胞的增殖[22]。Fap2作为F. nucleatum与人体细胞结合的另一个关键表面蛋白,通过与CRC细胞过表达的Gal-GalNAc结合,导致F. nucleatum在CRC病灶部位富集[35]。Fap2蛋白同时还能与T淋巴细胞和NK细胞表面的抑制性受体TIGIT作用,导致NK细胞毒性和淋巴细胞活性的抑制[40],最终保护CRC细胞免受自然杀伤细胞(Natural Killer Cell,NK)毒性、肿瘤浸润淋巴细胞和T细胞攻击。RadD作为F. nucleatum的另一个重要黏附素通过与Streptococcus mutans[41][41]S. mutans、白色念珠菌 [42]的结合,促进口腔细菌聚集及生物膜的形成。由此可见,F. nucleatum很可能是人体异常微生物群落形成的先锋物种。

基于上述研究报道,尤其是DHA与EPA能够下调F. nucleatum FadA表达[43]的研究报道,本研究计划通过系统分析DHA、EPA、ALA对具核梭杆菌、结直肠正常与肿瘤细胞的生长以及对具核梭杆菌与人体细胞互作的影响,探究多不饱和脂肪酸、F. nucleatum、结直肠肿瘤三者的相互关系,为明确多不饱和脂肪酸抑制肿瘤机制提供信息。

1 材料与方法 1.1 材料

1.1.1 细胞株与细胞培养

细胞株:人结直肠腺癌细胞Caco-2和正常结肠上皮细胞NCM460由本实验室保存。

细胞培养:Caco-2细胞采用含20%胎牛血清的DMEM高糖培养基培养;NCM460细胞采用含10%胎牛血清的DMEM高糖培养基培养;2种细胞于37 ℃、5% CO2、饱和湿度的细胞培养箱中培养。细胞传代、冻存等操作按常规方法进行。

1.1.2 实验菌株与培养

实验菌株:F. nucleatum ATCC 25586由本实验室保存。

菌株培养:F. nucleatum采用BHI培养基在85% N2、5% CO2、10% H2、37 ℃厌氧培养。

1.1.3 主要试剂和仪器

DMEM高糖培养基,HyClone公司;胎牛血清,BI公司;DHA、EPA、ALA,上海阿拉丁生化科技股份有限公司;MTT细胞增殖及细胞毒性检测试剂盒,南京凯基生物科技发展有限公司;细菌总RNA提取试剂盒,Magen生物公司;FastQuant cDNA第一链合成试剂盒,天根生化科技(北京)有限公司;Hieff UNICON® qPCR SYBR Green Master Mix,上海翊圣生物科技有限公司。多功能酶标仪,Tecan公司;荧光定量PCR仪,Thermo Fisher公司;荧光正置显微镜,蔡司公司。

1.2 方法

1.2.1 DHA、EPA、ALA的细胞毒性检测

采用MTT方法检测了DHA、EPA、ALA的细胞毒性。将Caco-2细胞、NCM460细胞培养至80%覆盖时,胰酶消化,96孔板每孔接种5 000个细胞。待细胞过夜贴壁后,加入DHA、EPA、ALA使终浓度分别为0、30、60、120 µg/mL,处理24、48、72 h后,采用MTT细胞增殖及细胞毒性检测试剂盒进行细胞活性检测。

1.2.2 具核梭杆菌对结直肠腺癌细胞的黏附试验

F. nucleatum用ω-3多不饱和脂肪酸预处理组:将培养至指数末期的F. nucleatum按1%比例分别接种于含30 μg/mL DHA、EPA、ALA的BHI培养基继续培养12 h后,将菌悬液4 000 r/min离心10 min。用DMEM培养基悬浮细菌,调整菌浓度至1×108 CFU/mL。

在加入细胞培养级盖玻片的24孔细胞培养板中铺1×105个Caco-2细胞,置37 ℃、5% CO2培养箱中培养至80%覆盖度时,用PBS洗3遍,每孔分别加入经DHA、EPA、ALA预处理或未处理的500 μL 1×108 CFU/mL具核梭杆菌。

共培养组:此时未处理组中加入终浓度为30 µg/mL的DHA、EPA、ALA。对照组与各实验组均设置3个复孔。两组分别继续于37 ℃、5% CO2条件下培养2 h后,吸去培养液,用PBS冲洗3遍,洗去未结合的具核梭杆菌,自然干燥,冰甲醇固定10 min,革兰氏染色,100倍油镜观察、拍照、计单细胞黏附的细菌数。

1.2.3 总RNA提取、反转录、定量PCR检测

F. nucleatum长到对数生长期,即OD600为0.5左右时分别用30 µg/mL的DHA、EPA、ALA处理3 h,随后采用细菌总RNA提取试剂盒提取具核梭杆菌总RNA,具体操作按试剂盒说明书进行。反转录根据FastQuant cDNA第一链合成试剂盒进行反转录,总RNA使用量为1 µg。定量PCR采用Hieff UNICON® qPCR SYBR Green Master Mix配制20 µL的反应体系进行实验,操作按说明书进行。rpoB等定量PCR引物采用Primer 3网站设计,由捷瑞公司合成,引物具体序列见表 1。定量PCR条件为:95 ℃ 15 min;95 ℃ 10 s,60 ℃ 20 s,72 ℃ 20 s,共40个循环,最后进行溶解曲线分析。基因表达相对定量采用2–ΔΔCt方法计算,内参基因为rpoB

表 1 本研究涉及的引物 Table 1 Primers designed for this study
基因gene 引物primers 序列Sequences (5′→3′)
Fap2 正向Forward CAGTTGCTACAGATGGTGTGGTAGG
反向Reverse TGAATTTGCTTCTCCATACATTCCTG
FadA 正向Forward GCAGCAAGTTTAGTAGGTGAATTACAA
反向Reverse GTCTAGCAGCGTCAGCTTGTG
RadD 正向Forward GATATGAGCAACAACAATGCGAAAG
反向Reverse GTGCCTTGACCATCAGAAGAAACTT
rpoB 正向Forward ATCTTCCACCATCAAGTTGAACCAT
反向Reverse GCTTCTGGAAATAGACCTGAATGGA
1.3 统计学分析

实验结果组间差异采用SPSS 25.0软件进行ANOVA分析,当P≤0.05时认为差异具有统计学意义。

2 结果与分析 2.1 DHA、EPA、ALA对Caco-2、NCM460的细胞毒性作用

用不同浓度的DHA、EPA、ALA分别处理正常结肠上皮细胞NCM460 24、48和72 h,结果如图 1所示,30 μg/mL DHA处理的各时间处理组NCM460相对存活率分别为60.19%、72.00%和74.35%;60 μg/mL DHA处理组分别是3.52%、3.81%和2.76%;120 μg/mL DHA处理组分别是6.24%、3.16%和2.76%。30 μg/mL EPA处理组分别是67.22%、85.41%和70.94%;60 μg/mL EPA处理组分别是9.04%、4.35%和4.42%;120 μg/mL EPA处理组分别是6.65%、3.55%和2.25%。30 μg/mL ALA处理组分别是65.73%、75.84%和71.09%;60 μg/mL ALA处理组分别是32.77%、38.24%和37.93%;120 μg/mL ALA处理组分别是3.97%、1.87%和1.42%。30、60、120 μg/mL各浓度的不同时间处理组之间差异不显著。

图 1 DHA (A)、EPA (B)、ALA (C)对Caco-2、NCM460细胞的毒性作用 Figure 1 Cytotoxicity evaluation of DHA (A), EPA (B) and ALA (C) on Caco-2, NCM460 cells

对于结直肠肿瘤细胞Caco-2,30 μg/mL DHA处理的各时间处理组相对存活率分别是87.71%、93.25%和91.76%;60 µg/mL DHA处理组分别是69.62%、80.75%和74.51%;120 µg/mL DHA处理组分别是11.04%、17.20%和5.51%。30 µg/mL EPA处理组分别是89.87%、95.74%和99.54%;60 µg/mL EPA处理组分别是72.83%、69.78%和67.18%;120 µg/mL EPA处理组分别是13.81%、19.49%和9.34%。30 µg/mL ALA处理组分别是89.91%、94.04%和93.49%;60 µg/mL ALA处理组分别是82.39%、92.07%和80.54%;120 µg/mL ALA处理组分别是33.16%、28.21%和17.83%。30、60、120 µg/mL各浓度的不同时间处理组之间差异不显著(图 1)。

2.2 DHA、EPA、ALA对F. nucleatum黏附能力的影响

我们前期分别用30、60、120 μg/mL等不同浓度的DHA、EPA、ALA处理F. nucleatum 0−24 h,经具核梭杆菌生长检测发现,前14 h DHA、EPA、ALA抑制率较强,最高抑制率分别是71.61%、77.38%、81.91%;但随着培养时间的延长,抑制作用逐渐减弱,处理24 h后最高抑制率分别下降至16.83%、14.99%、17.24% (结果未展示)。该结果与文献[43]报道一致ADDIN EN.CITE.DATA。

综合考虑DHA、EPA、ALA对Caco-2、NCM460和F. nucleatum的生长抑制作用,后续选择30 μg/mL浓度的DHA、EPA、ALA处理F. nucleatum并检测其黏附Caco-2能力的变化。

图 2所示,经30 μg/mL DHA、EPA、ALA处理12 h的F. nucleatum,Caco-2细胞上黏附的细菌数量分别比对照组减少了81.04% (P=0)、93.63% (P=0)和68.63% (P=0)。

图 2 30 μg/mL DHA、EPA、ALA预处理抑制F. nucleatum黏附Caco-2细胞 Figure 2 30 μg/mL DHA, EPA and ALA pretreatment suppress the adhesive ability of F. nucleatum to Caco-2 cells 注:A:单个细胞上F. nucleatum平均黏附数柱状图;B:F. nucleatum黏附照片。***:P < 0.001 Note: A: Column chart of the average number of F. nucleatum adhere to single cell; B: Pictures of F. nucleatum adhesion. ***: P < 0.001

当Caco-2与F. nucleatum共培养时加30 μg/mL DHA、EPA、ALA,如图 3所示,Caco-2细胞上黏附的细菌数量未发生显著变化。

图 3 30 μg/mL DHA、EPA、ALA直接作用对F. nucleatum黏附Caco-2细胞没有影响 Figure 3 Treating with 30 μg/mL DHA, EPA and ALA directly have no influence on the adhesive ability of F. nucleatum to Caco-2 cells 注:A:单个细胞上F. nucleatum平均黏附数柱状图;B:F. nucleatum黏附照片 Note: A: Column chart of the average number of F. nucleatum adhere to single cell; B: Pictures of F. nucleatum adhesion
2.3 DHA、EPA、ALA对F. nucleatum Fap2FadARadD基因表达水平的影响

检测30 μg/mL的DHA、EPA、ALA处理3 h的具核梭杆菌FadAFap2等黏附相关基因、定殖有关基因RadD的表达量发现,DHA处理组的Fap2基因表达比对照组下调了10.22% (P=0.027),与对照组有显著性差异(P < 0.05)。EPA处理组的FadAFap2基因表达分别显著下调了23.49% (P=0)、15.09% (P=0.003)。ALA处理组的FadA基因表达比对照组显著下调了26.75% (P=0.012),详见图 4

图 4 30 μg/mL DHA、EPA、ALA对Fap2FadARadD表达量的影响 Figure 4 Effects of 30 μg/mL DHA, EPA and ALA on the expression of Fap2, FadA, RadD Note: *: P < 0.05; ***: P < 0.001
3 讨论与结论

许多动物实验、流行病学等临床研究表明ω-3多不饱和脂肪酸具有降低结直肠癌风险的作用[7, 13, 44],但也有无效的报道[14]。这种研究结果不一致甚至矛盾的现象,反映了ω-3多不饱和脂肪酸抗肿瘤作用机制的复杂性。如表 2所示,不同细胞对不同种类的ω-3多不饱和脂肪酸敏感性各不相同。如:66 μg/mL DHA处理24 h时,人牙龈成纤维细胞(hGFs)活性下降约50%,而人牙周膜细胞(hPDLCs)仅下降约30%;同时,60 μg/mL的EPA对此2种牙周细胞活性基本没有影响[43]。然而即使浓度高达197 μg/mL的DHA处理24 h,大鼠胶质母细胞瘤细胞C6细胞活性仍保持80%左右[45]。然而仅用20 μg/mL和13 μg/mL DHA处理人胃癌细胞GT-38[46]与人膀胱癌细胞EJ-138[47]48 h,就能使2种细胞活性下降约50%。

表 2 DHA、EPA对不同种类细胞的抑制作用 Table 2 Suppressive effect of DHA and EPA on different kinds of cells
细胞种类
Cell lines or kinds
处理方法
Experimental method
细胞活性
cell viability (%)
参考文献
References
人牙龈成纤维细胞
Human gingival fibroblasts (hGFs)
66 μg/mL DHA 24 h
60 μg/mL EPA 24 h
About 50%
细胞毒性不明显
No obvious cytotoxicity
[43]
人牙周膜细胞
Human periodontal ligament cells (hPDLCs)
66 μg/mL DHA 24 h
60 μg/mL EPA 24 h
About 70%
细胞毒性不明显
No obvious cytotoxicity
[43]
大鼠胶质母细胞瘤细胞C6
Rat glioblastoma cell line C6
197 μg/mL DHA 24 h About 80% [45]
人胃癌细胞GT-38
Epstein-Barr virus-associated gastric carcinoma GT38
20 μg/mL DHA 48 h About 50% [46]
人膀胱癌细胞EJ-138与HTB-9
Human bladder cancer cell lines EJ-138 and HTB-9
13 μg/mL DHA 48 h About 50% [47]
大鼠胶质细胞C6G
Rat glioma cells C6G
33 μg/mL DHA 24 h 45.2% [48]
人神经母细胞瘤细胞SH-SY5Y
Neuroblastoma cell SH-SY5Y
33 μg/mL DHA 24 h 45.9% [48]
星形胶质细胞Astrocytes 33 μg/mL DHA 24 h 100% [48]

Toit-Kohn等采用低血清培养基培养Caco-2、NCM460细胞时,16.4 µg/mL DHA能够显著降低Caco-2细胞活力达80%,而正常结肠细胞NCM460的活力不受影响[49-50]。本研究中,采用正常培养条件培养Caco-2、NCM460细胞时,30 µg/mL的DHA、EPA、ALA处理Caco-2细胞活性仅下降10%左右,而NCM460细胞活性则下降30%左右。即使是抑制作用最弱的ALA,仍呈现抑制正常细胞(NCM460)作用强于肿瘤细胞(Caco-2)的类似现象,详见图 1。同时,研究结果显示,DHA、EPA、ALA对Caco-2、NCM460的生长抑制作用仅具有显著的剂量依赖作用,无时间依赖作用。

鉴于上述实验结果,我们认为DHA、EPA、ALA的抗肿瘤作用不仅仅是由于直接抑制肿瘤细胞生长,而是通过其他间接途径实现。同时,文献报道与本研究预实验发现DHA、EPA、ALA仅能在14 h内短暂抑制F. nucleatum生长[43, 51-52],之后抑制作用基本消失。该实验结果表明,DHA、EPA、ALA也不是通过杀死或完全抑制F. nucleatum的生长发挥抗肿瘤作用。

进一步检测DHA、EPA、ALA对FadAFap2RadD等具核梭杆菌黏附、侵袭肠上皮细胞过程关键基因[39]表达水平的影响以及对F. nucleatum黏附宿主细胞能力的影响等实验发现,30 μg/mL DHA、EPA、ALA预处理能够显著降低Caco-2细胞上附着的具核梭杆菌数量,降幅分别达到81.04% (P=0)、93.63% (P=0)和68.63% (P=0)。该结果与文献报道的DHA和EPA抗肿瘤活性强于ALA报道一致[53]。但F. nucleatum与Caco-2共培养时再加入相同浓度的DHA、EPA、ALA对F. nucleatum黏附能力没有显著影响,该实验结果进一步表明DHA、EPA、ALA并不直接影响F. nucleatum对肿瘤细胞的黏附能力。

根据DHA、EPA、ALA处理分别显著下调F. nucleatumFap2FadA表达的实验结果,我们认为,抑制FadAFap2等黏附相关基因表达减弱了F. nucleatum黏附宿主细胞的能力,是ω-3多不饱和脂肪酸抗肿瘤活性的关键组成部分,相关分子机制值得深入开展研究。

REFERENCES
[1]
Shen N, Zhang CC, He CZJ, Wang SS, Yu HN, Shen SR. Growth inhibitory effect of n-3 polyunsaturated fatty acids on colorectal cancer cell HCT116[J]. Science and Technology of Food Industry, 2018, 39(14): 275-281. (in Chinese)
沈妮, 张程程, 何成自菁, 王姗姗, 于海宁, 沈生荣. n-3多不饱和脂肪酸对结肠癌细胞HCT116抗增殖作用[J]. 食品工业科技, 2018, 39(14): 275-281.
[2]
Kenar L, Karayilanoglu T, Aydin A, Serdar M, Kose S, Erbil MK. Protective effects of diets supplemented with omega-3 polyunsaturated fatty acids and calcium against colorectal tumor formation[J]. Digestive Diseases and Sciences, 2008, 53(8): 2177-2182. DOI:10.1007/s10620-007-0107-8
[3]
Khadge S, Thiele GM, Sharp JG, McGuire TR, Klassen LW, Black PN, DiRusso CC, Cook L, Talmadge JE. Long-chain omega-3 polyunsaturated fatty acids decrease mammary tumor growth, multiorgan metastasis and enhance survival[J]. Clinical & Experimental Metastasis, 2018, 35(8): 797-818.
[4]
Lee JY, Sim TB, Lee JE, Na HK. Chemopreventive and chemotherapeutic effects of fish oil derived omega-3 polyunsaturated fatty acids on colon carcinogenesis[J]. Clinical Nutrition Research, 2017, 6(3): 147-160. DOI:10.7762/cnr.2017.6.3.147
[5]
Gleissman H, Segerström L, Hamberg M, Ponthan F, Lindskog M, Johnsen JI, Kogner P. Omega-3 fatty acid supplementation delays the progression of neuroblastoma in vivo[J]. International Journal of Cancer, 2011, 128(7): 1703-1711. DOI:10.1002/ijc.25473
[6]
Bougnoux P, Hajjaji N, Ferrasson MN, Giraudeau B, Couet C, le Floch O. Improving outcome of chemotherapy of metastatic breast cancer by docosahexaenoic acid: a phase Ⅱ trial[J]. British Journal of Cancer, 2009, 101(12): 1978-1985. DOI:10.1038/sj.bjc.6605441
[7]
Volpato M, Hull MA. Omega-3 polyunsaturated fatty acids as adjuvant therapy of colorectal cancer[J]. Cancer and Metastasis Reviews, 2018, 37(2/3): 545-555.
[8]
Lee HJ, Han YM, An JM, Kang EA, Park YJ, Cha JY, Hahm KB. Role of omega-3 polyunsaturated fatty acids in preventing gastrointestinal cancers: current status and future perspectives[J]. Expert Review of Anticancer Therapy, 2018, 18(12): 1189-1203. DOI:10.1080/14737140.2018.1524299
[9]
Fabian CJ, Kimler BF, Hursting SD. Omega-3 fatty acids for breast cancer prevention and survivorship[J]. Breast Cancer Research, 2015, 17(1): 62. DOI:10.1186/s13058-015-0571-6
[10]
Pardini RS. Nutritional intervention with omega-3 fatty acids enhances tumor response to anti-neoplastic agents[J]. Chemico-Biological Interactions, 2006, 162(2): 89-105. DOI:10.1016/j.cbi.2006.05.012
[11]
Azuma MM, Gomes-Filho JE, Ervolino E, De Barros Moraes Cardoso C, Pipa CB, Kawai T, Conti LC, Cintra LTA. Omega-3 fatty acids reduce inflammation in rat apical periodontitis[J]. Journal of Endodontics, 2018, 44(4): 604-608. DOI:10.1016/j.joen.2017.12.008
[12]
Yin YQ, Sui CG, Meng FD, Ma P, Jiang YH. The omega-3 polyunsaturated fatty acid docosahexaenoic acid inhibits proliferation and progression of non-small cell lung cancer cells through the reactive oxygen species-mediated inactivation of the PI3K/Akt pathway[J]. Lipids in Health and Disease, 2017, 16(1): 87. DOI:10.1186/s12944-017-0474-x
[13]
Huang QL, Mo MM, Zhong Y, Yang QJ, Zhang JJ, Ye XX, Zhang LJ, Cai C. The anticancer role of omega-3 polyunsaturated fatty acids was closely associated with the increase in genomic DNA hydroxymethylation[J]. Anti-Cancer Agents in Medicinal Chemistry, 2019, 19(3): 330-336. DOI:10.2174/1871520618666181018143026
[14]
Hanson S, Thorpe G, Winstanley L, Abdelhamid AS, Hooper L, PUFAH Group. Omega-3, omega-6 and total dietary polyunsaturated fat on cancer incidence: systematic review and meta-analysis of randomised trials[J]. British Journal of Cancer, 2020, 122(8): 1260-1270. DOI:10.1038/s41416-020-0761-6
[15]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2018, 68(6): 394-424. DOI:10.3322/caac.21492
[16]
Gagnière J, Raisch J, Veziant J, Barnich N, Bonnet R, Buc E, Bringer MA, Pezet D, Bonnet M. Gut microbiota imbalance and colorectal cancer[J]. World Journal of Gastroenterology, 2016, 22(2): 501-518. DOI:10.3748/wjg.v22.i2.501
[17]
Brennan CA, Garrett WS. Gut microbiota, inflammation, and colorectal cancer[J]. Annual Review of Microbiology, 2016, 70: 395-411. DOI:10.1146/annurev-micro-102215-095513
[18]
Lepage P, Leclerc MC, Joossens M, Mondot S, Blottière H, Raes J, Ehrlich D, Doré J. A metagenomic insight into our gut's microbiome[J]. Gut, 2013, 62(1): 146-158. DOI:10.1136/gutjnl-2011-301805
[19]
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444(7122): 1027-1031. DOI:10.1038/nature05414
[20]
Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, Barnes R, Watson P, Allen-Vercoe E, Moore RA, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma[J]. Genome Research, 2012, 22(2): 299-306. DOI:10.1101/gr.126516.111
[21]
Chen WG, Liu FL, Ling Z, Tong XJ, Xiang C. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer[J]. PLoS One, 2012, 7(6): e39743. DOI:10.1371/journal.pone.0039743
[22]
Shang FM, Liu HL. Fusobacterium nucleatum and colorectal cancer: a review[J]. World Journal of Gastrointestinal Oncology, 2018, 10(3): 71-81. DOI:10.4251/wjgo.v10.i3.71
[23]
Li YY, Ge QX, Cao J, Zhou YJ, Du YL, Shen B, Wan YJY, Nie YQ. Association of Fusobacterium nucleatum infection with colorectal cancer in Chinese patients[J]. World Journal of Gastroenterology, 2016, 22(11): 3227-3233. DOI:10.3748/wjg.v22.i11.3227
[24]
Bashir A, Miskeen AY, Hazari YM, Asrafuzzaman S, Fazili KM. Fusobacterium nucleatum, inflammation, and immunity: the fire within human gut[J]. Tumor Biology, 2016, 37(3): 2805-2810. DOI:10.1007/s13277-015-4724-0
[25]
Nosho K, Sukawa Y, Adachi Y, Ito M, Mitsuhashi K, Kurihara H, Kanno S, Yamamoto I, Ishigami K, Igarashi H, et al. Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer[J]. World Journal of Gastroenterology, 2016, 22(2): 557-566. DOI:10.3748/wjg.v22.i2.557
[26]
Keku TO, McCoy AN, Azcarate-Peril AM. Fusobacterium spp. and colorectal cancer: cause or consequence?[J]. Trends in Microbiology, 2013, 21(10): 506-508. DOI:10.1016/j.tim.2013.08.004
[27]
Tang B, Wang K, Jia YP, Zhu P, Fang Y, Zhang ZJ, Mao XH, Li Q, Zeng DZ. Fusobacterium nucleatum-induced impairment of autophagic flux enhances the expression of proinflammatory cytokines via ROS in caco-2 cells[J]. PLoS One, 2016, 11(11): e0165701. DOI:10.1371/journal.pone.0165701
[28]
Yang YZ, Weng WH, Peng JJ, Hong LM, Yang L, Toiyama Y, Gao RY, Liu MF, Yin MM, Pan C, et al. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor-κb, and up-regulating expression of MicroRNA-21[J]. Gastroenterology, 2017, 152(4): 851-866. DOI:10.1053/j.gastro.2016.11.018
[29]
Shi CZ, Yang YZ, Xia Y, Okugawa Y, Yang J, Liang Y, Chen HQ, Zhang P, Wang F, Han HZ, et al. Novel evidence for an oncogenic role of microRNA-21 in colitis-associated colorectal cancer[J]. Gut, 2016, 65(9): 1470-1481. DOI:10.1136/gutjnl-2014-308455
[30]
Rubinstein MR, Wang XW, Liu W, Hao YJ, Cai GF, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin[J]. Cell Host & Microbe, 2013, 14(2): 195-206.
[31]
Chen YY, Peng Y, Yu JH, Chen T, Wu YX, Shi L, Li Q, Wu J, Fu XS. Invasive Fusobacterium nucleatum activates beta-catenin signaling in colorectal cancer via a TLR4/P-PAK1 cascade[J]. Oncotarget, 2017, 8(19): 31802-31814. DOI:10.18632/oncotarget.15992
[32]
Rubinstein MR, Baik JE, Lagana SM, Han RP, Raab WJ, Sahoo D, Dalerba P, Wang TC, Han YW. Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/β-catenin modulator Annexin A1[J]. EMBO Reports, 2019, 20(4): e47638.
[33]
Vander Haar EL, So J, Gyamfi-Bannerman C, Han YW. Fusobacterium nucleatum and adverse pregnancy outcomes: epidemiological and mechanistic evidence[J]. Anaerobe, 2018, 50: 55-59. DOI:10.1016/j.anaerobe.2018.01.008
[34]
Fardini Y, Wang XW, Témoin S, Nithianantham S, Lee D, Shoham M, Han YW. Fusobacterium nucleatum adhesin FadA binds vascular endothelial cadherin and alters endothelial integrity[J]. Molecular Microbiology, 2011, 82(6): 1468-1480. DOI:10.1111/j.1365-2958.2011.07905.x
[35]
Abed J, Emgård JEM, Zamir G, Faroja M, Almogy G, Grenov A, Sol A, Naor R, Pikarsky E, Atlan KA, et al. Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc[J]. Cell Host & Microbe, 2016, 20(2): 215-225.
[36]
Kaplan CW, Ma XY, Paranjpe A, Jewett A, Lux R, Kinder-Haake S, Shi WY. Fusobacterium nucleatum outer membrane proteins Fap2 and RadD induce cell death in human lymphocytes[J]. Infection and Immunity, 2010, 78(11): 4773-4778. DOI:10.1128/IAI.00567-10
[37]
Kaplan CW, Lux R, Haake SK, Shi WY. The Fusobacterium nucleatum outer membrane protein RadD is an arginine-inhibitable adhesin required for inter-species adherence and the structured architecture of multispecies biofilm[J]. Molecular Microbiology, 2009, 71(1): 35-47. DOI:10.1111/j.1365-2958.2008.06503.x
[38]
Xue Y, Xiao H, Guo SH, Xu BL, Liao YH, Wu YX, Zhang G. Indoleamine 2, 3-dioxygenase expression regulates the survival and proliferation of Fusobacterium nucleatum in THP-1-derived macrophages[J]. Cell Death & Disease, 2018, 9(3): 355.
[39]
Wu J, Li Q, Fu XS. Fusobacterium nucleatum contributes to the carcinogenesis of colorectal cancer by inducing inflammation and suppressing host immunity[J]. Translational Oncology, 2019, 12(6): 846-851. DOI:10.1016/j.tranon.2019.03.003
[40]
Zhang S, Cai SJ, Ma YL. Association between Fusobacterium nucleatum and colorectal cancer: progress and future directions[J]. Journal of Cancer, 2018, 9(9): 1652-1659. DOI:10.7150/jca.24048
[41]
Guo LH, Shokeen B, He XS, Shi WY, Lux R. Streptococcus mutans SpaP binds to RadD of Fusobacterium nucleatum ssp. polymorphum[J]. Molecular Oral Microbiology,, 2017, 32(5): 355-364. DOI:10.1111/omi.12177
[42]
Wu T, Cen L, Kaplan C, Zhou X, Lux R, Shi W, He X. Cellular components mediating coadherence of Candida albicans and Fusobacterium nucleatum[J]. Journal of Dental Research, 2015, 94(10): 1432-1438. DOI:10.1177/0022034515593706
[43]
Sun MJ, Zhou ZC, Dong JC, Zhang JC, Xia YR, Shu R. Antibacterial and antibiofilm activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against periodontopathic bacteria[J]. Microbial Pathogenesis, 2016, 99: 196-203. DOI:10.1016/j.micpath.2016.08.025
[44]
Yang J, Yu J. The association of diet, gut microbiota and colorectal cancer: what we eat may imply what we get[J]. Protein & Cell, 2018, 9(5): 474-487.
[45]
Kim SH, Kang SH, Kang BS. Therapeutic effects of dihydroartemisinin and transferrin against glioblastoma[J]. Nutrition Research and Practice, 2016, 10(4): 393-397. DOI:10.4162/nrp.2016.10.4.393
[46]
Gong W, Zhang L, Yu H, Yu Q, Pan WK, Wang Y, Wu XL, Liu Q. Dihydroartemisinin suppresses the proliferation of Epstein-Barr virus-associated gastric carcinoma cells via downregulation of latent membrane protein 2A[J]. Oncology Letters, 2018, 16(2): 2613-2619.
[47]
Poupel F, Aghaei M, Movahedian A, Jafari SM, Shahrestanaki MK. Dihydroartemisinin induces apoptosis in human bladder cancer cell lines through reactive oxygen species, mitochondrial membrane potential, and cytochrome c pathway[J]. International Journal of Preventive Medicine, 2017, 8: 78. DOI:10.4103/ijpvm.IJPVM_258_17
[48]
Das M, Das S. Identification of cytotoxic mediators and their putative role in the signaling pathways during docosahexaenoic acid (DHA)-induced apoptosis of cancer cells[J]. Apoptosis, 2016, 21(12): 1408-1421. DOI:10.1007/s10495-016-1298-2
[49]
Engelbrecht AM, Toit-Kohn JLD, Ellis B, Thomas M, Nell T, Smith R. Differential induction of apoptosis and inhibition of the PI3-kinase pathway by saturated, monounsaturated and polyunsaturated fatty acids in a colon cancer cell model[J]. Apoptosis, 2008, 13(11): 1368-1377. DOI:10.1007/s10495-008-0260-3
[50]
Toit-Kohn JLD, Louw L, Engelbrecht AM. Docosahexaenoic acid induces apoptosis in colorectal carcinoma cells by modulating the PI3 kinase and p38 MAPK pathways[J]. The Journal of Nutritional Biochemistry, 2009, 20(2): 106-114. DOI:10.1016/j.jnutbio.2007.12.005
[51]
Choi JS, Park NH, Hwang SY, Sohn JH, Kwak I, Cho KW, Choi IS. The antibacterial activity of various saturated and unsaturated fatty acids against several oral pathogens[J]. Journal of Environmental Biology, 2013, 34(4): 673-676.
[52]
Huang CB, Ebersole JL. A novel bioactivity of omega-3 polyunsaturated fatty acids and their ester derivatives[J]. Molecular Oral Microbiology, 2010, 25(1): 75-80. DOI:10.1111/j.2041-1014.2009.00553.x
[53]
Calder PC. n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases[J]. The American Journal of Clinical Nutrition, 2006, 83(6): 1505S-1519S. DOI:10.1093/ajcn/83.6.1505S