扩展功能
文章信息
- 刘琪聪, 曾斌
- LIU Qicong, ZENG Bin
- 米曲霉异源蛋白表达系统研究进展及展望
- Research progress and prospects of Aspergillus oryzae heterologous protein expression system
- 微生物学通报, 2021, 48(12): 4932-4942
- Microbiology China, 2021, 48(12): 4932-4942
- DOI: 10.13344/j.microbiol.china.210284
-
文章历史
- 收稿日期: 2021-03-21
- 接受日期: 2021-04-26
- 网络首发日期: 2021-05-31
2. 深圳技术大学药学院 广东 深圳 518118;
3. 江西科技师范大学化学化工学院 江西 南昌 330013
2. College of Pharmacy, Shenzhen Technology University, Shenzhen, Guangdong 518118, China;
3. College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, China
丝状真菌米曲霉是国内外广泛应用于酿造酱油、酿酒等传统食品发酵工业中的菌种,上千年的应用早已证明了其安全性[1]。米曲霉被美国食品药品监督管理局(Food and Drug Administration,FDA)认定为安全菌株(Generally Recognized as Safe,GRAS),具有完整的翻译后修饰系统,强大的蛋白生产能力及分泌能力,尤其是其中大量糖化酶、蛋白酶的产生使其被用作酶制剂生产平台及饲料添加剂[2-4]。米曲霉的安全性和强大的蛋白分泌特性使其能够被用作异源蛋白的表达平台,而且其基因组测序最早于2005年就已完成[5-6]。蛋白质作为生命活动的主要承担者,其种类繁多,功能多样,包括作为结构物质的结构蛋白、具有强大催化作用的酶、行使免疫功能的抗体和部分激素等。然而,由于蛋白质天然宿主的局限性,许多具有工业应用或治疗作用的蛋白质产量低、纯化难、生产成本高。将编码以上蛋白质的相关基因在遗传操作手段成熟、易于培养和管理的异源宿主中进行表达是一种很好的解决策略。以米曲霉为宿主表达异源蛋白已有趋于成熟的应用,然而这些被表达蛋白都集中来源于其他丝状真菌,而基因供体与米曲霉亲缘关系较远的表达效果往往较差,从异源蛋白在米曲霉中表达的各个过程中逐步分析可以得到启示,给米曲霉异源表达平台的进一步开发指出方向[7]。
1 米曲霉的遗传转化系统一个高效稳定的转化系统离不开合适的标记基因或报告基因,然而米曲霉对绝大多数常规的抗真菌药物具有抗药性。少数药物,如吡啶硫胺素(Pyrithiamine,PT)对野生型的米曲霉具有强大的抑制作用,然而高昂的价格限制了其应用范围[8-9]。为了增强米曲霉对药物的敏感性,可以采用添加辅剂的方法,如添加表面活性剂Triton X-100及钙调蛋白抑制剂氯丙嗪与博来霉素协同作用,可以使原本对200 μg/mL博来霉素仍具有抗药性的米曲霉在30 μg/mL的情况下就被完全抑制;同样地,协同作用的氯丙嗪与潮霉素也能够作为米曲霉转化菌株的筛选药物[10-11]。以上多种药物协同作用的最终目的都是使抗生素能够在米曲霉细胞内积累到一定的浓度,Triton X-100作为表面活性剂能够改善米曲霉的细胞通透性,使外部的抗生素更多地进入细胞内,而氯丙嗪作为钙调蛋白抑制剂能够有效地减少进入细胞内的抗生素外流。
相较于利用药物筛选转化子,营养缺陷型标记在米曲霉中的应用更为广泛。营养缺陷型菌株的获得方式也从随机性更大的物理、化学诱变逐步发展到利用基因工程手段对米曲霉中便于筛选的候选基因进行定向敲除。目前应用于米曲霉中的营养缺陷型标记有argB、pyrG、niaD、sC、adeA/ade、amdS、hemA等[12-18]。基于我国酱油酿造菌株米曲霉3.042,本课题组构建了含有pyrG及PT抗性基因的载体,转化pyrG营养缺陷型菌株,双选择标记的存在意味着能对其进行更加灵活的基因操作,无论是对基因功能的研究还是工程菌株的改造都有很大的帮助[19-20]。
此外,对同一种筛选标记进行循环利用也是很好的解决策略。Maruyama等通过设计将转入转化子中的标记基因pyrG置于两段临近的短重复序列之间,再利用5-FOA对转化子进行筛选,5-FOA的压力使得两段短重复序列进行同源重组,最终得到敲除了目的基因且仍具有pyrG营养缺陷标记的米曲霉菌株[21]。相较于利用药物压力对米曲霉中的选择标记进行回收,利用Cre/loxP重组酶系统对米曲霉转化子中转入的标记基因进行切除更加可控。将标记基因置于同向的2个loxP位点之间,在得到转化子后,再利用诱导型启动子诱导Cre的表达,将标记基因切除,菌株内的营养缺陷标记就可以在下一轮转化中再次发挥作用[22]。与上述利用药物压力进行标记基因的回收相比,Cre/loxP重组酶系统不可避免地会在米曲霉基因组内留下外源序列。
目前应用于米曲霉转化过程中的方法主要是PEG介导的原生质体转化(Protoplast-Mediated Transformation,PMT)及农杆菌介导转化(Agrobacterium-Mediated Transformation,ATMT)。以原生质体为受体进行转化是一种非常成熟的方法,主要是在PEG及Ca2+的帮助下,将外源DNA转入原生质体内,在这个过程中,原生质体的制备过程烦琐,试剂要求高,再生周期较长。相比之下,农杆菌介导的转化方法直接以米曲霉孢子作为转化受体,过程更加简便,这种方法已经被广泛用于丝状真菌中,如烟曲霉、土曲霉、黄曲霉、黑曲霉等[23-26]。本课题组也已成功建立起农杆菌介导的米曲霉基因转化体系,并已将其应用在米曲霉功能基因组学方面的相关研究[19-20, 27]。
2 米曲霉在异源蛋白表达中的应用得益于完善的蛋白修饰系统及强大的分泌能力,米曲霉已被广泛应用于来源于其他丝状真菌的异源蛋白表达。同时也探索了将其作为植物、昆虫及哺乳动物中蛋白质的异源表达平台,然而由于蛋白质合成、修饰及分泌途径的差异,往往存在异源蛋白产量低、生物活性低等问题(表 1)。
菌株编号 Strains No. |
启动子 Promoters |
异源蛋白 Heterologous proteins |
产量 Yield (mg/L) |
基因供体 Gene donors |
参考文献 References |
NS-tApE | tef1 | AfSwo1 | 300.0 | Aspergillus fumigatus | [28] |
AUT1 | glaA | RsEG | 26.0 | Reticulitermes speratus | [29] |
AUT1 | glaA | NtEG | 31.0 | Nasutitermes takasagoensis | [29] |
NS-tApE | amyB | RsSymEG1 | − | Symbiotic protist of Reticulitermes speratus | [30] |
NS-tApE | glaA | G1NkBG | − | Neotermes koshunensis | [31] |
NS-tApE | amyB | RsSymEG2 | − | Symbiotic protist of Reticulitermes speratus | [32] |
NS4 | amyB | Neoculin | 2.0 | Curculigo latifolia | [33] |
NSPlD1 | amyB | Lysozyme | 12.9 | Homo sapiens | [34] |
NSlDVp/NSlDEp | amyB | Chymosin | 50.0 | Bos taurus | [35] |
AUT1-lD-sD/AUT1-lD-v10-sD | amyB | Chymosin | 144.5/156.1 | Bos taurus | [36] |
AUT1-lD-sD/AUT1-lD-v10-sD | amyB | Lysozyme | 75.2/84.3 | Homo sapiens | [36] |
NSlD-ΔP10 | amyB | Chymosin | 109.4 | Bos taurus | [37] |
NSlD-ΔP10 | amyB | Lysozyme | 35.8 | Homo sapiens | [37] |
NSlDv10 | amyB | Chymosin | 83.1 | Bos taurus | [38] |
NSlDv10 | amyB | Lysozyme | 24.6 | Homo sapiens | [38] |
NSlD-tApEnBdIVdV | amyB | Chymosin | 84.4 | Bos taurus | [39] |
NS-tApE | amyB | Chymosin | 69.8 | Bos taurus | [40] |
NA-2L-nptB | amyB | Lysozyme | 16.0−20.0 | Homo sapiens | [41] |
N2L-peE-tp6 | amyB | Lysozyme | 25.4 | Homo sapiens | [42] |
M-2-3 | glaA | Chymosin | 0.07−0.16 | Bos taurus | [43] |
M-2-3 | amyB | Lysozyme | 1.2 | Homo sapiens | [44] |
A07 | amyB | Lactoferrin | 25.0 | Homo sapiens | [45] |
IF4 | sodM | anti-EGFR VHH | 73.8 | Lama glama | [46] |
NSlD-ΔP10 | amyB | Adalimumab | 39.7 | Homo sapiens | [47] |
AUT1-PlD | amyB | Phytase | − | Aspergillus fumigatus | [48] |
KBN616-P5 | taaG2 | Polygalacturonase | 47.7−107.0 | Aspergillus sojae | [49] |
PF2 | amyB | α-amylase | − | Penicillium sp. 3-5 | [50] |
niaD300 | enoA | exo-β-1, 3-glucanase | − | Penicillium sp. KH10 | [51] |
ΔpyrGΔligD | amyB | α-amylase | − | Geomyces pannorum | [52] |
ΔadeA | amyB | KK-1 | 4.0 | Curvularia clavata | [53] |
niaD300 | glaA142/No-8142 | Lipases | − | Candida antarctica | [54] |
NS4 | enoA142 | Lipase | − | Fusarium heterosporum | [55] |
JaL228 | TAKA | Carbohydrate oxidase | − | Microdochium nivale | [56] |
HowB104 | amyB | Laccase | 8.0−135.0 | Coprinus cinereus | [57] |
NS4 | glaA | Der f 7 | − | Dermatophagoides farinae | [58-59] |
NS4 | glaA | pre-S2 | 30.0 | Hepatitis B virus | [60] |
注:−:文中未标明产量或产量未以质量浓度(mg/L)表示 Note: −: The yield is not indicated in the reference or that the yield is not expressed in mass concentration (mg/L) |
米曲霉由于其安全性高,往往可以被用作致病真菌中各类酶的研究平台,如在烟曲霉中克隆出的AfSwo1编码一种与里氏木霉内肿胀蛋白类似的蛋白质,由于烟曲霉是一种人类致病菌,因此将该基因克隆后在米曲霉中进行异源表达,纯化蛋白AfSwo1后研究其性质[28]。Hirayama等[29]在米曲霉中表达了白蚁的纤维素酶RsEG和NtEG,此后白蚁及其共生系统中的G1NkBG、RsSymEG1、RsSymEG2等纤维素降解相关的基因陆续在米曲霉中被表达,利用这种方法获得大量白蚁消化纤维素过程中发挥高效作用的各类酶,这为其酶学性质的研究及其在纤维素降解方面的进一步利用奠定了基础[30-32]。Neoculin (NCL)是来源于阔叶仙茅(Curculigo latifolia)的果实,是由2个亚基组成的异源二聚体甜味蛋白,在同等重量下,甜度约是蔗糖的500倍,而且具有将酸味转变为甜味的独特活性,Nakajima等以α-淀粉酶为载体蛋白,将NCL的2个亚基NAS和NBS共转化至米曲霉中进行表达,最终得到了与天然NCL相比具有类似甜度及味觉修饰功能的rNCL[33]。
哺乳动物细胞生产的各类蛋白在现代制药工业中发挥着重要的作用,但利用哺乳动物细胞生产各类治疗性蛋白操作难度高、生长速率慢、产量低,导致其生产成本往往较高。相较于动物细胞,以米曲霉作为表达平台进行治疗性蛋白的大量生产,其基因操作更简单、生长速率更快且产量更高。同时,米曲霉作为多细胞真菌,与酵母等单细胞真菌相比具有初级的分化过程,其蛋白修饰过程中的糖基化修饰也更类似于哺乳动物细胞,是一种潜力极大的哺乳动物蛋白异源表达宿主[61]。目前利用米曲霉异源表达系统已经成功表达了重组人乳铁蛋白、人溶菌酶、小牛凝乳素等蛋白,此外,具有治疗作用的抗体也被尝试表达[34-45]。Okazaki等利用米曲霉成功表达了抗表皮生长因子受体(Epidermal Growth Factor Receptor,EGFR)抗体的VHH片段,其与EGFR具有高亲和性,不过产率有待提高[46]。具有一定生物活性的重组阿达木单抗也在米曲霉中成功表达并纯化,其抗原结合能力和肿瘤坏死因子(Tumor Necrosis Factor Alpha,TNFα)中和活性均与商业化的全人源单克隆抗体修美乐(Humira)相似,然而由于与天然抗体糖基化的巨大差异,其Fc区域与免疫细胞上的Fc受体的结合活性差,还有很大的改进空间[47]。
3 米曲霉表达异源蛋白所面临的问题及解决策略目前以米曲霉为宿主表达异源蛋白面对的问题主要集中在提高其产量及质量方面,尤其是天然宿主非真菌类的异源蛋白其产率有限,而且由于蛋白修饰途径与天然宿主存在差异,产物的最终结构甚至生物活性也可能存在差异,米曲霉作为一个安全、廉价的蛋白质生产平台仍有很大的发展空间。
导致异源蛋白产率及质量不尽如人意的原因是多方面、多层次的,因此,异源蛋白在米曲霉细胞内表达、修饰、分泌的各个过程中都有很大的改进空间。目前应用于食品发酵等过程中的米曲霉菌株在培养过程中会分泌大量的蛋白酶,蛋白酶将发酵基料中的蛋白质分解为小肽及氨基酸,这是其发酵食品风味来源的一部分。然而在异源蛋白的生产过程中,大量蛋白酶的存在会分解异源蛋白,降低其产量。除蛋白酶外,米曲霉中还有大量分泌型的糖化酶,这些酶与异源蛋白竞争分泌途径,也会在一定程度上降低异源蛋白的产量;还有米曲霉与天然宿主的密码子偏好性差异,在细胞内被合成后由于不能正确地折叠、修饰而被降解,翻译后修饰过程中糖基化的差别影响最终产物的生物活性等。以上种种问题都是限制米曲霉作为异源表达蛋白质平台进一步发展的原因。
3.1 强启动子的选择与改造启动子是基因上RNA聚合酶识别、结合的区域,在异源表达过程中,选择合适的启动子是确保异源基因表达效率的基础。选择内源的组成型启动子作为异源基因表达的调控元件,其受外界条件影响较小,同时与RNA聚合酶亲和力更高,转录起始频率也更高,往往能够获得更高的产量;而诱导型的启动子受到外界因素,如温度、碳源、氮源、化学药物等的调控,可以使目的蛋白的表达更加可控。
在米曲霉异源表达系统中常利用的强启动子一部分来源于其自身大量表达的蛋白质编码基因,如α-淀粉酶基因(amyB)、葡糖糖化酶基因(glaA)、α-葡糖糖苷酶基因(agdA)等,一部分来源于糖酵解相关基因,如3-磷酸甘油醛脱氢酶基因(gpdA)、磷酸甘油酸激酶基因(pgkA)、烯醇化酶基因(enoA)等,这些强启动子保证了外源基因转录时的基本效率[62]。通过简单地将脂肪酸合成相关基因的启动子替换为组成型高表达基因tef1的启动子,就能够将米曲霉菌丝体内的脂肪酸及甘油三酯的含量分别提高到原菌株的2.1倍及2.2倍[63]。此外,根据培养条件的不同,也需要选择不同的启动子,在固体培养的条件下glaB大量表达,而酪氨酸酶编码基因melO上的启动子在液体发酵的情况下,诱导下游基因表达的效率远超PamyB、PglaA以及PagdA;另外,在液体发酵的情况下,锰超氧化物歧化酶编码基因sodM的启动子在0.01%的H2O2的诱导下也可以使报告基因大量表达[62, 64-66]。培养条件的不同意味着米曲霉的生长环境有极大的改变,米曲霉的生长形态、代谢过程也不同,在固体或半固体培养过程中,米曲霉在生长过程中有支持物附着,能够形成营养菌丝和气生菌丝的分化,产生大量的酶,而在液体培养的条件下,受转速及pH等条件的影响,米曲霉往往形成大小不一的菌球,因此,根据培养条件的不同,选用不同的强启动子也是提高异源蛋白表达效率的方法之一[67-68]。
同时,对启动子区域进行一定的改造也可以显著提高转录效率。启动子区域的改造直接影响到转录起始复合体的形成效率,启动子PamyB、PglaA、PagdA中均有4个保守区域Region I、Region II、Region IIIa和Region IIIb,在已有的强启动子区域插入12个串联重复的顺式作用元件Region III (转录因子AMYR结合域)和CAAT框,可以显著提高下游基因的转录水平[69-70],利用以上策略改良后的强启动子PglaA142在米曲霉中生产重组单宁酸酶的活性比在毕赤酵母中进行异源表达的活性要高出2−8倍[71]。
3.2 密码子的优化及mRNA 5′UTR区的改造在利用米曲霉表达异源蛋白的过程中,外源基因在合适的启动子及转录因子的调控下成功转录成pre-mRNA,再通过一系列的加工成为成熟的mRNA,在这个过程中,来源于与米曲霉亲缘关系较远物种中的外源基因所转录出的mRNA更容易被降解,或是产生错误剪接,这些都会导致目的蛋白的最终表达量降低。
利用米曲霉在密码子使用上的偏好性,对外源基因进行密码子优化,是一个提高其mRNA稳定性及后续翻译过程效率的基本方法。外源基因,尤其是来自与米曲霉亲缘关系较远的物种,在表达过程中成功转录之后面对的第一个问题就是mRNA的稳定性,通过密码子的优化可以保证mRNA的正确剪接,有效提高其稳定性,避免mRNA被降解。来源于马铃薯的木葡聚糖内糖基转移酶(S. tuberosum Xyloglucan Endotransglucosylase,StXTH)在米曲霉中进行异源表达的过程中,由于米曲霉将pre-mRNA中的部分编码区域明显误读为内含子而对其进行了错误的剪接,最终导致没能在米曲霉中成功表达该蛋白[72]。在这个过程中,如果依据米曲霉密码子使用的偏好性对StXTH进行密码子优化,提升其GC含量,极有可能避免错误剪切的问题。在真核生物中,成熟mRNA的多聚腺苷酸化能够保护mRNA不被核酸外切酶降解,在粉尘螨分泌的Der f 7蛋白异源表达的过程中,与经过密码子优化后的mRNA相比,天然的mRNA往往会由于AU含量高而导致过早地聚腺苷酸化,同时其在细胞内的存在时间也大大缩短[58-59, 73]。因此,在米曲霉中表达异源蛋白的过程中,依据米曲霉密码子的使用频率对异源基因进行适当的优化是十分必要的[74]。
翻译过程依赖于mRNA进行,在不影响其所编码蛋白质结构的前提下,对5′UTR区域进行适当的改造可以提高翻译效率。5′UTR是位于mRNA上编码序列上游的一段序列,可以调控翻译过程,例如,通过形成茎环结构或者较小的发卡结构可以阻碍核糖体在mRNA上的移动,对翻译过程进行负调控[75-77]。已有研究发现,在异源表达过程中对5′UTR部分的改变不会影响转录水平,而是在转录后的翻译过程中提高了表达水平[76]。通过强启动子及mRNA修饰的综合利用,可以有效地提高外源基因在米曲霉中的表达水平。
3.3 蛋白修饰异源蛋白在宿主中成功表达后仍面临着转运、修饰、分泌等诸多考验。采用融合表达的策略,以米曲霉高表达的内源蛋白作为载体蛋白进行融合表达可以有效提高异源蛋白的产量,利用α-淀粉酶作为载体蛋白可以将人溶菌酶的产量提高到不使用任何载体蛋白的20倍以上[42]。分泌型蛋白需要经过内质网、高尔基体的修饰后通过囊泡运输到胞外,这个过程离不开信号肽的指导。Ogino等[78]以GFP为指示蛋白,研究信号肽对异源蛋白分泌的影响,发现无论是单个信号肽的多拷贝还是多个信号肽的融合都能促进米曲霉中异源蛋白的分泌[46-60, 62-77]。
异源蛋白的天然宿主中的糖基化修饰过程往往与米曲霉内的糖基化修饰不同,为了保证糖基化蛋白的正常生理功能,往往需要对糖基化修饰过程进行控制。哺乳动物的糖蛋白往往结构复杂,而米曲霉中的糖蛋白大部分由高尔基体中的α-1, 6-甘露糖基转移酶形成的高甘露糖结构所修饰,有研究在米曲霉中表达复杂糖型的人源全长阿达木单抗时,首先就将编码α-1, 6-甘露糖基转移酶的基因och1敲除,之后可以陆续表达与修饰糖基相关的糖苷酶、糖基转移酶、糖转运体等,进一步修饰米曲霉中的人源抗体[47]。同样是删除米曲霉天然修饰的糖基化,Li等采用另一种思路,将内切-β-N-乙酰氨基葡萄糖苷酶表达在了米曲霉的高尔基体膜上,用来切除所有分泌型蛋白的N-糖基,最终得到统一糖型的分泌蛋白[79]。
3.4 底盘细胞改造米曲霉中高产的各类蛋白酶在食品发酵工业中起着重要的作用,然而,培养基中大量的蛋白酶会降解异源表达的蛋白质,使用内源蛋白酶缺失的菌株可以有效地提高异源蛋白的最终产量。以产人溶菌酶菌株NAR-2L-7作为模型,对其中5个蛋白酶基因进行干扰,最终得到的NAR-2L-7ΔtppAΔpepE菌株相较对照菌株而言,人溶菌酶产量提高了63%[42]。Kimura等对132个蛋白酶基因进行全局分析后,选定中性蛋白酶相关基因nptB作为目标基因,在nptB缺失菌株中,异源蛋白的产量可提高至22%[41]。除了前述的2倍蛋白酶基因缺失菌株(ΔtppAΔpepE)外,还有5倍蛋白酶缺失菌株(ΔtppAΔpepEΔnptBΔdppIVΔdppV)、10倍蛋白酶缺失菌株(ΔtppAΔpepEΔnptBΔdppIV ΔdppVΔalpAΔpepAΔAopepAaΔAopepAdΔcpI)被相继构建[37, 39]。这一系列的缺失菌株充分地证明了可以通过降低米曲霉中蛋白酶产量的手段达到提高异源蛋白产量的目的。
对米曲霉中蛋白质的分泌途径进行改造同样可以影响异源蛋白的产量。米曲霉中已有21个SNARE蛋白被找到,这些蛋白的亚细胞定位的系统性分析有助于确定改造异源蛋白分泌途径的目标基因[80]。在米曲霉中,Aovps10编码液泡蛋白分选受体,与异常蛋白的降解相关,该基因的缺失会导致原本被分选到液泡中的部分蛋白质被分泌到培养基中,以米曲霉ΔAovps10菌株生产的小牛凝乳素及人溶菌酶产量可以分别提高3倍及2.2倍;此外,通过将米曲霉中与自噬过程相关的基因敲除,也可以将异源蛋白小牛凝乳素的产量提升3倍[36, 38, 81-82]。
事实上,除了细胞内外的降解外,米曲霉产生的大量分泌型蛋白也会与异源蛋白的分泌途径形成竞争,从而影响其产量。通过干扰米曲霉中的α-淀粉酶合成基因,将α-淀粉酶的活性抑制为原先的30%−40%,此时异源蛋白的产量相比对照菌株能提高29%−57%[40]。Kitamoto等将米曲霉菌株KBN616中的5个蛋白酶编码基因和2个淀粉酶合成基因敲除,得到高产菌株KO4[83]。
3.5 培养工艺的优化米曲霉的培养条件也会影响异源蛋白的表达。在固态培养和液态培养2种条件下,米曲霉所产生的蛋白差异很大,在固态培养的条件下,米曲霉会分泌出更多的蛋白质到细胞外,能够达到液态培养条件下的4.0−6.4倍[84]。通过增加少许谷壳作为载体,在液体培养基中发酵的米曲霉能够分泌更多的异源植酸酶,分泌到培养基中的植酸酶活性与单纯的液体发酵相比增加了4.3倍[48]。此外,培养基的构成也会影响米曲霉产生异源蛋白的效率。Jin等以5×DPY培养基作为人溶菌酶的生产培养基,与普通的DPY培养基相比,人溶菌酶的产量得到了提高,除了更充足的营养外,黏度的提高导致菌丝散布生长可能也是产量上升的原因[42]。在摇瓶培养条件下进行的优化往往比较单一,而在实际生产过程中,还有更多的条件需要考虑。
4 展望米曲霉作为一种在实际生产中已有上千年应用历史的丝状真菌,被用在酱油酿造、豆豉发酵和制曲等多种传统食品发酵过程中,此外还被用作曲酸生产、酶制剂生产和饲料添加剂等。得益于遗传操作手段的日益成熟,能够大量分泌蛋白质的米曲霉在异源蛋白表达方面的应用得到了进一步的探索,目前,米曲霉在生产中主要用作果胶酯酶、木聚糖酶、脂肪酶等食品用酶制剂生产,其中的基因供体均来源于其他真菌。米曲霉中异源蛋白产量的提升是一个系统性的工程,从高产菌株的选育到遗传改造、生产发酵过程中的条件控制以及产物提纯,各个方面都有提升的可能,目前相关研究的背景菌株往往来源于日本清酒及酱油生产的菌株,而基于我国传统菌株的研究较少。在米曲霉异源蛋白生产平台的进一步开发利用上,除了各类酶制剂,结构更复杂、生产成本更高、对大量生产需求更迫切的哺乳动物来源的各类糖基化蛋白,同样是下一步探索的方向,异源糖基化蛋白在米曲霉中的生产首要解决的就是蛋白的修饰与活性问题,在保证糖基化蛋白基本功能不缺失的前提下提高产量、降低成本。以米曲霉为安全生产平台或是未来大规模地获取各具功能的异源蛋白的新途径。
[1] |
Kitamoto K. Cell biology of the Koji mold Aspergillus oryzae[J]. Bioscience, Biotechnology, and Biochemistry, 2015, 79(6): 863-869. DOI:10.1080/09168451.2015.1023249 |
[2] |
Sallam SMA, Abdelmalek MLR, Kholif AE, Zahran SM, Ahmed MH, Zeweil HS, Attia MFA, Matloup OH, Olafadehan OA. The effect of Saccharomyces cerevisiae live cells and Aspergillus oryzae fermentation extract on the lactational performance of dairy cows[J]. Animal Biotechnology, 2020, 31(6): 491-497. DOI:10.1080/10495398.2019.1625783 |
[3] |
Dawood MAO, Eweedah NM, Moustafa Moustafa E, Shahin MG. Effects of feeding regimen of dietary Aspergillus oryzae on the growth performance, intestinal morphometry and blood profile of Nile tilapia (Oreochromis niloticus)[J]. Aquaculture Nutrition, 2019, 25(5): 1063-1072. DOI:10.1111/anu.12923 |
[4] |
Dawood MAO, Eweedah NM, Moustafa EM, Farahat EM. Probiotic effects of Aspergillus oryzae on the oxidative status, heat shock protein, and immune related gene expression of Nile tilapia (Oreochromis niloticus) under hypoxia challenge[J]. Aquaculture, 2020, 520: 734669. DOI:10.1016/j.aquaculture.2019.734669 |
[5] |
Ntana F, Mortensen UH, Sarazin C, Figge R. Aspergillus: a powerful protein production platform[J]. Catalysts, 2020, 10(9): 1064. DOI:10.3390/catal10091064 |
[6] |
Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto KI, ARIMA T, Akita O, Kashiwagi Y, et al. Genome sequencing and analysis of Aspergillus oryzae[J]. Nature, 2005, 438(7071): 1157-1161. DOI:10.1038/nature04300 |
[7] |
Jin FJ, Hu S, Wang BT, Jin L. Advances in genetic engineering technology and its application in the industrial fungus Aspergillus oryzae[J]. Frontiers in Microbiology, 2021, 12: 644404. DOI:10.3389/fmicb.2021.644404 |
[8] |
Todokoro T, Bando H, Kotaka A, Tsutsumi H, Hata Y, Ishida H. Identification of a novel pyrithiamine resistance marker gene thiI for genome co-editing in Aspergillus oryzae[J]. Journal of Bioscience and Bioengineering, 2020, 130(3): 227-232. DOI:10.1016/j.jbiosc.2020.04.013 |
[9] |
Kubodera T, Yamashita N, Nishimura A. Pyrithiamine resistance gene (ptrA) of Aspergillus oryzae: cloning, characterization and application as a dominant selectable marker for transformation[J]. Bioscience, Biotechnology, and Biochemistry, 2000, 64(7): 1416-1421. DOI:10.1271/bbb.64.1416 |
[10] |
Suzuki S, Tada S, Fukuoka M, Taketani H, Tsukakoshi Y, Matsushita M, Oda K, Kusumoto KI, Kashiwagi Y, Sugiyama M. A novel transformation system using a bleomycin resistance marker with chemosensitizers for Aspergillus oryzae[J]. Biochemical and Biophysical Research Communications, 2009, 383(1): 42-47. DOI:10.1016/j.bbrc.2009.03.108 |
[11] |
Li T, Li YP. Construction of transformation system of Aspergillus oryzae H4 and heterologous expression of lipase[J]. Journal of Nanchang University: Natural Science, 2019, 43(3): 246-250, 256. (in Chinese) 李童, 李燕萍. 米曲霉(Aspergillus oryzae)黄酒小曲4转化体系的构建及脂肪酶的异源表达[J]. 南昌大学学报, 2019, 43(3): 246-250, 256. DOI:10.3969/j.issn.1006-0464.2019.03.008 |
[12] |
Gomi K, Iimura Y, Hara S. Integrative transformation of Aspergillus oryzae with a plasmid containing the Aspergillus nidulans argB gene[J]. Agricultural and Biological Chemistry, 1987, 51(9): 2549-2555. |
[13] |
Ruiter-Jacobs YMJT, Broekhuijsen M, Unkles SE, Campbell EI, Kinghorn JR, Contreras R, Pouwels PH, Hondell CAMJJ. A gene transfer system based on the homologous pyrG gene and efficient expression of bacterial genes in Aspergillus oryzae[J]. Current Genetics, 1989, 16(3): 159-163. DOI:10.1007/BF00391472 |
[14] |
Yamada O, Lee BR, Gomi K. Transformation System for Aspergillus oryzae with Double Auxotrophic Mutations, niaD and sC[J]. Bioscience, Biotechnology, and Biochemistry, 1997, 61(8): 1367-1369. DOI:10.1271/bbb.61.1367 |
[15] |
Jin FJ, Maruyama JI, Juvvadi PR, Arioka M, Kitamoto K. Adenine auxotrophic mutants of Aspergillus oryzae: development of a novel transformation system with triple auxotrophic hosts[J]. Bioscience, Biotechnology, and Biochemistry, 2004, 68(3): 656-662. DOI:10.1271/bbb.68.656 |
[16] |
Jin FJ, Maruyama JI, Juvvadi PR, Arioka M, Kitamoto K. Development of a novel quadruple auxotrophic host transformation system by argB gene disruption using adeA gene and exploiting adenine auxotrophy in Aspergillus oryzae[J]. FEMS Microbiology Letters, 2004, 239(1): 79-85. DOI:10.1016/j.femsle.2004.08.025 |
[17] |
Gomi K, Kitamoto K, Kumagai C. Transformation of the industrial strain of Aspergillus oryzae with the homologous amdS gene as a dominant selectable marker[J]. Journal of Fermentation and Bioengineering, 1992, 74(6): 389-391. DOI:10.1016/0922-338X(92)90037-U |
[18] |
Elrod SL, Jones A, Berka RM, Cherry JR. Cloning of the Aspergillus oryzae 5-aminolevulinate synthase gene and its use as a selectable marker[J]. Current Genetics, 2000, 38(5): 291-298. DOI:10.1007/s002940000156 |
[19] |
Sun YL, Niu YL, Huang H, He B, Ma L, Tu YY, Tran VT, Zeng B, Hu ZH. Mevalonate diphosphate decarboxylase MVD/Erg19 is required for ergosterol biosynthesis, growth, sporulation and stress tolerance in Aspergillus oryzae[J]. Frontiers in Microbiology, 2019, 10: 1074. DOI:10.3389/fmicb.2019.01074 |
[20] |
Sun YL, Niu YL, He B, Ma L, Li GH, Tran VT, Zeng B, Hu ZH. A dual selection marker transformation system using Agrobacterium tumefaciens for the industrial Aspergillus oryzae 3.042[J]. Journal of Microbiology and Biotechnology, 2019, 29(2): 230-234. DOI:10.4014/jmb.1811.11027 |
[21] |
Maruyama JI, Kitamoto K. Multiple gene disruptions by marker recycling with highly efficient gene-targeting background (ΔligD) in Aspergillus oryzae[J]. Biotechnology Letters, 2008, 30(10): 1811-1817. DOI:10.1007/s10529-008-9763-9 |
[22] |
Zhang SL, Ban A, Ebara N, Mizutani O, Tanaka M, Shintani T, Gomi K. Self-excising Cre/mutant lox marker recycling system for multiple gene integrations and consecutive gene deletions in Aspergillus oryzae[J]. Journal of Bioscience and Bioengineering, 2017, 123(4): 403-411. DOI:10.1016/j.jbiosc.2016.11.001 |
[23] |
Sugui JA, Chang YC, Kwon-Chung KJ. Agrobacterium tumefaciens-mediated transformation of Aspergillus fumigatus: an efficient tool for insertional mutagenesis and targeted gene disruption[J]. Applied and Environmental Microbiology, 2005, 71(4): 1798-1802. DOI:10.1128/AEM.71.4.1798-1802.2005 |
[24] |
Wang DY, He D, Li GQ, Gao S, Lv H, Shan QS, Wang L. An efficient tool for random insertional mutagenesis: Agrobacterium tumefaciens-mediated transformation of the filamentous fungus Aspergillus terreus[J]. Journal of Microbiological Methods, 2014, 98: 114-118. DOI:10.1016/j.mimet.2014.01.007 |
[25] |
Han GM, Shao Q, Li CP, Zhao K, Jiang L, Fan J, Jiang HY, Tao F. An efficient Agrobacterium-mediated transformation method for aflatoxin generation fungus Aspergillus flavus[J]. Journal of Microbiology, 2018, 56(5): 356-364. DOI:10.1007/s12275-018-7349-3 |
[26] |
Zhang H, Yan JN, Zhang H, Liu TQ, Xu Y, Zhang YY, Li J. Effect of gpd box copy numbers in the gpdA promoter of Aspergillus nidulans on its transcription efficiency in Aspergillus niger[J]. FEMS Microbiology Letters, 2018, 365(15): fny154. |
[27] |
Hu Huang, Sun iu, Xu Liu, Zhang Jiang, Li Zeng. Effects on gene transcription profile and fatty acid composition by genetic modification of mevalonate diphosphate decarboxylase MVD/Erg19 in Aspergillus oryzae[J]. Microorganisms, 2019, 7(9): 342. DOI:10.3390/microorganisms7090342 |
[28] |
Chen XA, Ishida N, Todaka N, Nakamura R, Maruyama JI, Takahashi H, Kitamoto K. Promotion of efficient saccharification of crystalline cellulose by Aspergillus fumigatus Swo1[J]. Applied and Environmental Microbiology, 2010, 76(8): 2556-2561. DOI:10.1128/AEM.02499-09 |
[29] |
Hirayama K, Watanabe H, Tokuda G, Kitamoto K, Arioka M. Purification and characterization of termite endogenous β-1, 4-endoglucanases produced in Aspergillus oryzae[J]. Bioscience, Biotechnology, and Biochemistry, 2010, 74(8): 1680-1686. DOI:10.1271/bbb.100296 |
[30] |
Todaka N, Lopez CM, Inoue T, Saita K, Maruyama JI, Arioka M, Kitamoto K, Kudo T, Moriya S. Heterologous expression and characterization of an endoglucanase from a symbiotic protist of the lower termite, Reticulitermes speratus[J]. Applied Biochemistry and Biotechnology, 2010, 160(4): 1168-1178. DOI:10.1007/s12010-009-8626-8 |
[31] |
Uchima CA, Tokuda G, Watanabe H, Kitamoto K, Arioka M. Heterologous expression and characterization of a glucose-stimulated β-glucosidase from the termite Neotermes koshunensis in Aspergillus oryzae[J]. Applied Microbiology and Biotechnology, 2011, 89(6): 1761-1771. DOI:10.1007/s00253-010-2963-y |
[32] |
Otagiri M, Lopez CM, Kitamoto K, Arioka M, Kudo T, Moriya S. Heterologous expression and characterization of a glycoside hydrolase family 45 endo-β-1, 4-glucanase from a symbiotic protist of the lower termite, Reticulitermes speratus[J]. Applied Biochemistry and Biotechnology, 2013, 169(6): 1910-1918. DOI:10.1007/s12010-012-9992-1 |
[33] |
Nakajima KI, Asakura T, Maruyama JI, Morita Y, Oike H, Shimizu-Ibuka A, Misaka T, Sorimachi H, Arai S, Kitamoto K, et al. Extracellular production of neoculin, a sweet-tasting heterodimeric protein with taste-modifying activity, by Aspergillus oryzae[J]. Applied and Environmental Microbiology, 2006, 72(5): 3716-3723. DOI:10.1128/AEM.72.5.3716-3723.2006 |
[34] |
Jin FJ, Katayama T, Maruyama JI, Kitamoto K. Comparative genomic analysis identified a mutation related to enhanced heterologous protein production in the filamentous fungus Aspergillus oryzae[J]. Applied Microbiology and Biotechnology, 2016, 100(21): 9163-9174. DOI:10.1007/s00253-016-7714-2 |
[35] |
Hoang HD, Maruyama JI, Kitamoto K. Modulating endoplasmic Reticulum-Golgi cargo receptors for improving secretion of carrier-fused heterologous proteins in the filamentous fungus Aspergillus oryzae[J]. Applied and Environmental Microbiology, 2015, 81(2): 533-543. DOI:10.1128/AEM.02133-14 |
[36] |
Zhu L, Maruyama JI, Kitamoto K. Further enhanced production of heterologous proteins by double-gene disruption (ΔAosedD ΔAovps10) in a hyper-producing mutant of Aspergillus oryzae[J]. Applied Microbiology and Biotechnology, 2013, 97(14): 6347-6357. DOI:10.1007/s00253-013-4795-z |
[37] |
Yoon J, Maruyama JI, Kitamoto K. Disruption of ten protease genes in the filamentous fungus Aspergillus oryzae highly improves production of heterologous proteins[J]. Applied Microbiology and Biotechnology, 2011, 89(3): 747-759. DOI:10.1007/s00253-010-2937-0 |
[38] |
Yoon J, Aishan T, Maruyama JI, Kitamoto K. Enhanced production and secretion of heterologous proteins by the filamentous fungus Aspergillus oryzae via disruption of vacuolar protein sorting receptor gene Aovps10[J]. Applied and Environmental Microbiology, 2010, 76(17): 5718-5727. DOI:10.1128/AEM.03087-09 |
[39] |
Yoon J, Kimura S, Maruyama JI, Kitamoto K. Construction of quintuple protease gene disruptant for heterologous protein production in Aspergillus oryzae[J]. Applied Microbiology and Biotechnology, 2009, 82(4): 691-701. DOI:10.1007/s00253-008-1815-5 |
[40] |
Nemoto T, Maruyama JI, Kitamoto K. Improvement of heterologous protein production in Aspergillus oryzae by RNA interference with alpha-amylase genes[J]. Bioscience, Biotechnology, and Biochemistry, 2009, 73(11): 2370-2373. DOI:10.1271/bbb.90177 |
[41] |
Kimura S, Maruyama JI, Takeuchi M, Kitamoto K. Monitoring global gene expression of proteases and improvement of human lysozyme production in the nptB gene disruptant of Aspergillus oryzae[J]. Bioscience, Biotechnology, and Biochemistry, 2008, 72(2): 499-505. DOI:10.1271/bbb.70582 |
[42] |
Jin FJ, Watanabe T, Juvvadi PR, Maruyama JI, Arioka M, Kitamoto K. Double disruption of the proteinase genes, tppA and pepE, increases the production level of human lysozyme by Aspergillus oryzae[J]. Applied Microbiology and Biotechnology, 2007, 76(5): 1059-1068. DOI:10.1007/s00253-007-1088-4 |
[43] |
Tsuchiya K, Gomi K, Kitamoto K, Kumagai C, Tamura G. Secretion of calf chymosin from the filamentous fungus Aspergillus oryzae[J]. Applied Microbiology and Biotechnology, 1993, 40(2/3): 327-332. |
[44] |
Tsuchiya K, Tada S, Gomi K, Kitamoto K, Kumagai C, Jigami Y, Tamura G. High level expression of the synthetic human lysozyme gene in Aspergillus oryzae[J]. Applied Microbiology and Biotechnology, 1992, 38(1): 109-114. |
[45] |
Ward PP, Lo JY, Duke M, May GS, Headon DR, Conneely OM. Production of biologically active recombinant human lactoferrin in Aspergillus oryzae[J]. Bio/Technology, 1992, 10(7): 784-789. |
[46] |
Okazaki F, Aoki JI, Tabuchi S, Tanaka T, Ogino C, Kondo A. Efficient heterologous expression and secretion in Aspergillus oryzae of a llama variable heavy-chain antibody fragment V_HH against EGFR[J]. Applied Microbiology and Biotechnology, 2012, 96(1): 81-88. DOI:10.1007/s00253-012-4158-1 |
[47] |
Huynh HH, Morita N, Sakamoto T, Katayama T, Miyakawa T, Tanokura M, Chiba Y, Shinkura R, Maruyama JI. Functional production of human antibody by the filamentous fungus Aspergillus oryzae[J]. Fungal Biology and Biotechnology, 2020, 7(1): 1-15. DOI:10.1186/s40694-019-0091-8 |
[48] |
Dung TH, Tuan TV. Heterologous phytase expression in the food filamentous fungus Aspergillus oryzae using the added rice husk cultivation model[J]. Academia Journal of Biology, 2020, 42(2): 75-84. |
[49] |
Yoshino-Yasuda S, Kato M, Kitamoto N. Sequence analysis and heterologous expression of polygalacturonase gene (AspecA) from a shoyu koji mold, Aspergillus sojae KBN1340[J]. Food Science and Technology Research, 2011, 17(6): 579-584. DOI:10.3136/fstr.17.579 |
[50] |
Yin YC, Mao YZ, Yin XL, Gao B, Wei DZ. Construction of a shuttle vector for heterologous expression of a novel fungal α-amylase gene in Aspergillus oryzae[J]. Journal of Microbiology and Biotechnology, 2015, 25(7): 988-998. DOI:10.4014/jmb.1410.10022 |
[51] |
Ooi T, Sato H, Matsumoto K, Taguchi S. A unique post-translational processing of an exo-β-1, 3-glucanase of Penicillium sp. KH10 expressed in Aspergillus oryzae[J]. Protein Expression and Purification, 2009, 67(2): 126-131. DOI:10.1016/j.pep.2009.05.016 |
[52] |
He L, Mao YZ, Zhang LJ, Wang HL, Alias SA, Gao B, Wei DZ. Functional expression of a novel α-amylase from Antarctic psychrotolerant fungus for baking industry and its magnetic immobilization[J]. BMC Biotechnology, 2017, 17(1): 1-13. DOI:10.1186/s12896-016-0323-4 |
[53] |
Yoshimi A, Yamaguchi S, Fujioka T, Kawai K, Gomi K, Machida M, Abe K. Heterologous production of a novel cyclic peptide compound, KK-1, in Aspergillus oryzae[J]. Frontiers in Microbiology, 2018, 9: 690. DOI:10.3389/fmicb.2018.00690 |
[54] |
Tamalampudi S, Talukder MMR, Hama S, Tanino T, Suzuki Y, Kondo A, Fukuda H. Development of recombinant Aspergillus oryzae whole-cell biocatalyst expressing lipase-encoding gene from Candida antarctica[J]. Applied Microbiology and Biotechnology, 2007, 75(2): 387-395. DOI:10.1007/s00253-006-0814-7 |
[55] |
Takaya T, Koda R, Adachi D, Nakashima K, Wada JP, Bogaki T, Ogino C, Kondo A. Highly efficient biodiesel production by a whole-cell biocatalyst employing a system with high lipase expression in Aspergillus oryzae[J]. Applied Microbiology and Biotechnology, 2011, 90(3): 1171-1177. DOI:10.1007/s00253-011-3186-6 |
[56] |
Dusková J, Dohnálek J, Skálová T, Østergaard LH, Fuglsang CC, Kolenko P, Stepánková A, Hasek J. Crystallization of carbohydrate oxidase from Microdochium nivale[J]. Acta Crystallographica Section F, Structural Biology and Crystallization Communications, 2009, 65(Pt 6): 638-640. |
[57] |
Yaver DS, Overjero MD, Xu F, Nelson BA, Brown KM, Halkier T, Bernauer S, Brown SH, Kauppinen S. Molecular characterization of laccase genes from the basidiomycete Coprinus cinereus and heterologous expression of the laccase lcc1[J]. Applied and Environmental Microbiology, 1999, 65(11): 4943-4948. DOI:10.1128/AEM.65.11.4943-4948.1999 |
[58] |
Tanaka M, Tokuoka M, Shintani T, Gomi K. Transcripts of a heterologous gene encoding mite allergen Der f 7 are stabilized by codon optimization in Aspergillus oryzae[J]. Applied Microbiology and Biotechnology, 2012, 96(5): 1275-1282. DOI:10.1007/s00253-012-4169-y |
[59] |
Tokuoka M, Tanaka M, Ono K, Takagi S, Shintani T, Gomi K. Codon optimization increases steady-state mRNA levels in Aspergillus oryzae heterologous gene expression[J]. Applied and Environmental Microbiology, 2008, 74(21): 6538-6546. DOI:10.1128/AEM.01354-08 |
[60] |
Maruyama JI, Ohnuma H, Yoshikawa A, Kadokura H, Nakajima H, Kitamoto K. Production and product quality assessment of human hepatitis B virus pre-S2 antigen in submerged and solid-state cultures of Aspergillus oryzae[J]. Journal of Bioscience and Bioengineering, 2000, 90(1): 118-120. DOI:10.1016/S1389-1723(00)80045-6 |
[61] |
Jin C. Glycobiology in filamentous fungus[J]. Chinese Bulletin of Life Sciences, 2011, 23(6): 541-554. (in Chinese) 金城. 丝状真菌糖生物学[J]. 生命科学, 2011, 23(6): 541-554. |
[62] |
Ishida H, Hata Y, Kawato A, Abe Y, Kashiwagi Y. Isolation of a novel promoter for efficient protein production in Aspergillus oryzae[J]. Bioscience, Biotechnology, and Biochemistry, 2004, 68(9): 1849-1857. DOI:10.1271/bbb.68.1849 |
[63] |
Tamano K, Bruno KS, Karagiosis SA, Culley DE, Deng S, Collett JR, Umemura M, Koike H, Baker SE, Machida M. Increased production of fatty acids and triglycerides in Aspergillus oryzae by enhancing expressions of fatty acid synthesis-related genes[J]. Applied Microbiology and Biotechnology, 2013, 97(1): 269-281. DOI:10.1007/s00253-012-4193-y |
[64] |
Hisada H, Sano M, Ishida H, Hata Y, Machida M. Identification of regulatory elements in the glucoamylase-encoding gene (glaB) promoter from Aspergillus oryzae[J]. Applied Microbiology and Biotechnology, 2013, 97(11): 4951-4956. DOI:10.1007/s00253-012-4622-y |
[65] |
Ishida H, Hata Y, Kawato A, Abe Y. Improvement of the glaB promoter expressed in solid-state fermentation (SSF) of Aspergillus oryzae[J]. Bioscience, Biotechnology, and Biochemistry, 2006, 70(5): 1181-1187. DOI:10.1271/bbb.70.1181 |
[66] |
Ishida H, Matsumura K, Hata Y, Kawato A, Suginami K, Abe Y, Imayasu S, Ichishima E. Establishment of a hyper-protein production system in submerged Aspergillus oryzae culture under tyrosinase-encoding gene (melO) promoter control[J]. Applied Microbiology and Biotechnology, 2001, 57(1/2): 131-137. |
[67] |
Kurakake M, Hirotsu S, Shibata M. Relationship between pellet formation by Aspergillus oryzae strain KB and the production of β-fructofuranosidase with high transfructosylation activity[J]. Fungal Biology, 2020, 124(8): 708-713. DOI:10.1016/j.funbio.2020.04.002 |
[68] |
Heo JH, Ananin V, Park JS, Lee CR, Moon JO, Kwon O, Kang HA, Kim CH, Rhee SK. Impeller types and feeding modes influence the morphology and protein expression in the submerged culture of Aspergillus oryzae[J]. Biotechnology and Bioprocess Engineering, 2004, 9(3): 184-190. DOI:10.1007/BF02942290 |
[69] |
Tsuboi H, Koda A, Toda T, Minetoki T, Hirotsune M, Machida M. Improvement of the Aspergillus oryzae enolase promoter (P-enoA) by the introduction of cis-element repeats[J]. Bioscience, Biotechnology, and Biochemistry, 2005, 69(1): 206-208. DOI:10.1271/bbb.69.206 |
[70] |
Kanemori Y, Gomi K, Kitamoto K, Kumagai C, Tamura G. Insertion analysis of putative functional elements in the promoter region of the Aspergillus oryzae Taka-amylase A gene (amyB) using a heterologous Aspergillus nidulans amdS-lacZ fusion gene system[J]. Bioscience, Biotechnology, and Biochemistry, 1999, 63(1): 180-183. DOI:10.1271/bbb.63.180 |
[71] |
Ichikawa K, Shiono Y, Shintani T, Watanabe A, Kanzaki H, Gomi K, Koseki T. Efficient production of recombinant tannase in Aspergillus oryzae using an improved glucoamylase gene promoter[J]. Journal of Bioscience and Bioengineering, 2020, 129(2): 150-154. DOI:10.1016/j.jbiosc.2019.08.002 |
[72] |
Hamann T, Lange L. Discovery, cloning and heterologous expression of secreted potato proteins reveal erroneous pre-mRNA splicing in Aspergillus oryzae[J]. Journal of Biotechnology, 2006, 126(3): 265-276. DOI:10.1016/j.jbiotec.2006.04.026 |
[73] |
Tanaka M, Tokuoka M, Gomi K. Effects of codon optimization on the mRNA levels of heterologous genes in filamentous fungi[J]. Applied Microbiology and Biotechnology, 2014, 98(9): 3859-3867. DOI:10.1007/s00253-014-5609-7 |
[74] |
Iriarte A, Sanguinetti M, Fernández-Calero T, Naya H, Ramón A, Musto H. Translational selection on codon usage in the genus Aspergillus[J]. Gene, 2012, 506(1): 98-105. DOI:10.1016/j.gene.2012.06.027 |
[75] |
Koda A, Bogaki T, Minetoki T, Hirotsune M. 5' untranslated region of the Hsp12 gene contributes to efficient translation in Aspergillus oryzae[J]. Applied Microbiology and Biotechnology, 2006, 70(3): 333-336. DOI:10.1007/s00253-005-0083-x |
[76] |
Koda A, Minetoki T, Ozeki K, Hirotsune M. Translation efficiency mediated by the 5' untranslated region greatly affects protein production in Aspergillus oryzae[J]. Applied Microbiology and Biotechnology, 2004, 66(3): 291-296. DOI:10.1007/s00253-004-1681-8 |
[77] |
Tamayo-Ramos JA, Barends S, De Lange D, De Jel A, Verhaert R, De Graaff L. Enhanced production of Aspergillus niger laccase-like multicopper oxidases through mRNA optimization of the glucoamylase expression system[J]. Biotechnology and Bioengineering, 2013, 110(2): 543-551. DOI:10.1002/bit.24723 |
[78] |
Ogino C, Matsuda T, Okazaki F, Tanaka T, Kondo A. The effect of combining signal sequences with the N28 fragment on GFP production in Aspergillus oryzae[J]. Process Biochemistry, 2014, 49(7): 1078-1083. DOI:10.1016/j.procbio.2014.03.025 |
[79] |
Li QS, Higuchi Y, Tanabe K, Katakura Y, Takegawa K. Secretory production of N-glycan-deleted glycoprotein in Aspergillus oryzae[J]. Journal of Bioscience and Bioengineering, 2020, 129(5): 573-580. DOI:10.1016/j.jbiosc.2019.12.006 |
[80] |
Kuratsu M, Taura A, Shoji JY, Kikuchi S, Arioka M, Kitamoto K. Systematic analysis of SNARE localization in the filamentous fungus Aspergillus oryzae[J]. Fungal Genetics and Biology, 2007, 44(12): 1310-1323. DOI:10.1016/j.fgb.2007.04.012 |
[81] |
Yoon J, Kikuma T, Maruyama JI, Kitamoto K. Enhanced production of bovine chymosin by autophagy deficiency in the filamentous fungus Aspergillus oryzae[J]. PLoS One, 2013, 8(4): e62512. DOI:10.1371/journal.pone.0062512 |
[82] |
Zhu L, Nemoto T, Yoon J, Maruyama JI, Kitamoto K. Improved heterologous protein production by a tripeptidyl peptidase gene (AosedD) disruptant of the filamentous fungus Aspergillus oryzae[J]. The Journal of General and Applied Microbiology, 2012, 58(3): 199-209. DOI:10.2323/jgam.58.199 |
[83] |
Kitamoto N, Ono N, Yoshino-Yasuda S. Construction of quintuple protease and double amylase gene deletant for heterologous protein production in Aspergillus oryzae KBN616[J]. Food Science and Technology Research, 2015, 21(3): 297-307. DOI:10.3136/fstr.21.297 |
[84] |
Oda K, Kakizono D, Yamada O, Iefuji H, Akita O, Iwashita K. Proteomic analysis of extracellular proteins from Aspergillus oryzae grown under submerged and solid-state culture conditions[J]. Applied and Environmental Microbiology, 2006, 72(5): 3448-3457. DOI:10.1128/AEM.72.5.3448-3457.2006 |