微生物学通报  2020, Vol. 47 Issue (9): 3065−3074

扩展功能

文章信息

陈静, 陈英虎
CHEN Jing, CHEN Ying-Hu
CRISPR/Cas9在Epstein-Barr病毒感染免疫中的研究进展
CRISPR-Cas9 in immunity of Epstein-Barr virus infection: a review
微生物学通报, 2020, 47(9): 3065-3074
Microbiology China, 2020, 47(9): 3065-3074
DOI: 10.13344/j.microbiolchina.200734

文章历史

收稿日期: 2020-07-17
接受日期: 2020-08-30
网络首发日期: 2020-09-02
CRISPR/Cas9在Epstein-Barr病毒感染免疫中的研究进展
陈静 , 陈英虎     
浙江大学医学院附属儿童医院感染病科  国家儿童健康与疾病临床医学中心    浙江  杭州    310052
摘要: 爱泼斯坦巴尔病毒(Epstein-Barr virus,EBV)人群感染率高,不同地区、不同年龄人群感染后引发疾病类型各异,除少数急性感染者可自愈外,大部分慢性和潜伏感染者迁延不愈,而且具有潜在的致癌风险;目前机体感染EBV后的免疫机制仍不明确,临床上缺乏有效的治疗药物和根治措施,总体预后较差。作为第三代基因编辑工具,成簇的规律间隔短回文重复序列及相关核酸酶9 (clustered regular interspaced short palindromic repeats/CRISPR-associated nuclease 9,CRISPR/Cas9)技术可在向导RNA引导下,对目的基因组序列进行靶向编辑。因其操作简便、经济高效,目前已广泛应用于农作物品种改良、动物疾病模型构建以及人类疾病精准诊治等领域。本文介绍了CRISPR/Cas9技术应用于EBV感染免疫研究的最新进展,包括EBV致病基因亚型和宿主依赖基因筛选,关键致病机制探索以及基因靶向编辑治疗EBV相关疾病等,为阐明EBV相关疾病的发病机制和探索新型抗病毒治疗策略提供理论依据。
关键词: CRISPR/Cas9    EB病毒    宿主    基因编辑    
CRISPR-Cas9 in immunity of Epstein-Barr virus infection: a review
CHEN Jing , CHEN Ying-Hu     
Department of Infectious Diseases, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
Abstract: Epstein-Barr virus (EBV) infects the vast majority of the world's population. The types of diseases, caused by infection of Epstein-Barr virus, in different subgroups and regions are various. However, the immune mechanism of EBV infection is still unclear. Acute EB virus infection related diseases are usually self-healing. On the other hand, most patients with chronic and latent infections are still lack of effective treatment with a poor prognosis, and risk of cancer. The CRISPR/Cas9 (clustered regular interspaced short palindromic repeats/CRISPR-associated nuclease 9) technology was derived from an acquired immune defense system in bacteria and archaea. As the third-generation genomic editing technology, it can perform targeted editing of specific genomic sequences under the guidance of sgRNA. Because of its characteristics of ease to operation, time saving and high efficiency, it has been widely used in new crop cultivation, animal disease model construction and precise diagnosis and treatment of human diseases. The review describes the progression of CRISPR/Cas9 system in immune research of EB virus infection, including exploration of screening key pathogenic genes and host dependency factors, pathogenic mechanisms, and gene targeted editing to treat EBV-related diseases. It provides implications for studying the pathogenesis of Epstein-Barr virus related diseases and exploring new antiviral treatment strategy.
Keywords: CRISPR/Cas9    Epstein-Barr virus    Host    Gene editing    

EBV是1964年Epstein和Barr在伯基特淋巴瘤(Burkitt’s lymphoma,BL)中发现的肿瘤相关DNA病毒,属于人类疱疹病毒γ亚科[1-2]。人类是EBV唯一的天然宿主,患者和EBV潜伏感染者为传染源,经口密切接触传播,主要感染人类的口咽部上皮细胞和B淋巴细胞[3]。EBV在人群中的感染非常普遍,流行病学资料显示,成年人的EBV抗体阳性率高达90%以上[4]。临床上,EBV感染不同地区、不同年龄人群引起的疾病形式多样,预后差异较大;除少数急性EBV感染者呈自限性,预后较好外;大部分慢性潜伏感染者病程较长,迁延不愈;同时,EBV潜伏感染与多种恶性肿瘤密切相关,如伯基特淋巴瘤、鼻咽癌(nasopharyngeal carcinoma,NPC)、霍奇金淋巴瘤(Hodgkin lymphoma,HL)、弥漫性大B细胞淋巴瘤(diffuse large B cell lymphoma,DLBCL)、EBV相关胃癌(Epstein-Barr virus-associated gastric carcinoma,EBVaGC)和免疫抑制患者(如HIV感染或器官移植后)发生的B细胞淋巴瘤等[5-6]。目前,EBV的具体致病机制尚不明确,EBV慢性潜伏感染及相关恶性肿瘤仍缺乏有效的治疗药物和根治措施,总体预后不佳[4-6]

CRISPR/Cas系统又称成簇的规律间隔短回文重复序列及相关核酸酶系统,源于细菌与古生菌中的适应性免疫系统,用于抵御外源噬菌体或质粒DNA入侵[7-8]。CRISPR/Cas9作为结构简化改造的Ⅱ型CRISPR/Cas系统,可针对目的基因序列按照碱基互补配对原则设计向导RNA (single guide RNA,sgRNA),在sgRNA引导下,由Cas9核酸酶进行靶向识别剪切,再通过同源重组(homologous recombination,HR)和/或非同源末端链接(non-homologous ending-joining,NHEJ)完成特定基因序列的靶向编辑[9-10]。作为第三代DNA核酸酶基因编辑技术,相较传统的DNA核酸酶基因编辑技术,如锌指核酸酶(Zinc-finger nucleases,ZFN)和类转录激活因子效应物核酸酶(transcription activator-like effector nucleases,TALENs)基因编辑技术等,CRISPR/Cas9系统具有简便高效、靶向位点选择灵活以及可同时编辑多个靶点等优势[10-11]。近年来,越来越多的学者致力于将CRISPR/Cas9技术应用于EBV感染免疫相关研究中并取得了一系列突破性进展。

1 运用CRISPR/Cas9技术筛选EBV致病基因亚型和宿主依赖基因

EBV感染不同人群、不同宿主细胞后引发的疾病类型和临床预后存在较大差异,除宿主遗传背景和地理环境因素之外,不同的EBV致病基因亚型和宿主依赖基因是其关键因素[12-15]。以往根据基因多态性将EBV基因组粗略分为2个亚型,1型最常见,主要作用于B细胞,使其成为B淋巴细胞永生化细胞系,2型常见于非洲部分地区交叉感染病例;在体外细胞培养条件下,1型转化B淋巴细胞、使其发生癌变的能力强于2型[14, 16]。后有研究发现,EBV潜伏感染时可表达9种潜伏期抗原,包括6种核抗原(EBV nuclear antigens,EBNA1、2、3a、3b、3c和LP)和3种潜伏膜蛋白(latent membrane proteins,LMP1、2a和2b);根据病毒表达的潜伏期抗原种类,可将EBV基因组分为3型:Ⅰ型仅EBNA1表达,常见于伯基特淋巴瘤;Ⅱ型表达EBNA1和LMPs,见于鼻咽癌、EBV相关胃癌、EBV阳性霍奇金淋巴瘤、NK/T细胞淋巴瘤和弥漫性大B细胞淋巴瘤等;Ⅲ型表达全部EBNAs、LMPs和非编码RNA等,见于淋巴母细胞系(lymphoblastoid cell lines,LCLs)、EBV阳性移植后淋巴增殖病和HIV相关淋巴增殖病等[16-17]。最新研究发现,EBV基因亚型众多,远超上述分类,即使临床特征相近的同一EBV感染疾病类型,其致病基因亚型之间也存在不同程度的基因变异[12-13]。随着基因测序技术的快速发展和推广应用,针对EBV致病基因序列和宿主依赖基因的研究逐渐开展起来。但人类病毒基因组序列通常较长,EBV双链DNA更是长达175 kb,第一代基因测序技术即传统桑格法难以对其进行完整复制分析;第二代测序技术虽然不受序列长度限制,但因其探针测序较短,难以识别区分EBV基因组中的重要重复片段,如ir1–4和fr等;因此,针对EBV致病基因序列特征的测序技术备受期待[18-19]

EBV感染宿主B淋巴细胞后,可使其恶变转化为伯基特淋巴瘤和淋巴母细胞系等,在其恶变转化过程中,EBV致病基因亚型和宿主依赖基因如何发挥作用目前仍不明确。Ma等[19]利用CRISPR/Cas9技术,对EBV感染阳性、B细胞发生恶变转化的BL和LCLs基因组进行基因亚型筛选,分别检测出与肿瘤细胞生长和存活至关重要的57个BL基因和87个LCLs基因;进一步通过基因功能缺失对比研究证实,EBV潜伏膜蛋白LMP-1诱导的cflip是LCLs抵御TNF-α介导的程序性细胞死亡的关键因子;除此之外,EBV诱导激活的batf/irf4是LCLs中抑癌基因bim抑制和癌基因myc激活的决定因素。在另一项研究中,Guo等[20]利用全基因组CRISPR/Cas9筛选技术在BL细胞中筛选出一个以宿主基因myc为中心的关键基因网络,其包括factstagamediator等基因,它们相互协作,抑制关键基因bzlf1启动子。bzlf1是EBV溶细胞性裂解反应的主要调控基因,其编码的ZEBRA蛋白是激活EBV溶细胞性裂解级联反应的重要转录因子[21]。该基因表达下调可使B淋巴细胞免于溶细胞性裂解死亡,持续处于潜伏感染状态,最终介导宿主B淋巴细胞恶变转化[20-21]。上述研究表明,CRISPR/Cas9全基因筛选技术的应用有助于发现及分析EBV相关BL和LCLs的关键致病基因亚型和宿主依赖基因,从而加深对EBV致病机理的认识。

EBV除诱导B淋巴细胞恶变转化外,也可引发上皮细胞恶变[5, 12]。研究显示全球约10%胃癌患者存在EBV感染,EBVaGC每年新发病例超过8万人[22]。相较其他EBV非相关胃癌(Epstein-Barr virus non-associated gastric carcinoma,EBVnGC),EBVaGC基因特征包括bart miRNA高表达、ebna-1低表达、lmp1缺失等[23-24]bart miRNA为EBV关键非编码基因,可通过靶向调控DNA双链断裂修复基因atm、抑癌基因tp53和胞核输入受体ipo7基因等机制,抑制细胞凋亡和逃避免疫杀伤,促进肿瘤演变进展[25-27]。Kanda等[28]将从胃癌患者分离培养的EBV阳性的胃癌细胞株SNU719和YCCEL1作为研究对象,利用CRISPR/Cas9技术,以bart miRNA病毒开放阅读框(bart miRNA viral open reading frames,bvrf1)作为靶点,用以往验证有效的pX330-sgEBV作为引导RNA,精准识别病毒基因组中的bart miRNA致病基因序列,对其进行靶向剪切和同源修复,再结合第三代测序技术PacBio单分子测序对包含重复片段的基因组进行完整读取,并进一步利用Western blotting蛋白免疫印迹等实验进行验证[29]。此方法克服了传统二代测序技术的缺陷,加深了对胃癌相关EBV致病基因亚型的认识;提示CRISPR/Cas9技术可用于不同疾病相应的EBV基因组异质性和表型变异的鉴别分析,进而阐明不同EBV致病基因亚型的生物学意义[30]。该研究也存在一些待改进的地方,首先用bvrf1作为CRISPR/Cas9技术的识别靶点,聚焦在BART miRNA病毒开放阅读框,而不是完整的EBV全基因组[30]。另外,缺少正常的健康组作为对照,而且相应的胃癌细胞类型只来源于亚洲病例(韩国),未涵盖其他地区和人群标本,无法综合且全面分析胃癌相关EBV基因变异特征;因此,只有CRISPR/Cas9技术和其他技术相互补充,才能全面深入地分析EBV相关疾病的致病基因亚型和宿主依赖基因[30-31]

2 运用CRISPR/Cas9技术探索EBV关键致病机制

EBV通过唾液传播进入体内后,主要感染人B淋巴细胞,也可感染上皮细胞、T淋巴细胞及NK细胞等[3-4, 32]。根据宿主细胞的转归,EBV感染可分为两类[33-37]:(1)溶细胞性感染(lytic infection,Lysis):主要在B淋巴细胞中,病毒DNA在宿主细胞核中复制、转录、成熟,编码大量病毒蛋白,促进宿主细胞“爆炸式增殖”,同时病毒编码蛋白可被体内抗原提呈细胞(antigen-presenting cells,APCs)识别,最终在细胞毒性T淋巴细胞(cytotoxic T lymphocytes,CTLs)作用下引起宿主细胞溶解、死亡,并释放大量新生病毒颗粒,常见于急性感染如儿童传染性单核细胞增多症(infectious mononucleosis,IM);(2)潜伏感染(latent infection,Latency),可见于B淋巴细胞、T淋巴细胞和NK细胞等,病毒DNA双链在宿主细胞核中完成克隆复制,但病毒蛋白编码基因大部分不表达,仅少量免疫原性低的抗原蛋白表达,可在宿主细胞中长期存活、持续存在,最终导致宿主细胞恶变转化,常见于慢性活动性EBV感染、EBV相关肿瘤如伯基特淋巴瘤、鼻咽癌等。EBV感染宿主细胞后的转归类型并非静止不变,呈潜伏感染状态的EBV在B细胞受体交联作用(BCR cross-linking)或化学诱导物激活后,可转变为溶细胞性感染,即溶细胞性重激活(lytic reactivation) (图 1)[36-37]。EBV感染机体后,病毒与宿主细胞之间通过多种关键基因及信号通路交互作用,最终引起不同类型的感染和疾病转归[3, 17, 38-39]。利用CRISPR/Cas9技术对其中的关键基因进行功能缺失(loss of function)和调控干预,再通过对比研究和综合分析,有助于阐明EBV感染的具体致病机理[40]

图 1 EBV感染过程及其类型 Figure 1 The process of EBV infection and its types

在终生感染EBV的记忆B细胞和相关肿瘤细胞中,如何使EBV长期维持在潜伏期,其相关机制仍不明确。以往研究发现,高免疫原性的EBNA2和LMPs在EBV新近感染的B淋巴细胞中显著高表达,而在既往感染过的记忆B细胞和伯基特淋巴瘤中明显下调[36]。为了了解高免疫原性病毒蛋白在潜伏感染期的调控机制,研究者将合并EBV感染的伯基特淋巴瘤细胞作为研究对象,利用CRISPR-Cas9技术靶向敲除调控组蛋白泛素化的prc1基因,使H2AK119Ub1泛素化受抑制,继而稳定lmps启动子,使lmps基因免于基因沉默,正常发挥作用[41]。同理,敲除DNA甲基化调控基因uhrf1dnmt1可引起LMP1、EBNA2和bzlf1编码蛋白含量显著上调[41]。LMP1、LMPs和EBNA2均为高免疫原性病毒蛋白,其上调可触发机体免疫细胞对宿主细胞的识别杀伤;EBV裂解关键基因bzlf1的编码蛋白可激活宿主细胞溶细胞性裂解反应;这一系列级联效应最终可引起伯基特淋巴瘤细胞表型发生转变,使其无法维持在持续潜伏感染状态[21, 36]。有研究证实,在合并EBV感染的伯基特淋巴瘤中,DNA甲基转移酶1 (DNA methyltransferase,DNMT1)、泛素样含PHD和环指域1蛋白(ubiquitin-like ringfinger domains,UHRF1)和多梳抑制蛋白复合物1 (polycomb repressive complex 1,PRC1)可抑制高免疫原性病毒蛋白表达和bzlf1编码蛋白介导的EBV溶细胞性级联反应,从而有利于宿主细胞逃避免疫识别和免疫应答,长期维持潜伏感染状态,为其恶变转化提供前提条件[41]

干扰素调节因子8 (interferon regulatory factor,IRF8),又名干扰素共有序列结合蛋白,作为IRF家族的重要转录因子,在正常B细胞分化中发挥关键调控作用[42-43]。Lv等[33]将EBV感染的B淋巴细胞系Akata作为研究对象,利用CRISPR/Cas9技术对其中的irf8基因进行靶向敲除,发现宿主细胞中的凋亡蛋白酶Caspase-1、Caspase-3和Caspase-8均显著下降,继而使KAP1、PAX5和DNMT3A等蛋白稳定性增加,免于裂解清除。KAP1、PAX5和DNMT3A可通过与TRIM28、bzlf1编码蛋白等共同作用,抑制宿主细胞溶细胞性裂解和重激活过程[44-46]。以上研究[33, 44-46]表明,在EBV感染的Akata细胞中,IRF8通过上调凋亡蛋白酶表达,诱导KAP1、PAX5和DNMT3A等蛋白裂解,此类蛋白的降解可使宿主细胞由潜伏感染向溶细胞感染转变,最终导致EBV的溶细胞性重激活。

EBV可以单独感染宿主细胞,也可与其他病原体或病毒共同感染于同一宿主细胞,它们之间相互作用,共同促进疾病的演变进展[5, 47]。伯基特淋巴瘤常伴有EBV和疟原虫的同时感染[35, 48]。研究发现疟原虫消化降解血液产物疟原虫色素可通过激活Toll样受体-9 (TLR-9)抑制伯基特淋巴瘤细胞中的EBV溶细胞性裂解,而其具体机制仍不明确[48]。研究者利用CRISPR/Cas9技术分别靶向编辑Akata细胞中的tlr9myd88irak4基因;经过对比分析发现,TLR9-MyD88-IRAK4信号通路激活后,通过翻译后修饰方式使bzlf1编码蛋白含量显著下降,从而抑制EBV溶细胞性裂解,使其维持潜伏感染状态;研究表明在EBV与疟原虫共同感染宿主细胞过程中,疟原虫色素通过激活宿主细胞的TLR9-MyD88-IRAK4信号通路,下调溶细胞裂解基因bzlf1编码的蛋白含量,使EBV处于持续潜伏于宿主细胞体内免于破坏,继而促进EBV和疟原虫共同感染后的病变进展[35]

3 运用CRISPR/Cas9技术靶向编辑基因治疗EBV相关疾病

临床资料显示,成人体内EBV感染以潜伏感染为主。目前,EBV持续潜伏感染的宿主细胞仍缺乏有效的预防和治疗手段,预后较差[5, 47]。传统预防性疫苗是以EBV的包膜糖蛋白GP350或其他潜伏蛋白作为靶蛋白,刺激机体产生中和抗体,从而阻止病毒感染,干预疾病进展;治疗性疫苗则主要针对病毒感染相关恶性肿瘤,以潜伏感染过程中产生的核抗原和潜伏膜蛋白作为靶点,刺激机体产生特异性细胞免疫应答,提高CTLs对肿瘤细胞的杀伤能力[49-50]。但EBV基因组序列较长,基因亚型种类多、差异大,编码蛋白种类繁杂;而且由于程序性死亡受体1 (programmed death factor-1,PD-1)/程序性死亡受体配体1 (programmed death factor ligand,PD-L1)等肿瘤免疫逃逸分子作用,导致预防性疫苗和治疗性疫苗研制存在诸多限制[49-50]。另外,传统抗病毒药物仅可缓解部分急性感染患者症状,却难以彻底清除体内病毒,对慢性感染和潜伏感染患者疗效欠佳[5, 47]。因此,开发新型EBV感染治疗新策略成为目前研究热点和难题。近年来,随着CRISPR/Cas9技术在人类疾病治疗方面研究的深入,一些临床疗效不佳、预后较差的疾病,如病毒相关性疾病、基因遗传性疾病和肿瘤相关疾病等有望在治疗领域取得新突破[9-10, 40, 51-54]。利用新型CRISPR/Cas9基因编辑技术,对EBV致病基因序列进行靶向编辑,可有效降低EBV基因含量,提高肿瘤细胞对化疗、放疗的敏感性,干预肿瘤进展[10]

EBV感染是非洲儿童地方性伯基特淋巴瘤最主要的致病因素,并可通过多种方式促进肿瘤的恶变进展。van Diemen等[55]研究发现ebna1 (EBV核抗原位点)和orip (EBV复制起源位点)均可以控制EBV复制和维持游离病毒存活,其中orip包括了ebna1的结合位点和部分双重对称原件[56-57]。通过设计针对ebna1区域的CRISPR/Cas9系统,对致病基因序列进行靶向敲除,发现EB病毒感染的伯基特淋巴瘤Akata-Bx1细胞系中的病毒基因含量降低了40%−60%;进一步对比研究发现,设计联合针对ebna1区域和orip特定区域的靶向编辑系统,可使细胞内病毒基因含量下降超过95%以上,伴随病毒荷载量的显著下降,该淋巴瘤细胞增殖速度显著抑制,进而导致细胞凋亡;该研究表明通过联合设计针对不同识别位点基因区域的靶向RNA,CRISPR/Cas9技术可以最大程度地消除伯基特淋巴瘤中的潜伏感染病毒,从而抑制肿瘤细胞生长增殖[55]

原发性渗出性淋巴瘤(primary effusion lymphoma,PEL)起源于B细胞,常伴有EBV和卡波西肉瘤相关疱疹病毒(Kaposi’s sarcoma-associated herpes virus,KSHV)的共同感染[5, 58-59]。Bigi等[59]研究发现,将外源性EBV作用于单独KSHV感染的PEL细胞中,KSHV基因组稳定性和KSHV潜伏相关核抗原(latency-associated nuclear antigen,LANA)含量均可显著上调;再通过构建针对EBV基因组的CRISPR/Cas9质粒,将其转染到KSHV和EBV双重感染的PEL细胞中,检测其中EBV含量显著下降的同时,经对比研究发现,该肿瘤细胞活力、KSHV基因组拷贝数及潜伏相关核抗原均显著下调,而导入EBV核抗原-1位点基因ebna1则可逆转上述表型变化。该研究表明在原发性渗出性淋巴瘤中,EBV和卡波西肉瘤相关疱疹病毒相互作用,共同促进疾病进展;利用靶向EBV基因组的CRISPR/Cas9技术,去除EBV含量的同时,可显著下调LANA含量和KSHV荷载量,降低肿瘤细胞活力,为探索临床治疗合并EBV感染的原发性渗出性淋巴瘤提供理论依据[59]

在我国华南地区,鼻咽癌发病率与长期慢性EBV感染密切相关,其转移和复发率较高,预后欠佳[3, 5-6]。研究发现,bart miRNA含量在鼻咽癌、胃癌等EBV阳性上皮肿瘤组织中显著高表达。Yuen等[53, 60]设计出针对EBV基因组中bart启动子区域的引导RNA,利用CRISPR/Cas9技术对EBV阳性鼻咽癌细胞系C666-1进行靶向编辑,结果证实bart 编码的病毒miRNA含量显著下降,荧光素酶报告基因检测结果显示,bart基因表达活力也显著降低,进一步深度基因测序证实未发现脱靶效应。如前所述,作为EBV关键非编码基因,bart miRNA可通过抑制细胞凋亡和逃避免疫杀伤等机制,促进肿瘤恶变进展[25-27]。该研究通过靶向编辑降低bart含量,为探索干预鼻咽癌进展新策略提供理论支持[53, 60]。该研究团队另一项研究发现,设计针对EBV DNA基因组不同位点的靶向CRISPR/Cas9系统,对鼻咽癌细胞系C666-1进行靶向基因编辑,可使其中的EBV DNA含量下降50%,虽不能将感染的C666-1细胞系直接杀死,但可显著增强它们对化疗药物顺铂和5-氟尿嘧啶的化疗敏感性,表明CRISPR/Cas9技术虽不能直接阻止鼻咽癌进展,但可为其辅助治疗(如化疗)提供新的治疗窗[61]

近来,免疫细胞检查点抑制剂PD-1和PD-L1的临床应用开启了肿瘤免疫治疗的新时代,也引起了人们对免疫疗法治疗各种癌症的广泛关注。EBV相关性胃癌相较于EBV非相关性胃癌,具有淋巴细胞浸润率高、PD-L1扩增率高等特点。Su等[62]将EBV-LMP2A诱导的CTLs作为研究对象,利用CRISPR-Cas9技术靶向破坏其中的PD-1,经体外实验证实,改造后的CTLs可显著增加对EBV-LMP2A抗原的免疫应答反应,从而增强对EBVaGC细胞的杀伤毒性;更为重要的是,当结合低剂量放疗时,这种靶向破坏PD-1的CTLs在EBVaGC移植瘤小鼠模型中发挥出显著的抗肿瘤作用;他们利用CRISPR-Cas9技术构建出新型细胞毒性T细胞CTLs,并证实其在EBVaGC动物模型中具有抗肿瘤作用,为进一步利用T细胞过继疗法治疗EBVaGC提供了新思路。

4 结语与展望

综上所述,EBV感染疾病种类多,关键致病基因亚型差异大。病毒在宿主细胞中的感染状态并非单一固定,在疾病演变过程中可通过多种途径及机制逃避体内免疫监控,促进疾病进展[63-64];另外,EBV感染也可合并其他病原体、寄生虫共同感染,而其中的关键基因及信号通路也并非静止不变,利用CRISPR/Cas9基因编辑技术可以实时动态监测宿主细胞内的EBV致病基因亚型和宿主依赖基因,深入探讨致病基因的作用机制,联合设计针对不同致病基因序列的引导RNA,构建多靶点CRISPR/Cas9系统,为临床治疗EBV相关疾病,尤其是EBV相关恶性肿瘤提供新型临床干预靶点和策略。

CRISPR/Cas9技术应用于EBV相关研究领域仍存在以下几个问题:(1)如何选取安全合适的运输载体。目前,腺相关病毒(adeno-associated virus,AAV)、慢病毒(lentivirus,LV)和质粒作为相应CRISPR/Cas9系统运输载体存在诸多弊端,如整合基因组到靶细胞时具有潜在的诱导癌变风险,缺少靶细胞特异识别机制和代价昂贵等。最近研究发现,微囊泡、外泌体以及人工合成脂质体等载体系统有望成为有效、安全、经济可行的CRISPR/Cas9系统运输载体[65-67]。(2) CRISPR/Cas9技术的脱靶效应和副作用问题。目前研究认为,选择高效和特异的靶向引导RNA至关重要,研究者需要通过对靶基因序列与人类完整基因组进行比对,找寻尽量多的潜在靶基因识别序列,充分完备相应实验验证,争取找到最高效、毒副作用最小的靶向sgRNA序列[10, 68-69]。(3)生物安全性仍是目前CRISPR/Cas9技术用于临床转化前最值得慎重思考的问题[70-71]。近来有报道利用CRISPR/Cas9技术对人类胚胎直接进行编辑,虽然其初衷是使其编辑的胚胎后代免遭HIV病毒感染,但却严重违反了相关法律法规,更违反了医学伦理基本原则[72-73]

CRISPR/Cas9系统因其技术优势,自问世以来便被寄予厚望,经过不断改造和深入探索,目前已在EBV致病机理与潜在治疗研究方面取得了一系列进展。但我们要理性地认识到这种从基础到临床的转化并非一蹴而就,需要充分考虑和验证其潜在副作用,尤其在生物安全性方面对其潜在影响进行综合分析,在充分证实安全有效的前提下,谨慎推行CRISPR/Cas9技术在人类疾病相关研究领域的实践与探索,促进人类健康事业可持续发展。

REFERENCES
[1]
Vockerodt M, Yap LF, Shannon-Lowe C, et al. The Epstein-Barr virus and the pathogenesis of lymphoma[J]. The Journal of Pathology, 2015, 235(2): 312-322. DOI:10.1002/path.4459
[2]
Mui UN, Haley CT, Vangipuram R, et al. Human oncoviruses: Mucocutaneous manifestations, pathogenesis, therapeutics, and prevention: Hepatitis viruses, human T-cell leukemia viruses, herpesviruses, and Epstein-Barr virus[J]. Journal of the American Academy of Dermatology, 2019, 81(1): 23-41. DOI:10.1016/j.jaad.2018.10.072
[3]
Saha A, Robertson ES. Mechanisms of B-cell oncogenesis induced by Epstein-Barr virus[J]. Journal of Virology, 2019, 93(13): e00238-19.
[4]
Dunmire SK, Verghese PS, Balfour Jr HJ. Primary Epstein-Barr virus infection[J]. Journal of Clinical Virology, 2018, 102: 84-92. DOI:10.1016/j.jcv.2018.03.001
[5]
Fugl A, Andersen CL. Epstein-Barr virus and its association with disease — a review of relevance to general practice[J]. BMC Family Practice, 2019, 20: 62. DOI:10.1186/s12875-019-0954-3
[6]
Chen YP, Chan A, Le QT, et al. Nasopharyngeal carcinoma[J]. The Lancet, 2019, 394(10192): 64-80. DOI:10.1016/S0140-6736(19)30956-0
[7]
Jiang WY, Bikard D, Cox D, et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems[J]. Nature Biotechnology, 2013, 31(3): 233-239. DOI:10.1038/nbt.2508
[8]
Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819-823. DOI:10.1126/science.1231143
[9]
Platt RJ, Chen SD, Zhou Y, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling[J]. Cell, 2014, 159(2): 440-455. DOI:10.1016/j.cell.2014.09.014
[10]
Gilani U, Shaukat M, Rasheed A, et al. The implication of CRISPR/Cas9 genome editing technology in combating human oncoviruses[J]. Journal of Medical Virology, 2019, 91(1): 1-13.
[11]
Metje-Sprink J, Menz J, Modrzejewski D, et al. DNA-free genome editing: Past, present and future[J]. Frontiers in Plant Science, 2019, 9: 1957. DOI:10.3389/fpls.2018.01957
[12]
Kanda T, Yajima M, Ikuta K. Epstein-Barr virus strain variation and cancer[J]. Cancer Science, 2019, 110(4): 1132-1139.
[13]
Correia S, Palser A, Elgueta KC, et al. Natural variation of Epstein-Barr virus genes, proteins, and primary MicroRNA[J]. Journal of Virology, 2017, 91(15): e00375-17.
[14]
Neves M, Marinho-Dias J, Ribeiro J, et al. Epstein-Barr virus strains and variations: Geographic or disease-specific variants?[J]. Journal of Medical Virology, 2017, 89(3): 373-387.
[15]
Farrell PJ. Epstein-Barr virus strain variation[A]//Münz A. Epstein Barr Virus Volume 1: One Herpes Virus: Many Diseases[M]. Cham: Springer, 2015: 45-69
[16]
Palser AL, Grayson NE, White RE, et al. Genome diversity of Epstein-Barr virus from multiple tumor types and normal infection[J]. Journal of Virology, 2015, 89(10): 5222-5237. DOI:10.1128/JVI.03614-14
[17]
Tsao SW, Tsang CM, To KF, et al. The role of Epstein-Barr virus in epithelial malignancies[J]. The Journal of Pathology, 2015, 235(2): 323-333.
[18]
Kwok H, Chiang AKS. From conventional to next generation sequencing of Epstein-Barr virus genomes[J]. Viruses, 2016, 8(3): 60.
[19]
Ma YJ, Walsh MJ, Bernhardt K, et al. CRISPR/Cas9 screens reveal Epstein-Barr virus-transformed B cell host dependency factors[J]. Cell Host & Microbe, 2017, 21(5): 580-591.e7.
[20]
Guo R, Jiang C, Zhang YC, et al. MYC controls the Epstein-Barr virus lytic switch[J]. Molecular Cell, 2020, 78(4): 653-669.e8. DOI:10.1016/j.molcel.2020.03.025
[21]
Countryman J, Jenson H, Seibl R, et al. Polymorphic proteins encoded within BZLF1 of defective and standard Epstein-Barr viruses disrupt latency[J]. Journal of Virology, 1987, 61(12): 3672-3679. DOI:10.1128/JVI.61.12.3672-3679.1987
[22]
Chen JN, He D, Tang F, et al. Epstein-Barr virus-associated gastric carcinoma: a newly defined entity[J]. Journal of Clinical Gastroenterology, 2012, 46(4): 262-271. DOI:10.1097/MCG.0b013e318249c4b8
[23]
Morales-Sanchez A, Fuentes-Panana EM. Epstein-Barr virus-associated gastric cancer and potential mechanisms of oncogenesis[J]. Current Cancer Drug Targets, 2017, 17(6): 534-554.
[24]
Shinozaki-Ushiku A, Kunita A, Fukayama M. Update on Epstein-Barr virus and gastric cancer (review)[J]. International Journal of Oncology, 2015, 46(4): 1421-1434. DOI:10.3892/ijo.2015.2856
[25]
Lung RWM, Hau PM, Yu KHO, et al. EBV-encoded miRNAs target ATM-mediated response in nasopharyngeal carcinoma[J]. The Journal of Pathology, 2018, 244(4): 394-407. DOI:10.1002/path.5018
[26]
Zheng X, Wang J, Wei LY, et al. Epstein-Barr virus microRNA miR-BART5-3p inhibits p53 expression[J]. Journal of Virology, 2018, 92(23): e01022-18.
[27]
Dölken L, Malterer G, Erhard F, et al. Systematic analysis of viral and cellular microRNA targets in cells latently infected with human γ-herpesviruses by RISC immunoprecipitation assay[J]. Cell Host & Microbe, 2010, 7(4): 324-334. DOI:10.1016/j.chom.2010.03.008
[28]
Kanda T, Furuse Y, Oshitani H, et al. Highly efficient CRISPR/Cas9-mediated cloning and functional characterization of gastric cancer-derived Epstein-Barr virus strains[J]. Journal of Virology, 2016, 90(9): 4383-4393. DOI:10.1128/JVI.00060-16
[29]
Mashiko D, Fujihara Y, Satouh Y, et al. Generation of mutant mice by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA[J]. Scientific Reports, 2013, 3(1): 3355. DOI:10.1038/srep03355
[30]
Kanda T, Miyata M, Kano M, et al. Clustered microRNAs of the Epstein-Barr virus cooperatively downregulate an epithelial cell-specific metastasis suppressor[J]. Journal of Virology, 2015, 89(5): 2684-2697. DOI:10.1128/JVI.03189-14
[31]
Borozan I, Zapatka M, Frappier L, et al. Analysis of Epstein-Barr virus genomes and expression profiles in gastric adenocarcinoma[J]. Journal of Virology, 2018, 92(2): e01239-17.
[32]
Hu BF, Zhang L, Shi D, et al. Clinical analysis of 18 children with chronic active Epstein-Barr virus infection[J]. Chinese Journal of Evidence-Based Pediatrics, 2019, 14(6): 434-437. (in Chinese)
胡波飞, 张丽, 施丹, 等. 儿童慢性活动性EB病毒感染18例病例系列报告[J]. 中国循证儿科杂志, 2019, 14(6): 434-437.
[33]
Lv DW, Zhang K, Li RF. Interferon regulatory factor 8 regulates caspase-1 expression to facilitate Epstein-Barr virus reactivation in response to B cell receptor stimulation and chemical induction[J]. PLoS Pathogens, 2018, 14(1): e1006868.
[34]
Al Masud HMA, Watanabe T, Yoshida M, et al. Epstein-Barr virus BKRF4 gene product is required for efficient progeny production[J]. Journal of Virology, 2017, 91(23): e00975-17.
[35]
Jordi M, Marty J, Mordasini V, et al. IRAK4 is essential for TLR9-induced suppression of Epstein-Barr virus BZLF1 transcription in Akata Burkitt's lymphoma cells[J]. PLoS One, 2017, 12(10): e0186614. DOI:10.1371/journal.pone.0186614
[36]
Odumade OA, Hogquist KA, Balfour Jr HJ. Progress and problems in understanding and managing primary Epstein-Barr virus infections[J]. Clinical Microbiology Reviews, 2011, 24(1): 193-209. DOI:10.1128/CMR.00044-10
[37]
Münz C. Latency and lytic replication in Epstein-Barr virus-associated oncogenesis[J]. Nature Reviews Microbiology, 2019, 17(11): 691-700. DOI:10.1038/s41579-019-0249-7
[38]
Zhou HF, Schmidt SCS, Jiang SZ, et al. Epstein-Barr virus oncoprotein super-enhancers control B cell growth[J]. Cell Host & Microbe, 2015, 17(2): 205-216.
[39]
Jha HC, Pei YG, Robertson ES. Epstein-Barr Virus: diseases linked to infection and transformation[J]. Frontiers in Microbiology, 2016, 7: 1602. DOI:10.3389/fmicb.2016.01602
[40]
Chen SL, Yu X, Guo DY. CRISPR-Cas targeting of host genes as an antiviral strategy[J]. Viruses, 2018, 10(1): 40.
[41]
Guo R, Zhang YC, Teng MX, et al. DNA methylation enzymes and PRC1 restrict B-cell Epstein-Barr virus oncoprotein expression[J]. Nature Microbiology, 2020, 5(8): 1051-1063. DOI:10.1038/s41564-020-0724-y
[42]
Tamura T, Yanai H, Savitsky D, et al. The IRF family transcription factors in immunity and oncogenesis[J]. Annual Review of Immunology, 2008, 26: 535-584. DOI:10.1146/annurev.immunol.26.021607.090400
[43]
Xu HP, Chaudhri VK, Wu ZG, et al. Regulation of bifurcating B cell trajectories by mutual antagonism between transcription factors IRF4 and IRF8[J]. Nature Immunology, 2015, 16(12): 1274-1281. DOI:10.1038/ni.3287
[44]
Li XF, Burton EM, Bhaduri-Mcintosh S. Chloroquine triggers Epstein-Barr virus replication through phosphorylation of KAP1/TRIM28 in Burkitt lymphoma cells[J]. PLoS Pathogens, 2017, 13(3): e1006249. DOI:10.1371/journal.ppat.1006249
[45]
Raver RM, Panfil AR, Hagemeier SR, et al. The B-cell-specific transcription factor and master regulator Pax5 promotes Epstein-Barr virus latency by negatively regulating the viral immediate early protein BZLF1[J]. Journal of Virology, 2013, 87(14): 8053-8063. DOI:10.1128/JVI.00546-13
[46]
Gray KS, Forrest JC, Speck SH. The de novo methyltransferases DNMT3a and DNMT3b target the murine gammaherpesvirus immediate-early gene 50 promoter during establishment of latency[J]. Journal of Virology, 2010, 84(10): 4946-4959. DOI:10.1128/JVI.00060-10
[47]
Nowalk A, Green M. Epstein-Barr virus[J]. Microbiology Spectrum, 2016, 4(3). DOI:10.1128/microbiolspec.DMIH2-0011-2015
[48]
Zauner L, Melroe GT, Sigrist JA, et al. TLR9 triggering in Burkitt's lymphoma cell lines suppresses the EBV BZLF1 transcription via histone modification[J]. Oncogene, 2010, 29(32): 4588-4598. DOI:10.1038/onc.2010.203
[49]
van Zyl DG, Mautner J, Delecluse HJ. Progress in EBV vaccines[J]. Frontiers in Oncology, 2019, 9: 104. DOI:10.3389/fonc.2019.00104
[50]
Cohen JI. Vaccine development for Epstein-Barr virus[A]//Kawaguchi Y, Mori Y, Kimura H. Human Herpesviruses[M]. Singapore: Springer, 2018: 477-493
[51]
Johansen AK, Molenaar B, Versteeg D, et al. Postnatal cardiac gene editing using CRISPR/Cas9 with AAV9-mediated delivery of short guide RNAs results in mosaic gene disruption[J]. Circulation Research, 2017, 121(10): 1168-1181. DOI:10.1161/CIRCRESAHA.116.310370
[52]
Savić N, Schwank G. Advances in therapeutic CRISPR/Cas9 genome editing[J]. Translational Research, 2016, 168: 15-21. DOI:10.1016/j.trsl.2015.09.008
[53]
Yuen KS, Chan CP, Wong NHM, et al. CRISPR/Cas9-mediated genome editing of Epstein-Barr virus in human cells[J]. The Journal of General Virology, 2015, 96(Pt 3): 626-636. DOI:10.1099/jgv.0.000012
[54]
Xue W, Chen SD, Yin H, et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver[J]. Nature, 2014, 514(7522): 380-384. DOI:10.1038/nature13589
[55]
van Diemen FR, Kruse EM, Hooykaas MJG, et al. CRISPR/Cas9-mediated genome editing of herpesviruses limits productive and latent infections[J]. PLoS Pathogens, 2016, 12(6): e1005701.
[56]
Reisman D, Yates J, Sugden B. A putative origin of replication of plasmids derived from Epstein-Barr virus is composed of two cis-acting components[J]. Molecular and Cellular Biology, 1985, 5(8): 1822-1832. DOI:10.1128/MCB.5.8.1822
[57]
Rawlins DR, Milman G, Hayward SD, et al. Sequence-specific DNA binding of the Epstein-Barr virus nuclear antigen (EBNA-1) to clustered sites in the plasmid maintenance region[J]. Cell, 1985, 42(3): 859-868. DOI:10.1016/0092-8674(85)90282-X
[58]
Manzano M, Patil A, Waldrop A, et al. Gene essentiality landscape and druggable oncogenic dependencies in herpesviral primary effusion lymphoma[J]. Nature Communications, 2018, 9(1): 3263. DOI:10.1038/s41467-018-05506-9
[59]
Bigi R, Landis JT, An H, et al. Epstein-Barr virus enhances genome maintenance of Kaposi sarcoma-associated herpesvirus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(48): E11379-E11387.
[60]
Yuen KS, Chan CP, Kok KH, et al. Mutagenesis and genome engineering of Epstein-Barr virus in cultured human cells by CRISPR/Cas9[A]//Reeves A. In Vitro Mutagenesis: Methods and Protocols[M]. New York: Humana Press, 2017, 1498: 23-31
[61]
Yuen KS, Wang ZM, Wong NM, et al. Suppression of Epstein-Barr virus DNA load in latently infected nasopharyngeal carcinoma cells by CRISPR/Cas9[J]. Virus Research, 2018, 244: 296-303. DOI:10.1016/j.virusres.2017.04.019
[62]
Su S, Zou ZY, Chen FJ, et al. CRISPR-Cas9-mediated disruption of PD-1 on human T cells for adoptive cellular therapies of EBV positive gastric cancer[J]. OncoImmunology, 2017, 6(1): e1249558.
[63]
Ressing ME, van Gent M, Gram AM, et al. Immune evasion by Epstein-Barr virus[A]//Münz C. Epstein Barr Virus Volume 2: One Herpes Virus: Many Diseases[M]. Cham: Springer, 2015, 391: 355-381
[64]
Gram AM, Oosenbrug T, Lindenbergh MFF, et al. The Epstein-Barr virus glycoprotein gp150 forms an immune-evasive glycan shield at the surface of infected cells[J]. PLoS Pathogens, 2016, 12(4): e1005550. DOI:10.1371/journal.ppat.1005550
[65]
Lin Y, Wu JH, Gu WH, et al. Exosome-liposome hybrid nanoparticles deliver CRISPR/Cas9 system in MSCs[J]. Advanced Science, 2018, 5(4): 1700611. DOI:10.1002/advs.201700611
[66]
Givens BE, Naguib YW, Geary SM, et al. Nanoparticle-based delivery of CRISPR/Cas9 genome-editing therapeutics[J]. The AAPS Journal, 2018, 20(6): 108. DOI:10.1208/s12248-018-0267-9
[67]
Kim SM, Yang Y, Oh SJ, et al. Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting[J]. Journal of Controlled Release, 2017, 266: 8-16. DOI:10.1016/j.jconrel.2017.09.013
[68]
Koujah L, Shukla D, Naqvi AR. CRISPR-Cas based targeting of host and viral genes as an antiviral strategy[J]. Seminars in Cell & Developmental Biology, 2019, 96: 53-64. DOI:10.1016/j.semcdb.2019.04.004
[69]
Salsman J, Dellaire G. Precision genome editing in the CRISPR era[J]. Biochemistry and Cell Biology, 2017, 95(2): 187-201.
[70]
Wang HF, La Russa M, Qi LS. CRISPR/Cas9 in genome editing and beyond[J]. Annual Review of Biochemistry, 2016, 85: 227-264. DOI:10.1146/annurev-biochem-060815-014607
[71]
Taguchi I, Yamada T, Akaishi R, et al. Attitudes of clinical geneticists and certified genetic counselors to genome editing and its clinical applications: A nation-wide questionnaire survey in Japan[J]. Journal of Human Genetics, 2019, 64(9): 945-954. DOI:10.1038/s10038-019-0635-z
[72]
Lovell-Badge R. CRISPR babies: a view from the centre of the storm[J]. Development, 2019, 146(3): dev175778. DOI:10.1242/dev.175778
[73]
Getz LJ, Dellaire G. Angels and devils: dilemmas in dual-use biotechnology[J]. Trends in Biotechnology, 2018, 36(12): 1202-1205. DOI:10.1016/j.tibtech.2018.07.016