微生物学通报  2020, Vol. 47 Issue (9): 2996−3003

扩展功能

文章信息

毛振华, 孙见行, 周文博, 王玉光, 周洪波, 程海娜
MAO Zhen-Hua, SUN Jian-Xing, ZHOU Wen-Bo, WANG Yu-Guang, ZHOU Hong-Bo, CHENG Hai-Na
生物冶金中耐盐浸矿微生物的研究进展
Salt-tolerant microorganisms in biohydrometallurgy: a review
微生物学通报, 2020, 47(9): 2996-3003
Microbiology China, 2020, 47(9): 2996-3003
DOI: 10.13344/j.microbiol.china.200158

文章历史

收稿日期: 2020-02-27
接受日期: 2020-08-18
网络首发日期: 2020-08-27
生物冶金中耐盐浸矿微生物的研究进展
毛振华1,3 , 孙见行1,3 , 周文博2 , 王玉光1,3 , 周洪波1,3 , 程海娜1,3     
1. 中南大学资源加工与生物工程学院    湖南  长沙    410083;
2. 中南大学冶金与环境学院    湖南  长沙    410083;
3. 中南大学生物冶金教育部重点实验室    湖南  长沙    410083
摘要: 耐盐浸矿微生物是指在发挥矿物浸出功能时对所处的含盐环境具有一定耐受能力的一类浸矿微生物。耐盐浸矿微生物因其可以适应不同浓度的氯化钠等盐,因而在淡水资源缺乏地区的生物冶金中具有广泛的应用价值。本文从耐盐浸矿微生物的种类、耐盐机制及其在矿物生物浸出中的应用现状进行了系统性综述,为耐盐浸矿微生物的研究和应用提供参考。
关键词: 生物浸出    耐盐微生物    耐盐机制    浸矿应用    
Salt-tolerant microorganisms in biohydrometallurgy: a review
MAO Zhen-Hua1,3 , SUN Jian-Xing1,3 , ZHOU Wen-Bo2 , WANG Yu-Guang1,3 , ZHOU Hong-Bo1,3 , CHENG Hai-Na1,3     
1. School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China;
2. School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China;
3. Key Laboratory of Biometallurgy of Ministry of Education, Central South University,Changsha, Hunan 410083, China
Abstract: Salt-tolerant bioleaching microorganism is a kind of microorganism that could survive in the salt-containing environments during bioleaching process. It is found that these species show great application potential in biometallurgy when freshwater resources are scarce. This paper systematically reviews current knowledge and understanding of taxonomic diversity, the salt-adapted mechanisms and the application status of salt-tolerant microorganisms, aiming to provide more information for the research and application of salt-tolerant microorganisms.
Keywords: Bioleaching    Salt-tolerant microorganisms    Salt tolerant mechanism    Application of minerals bioleaching    

生物浸矿是在嗜酸浸矿微生物的直接或间接作用下将矿物中的有价金属溶出的技术[1-2]。生物浸矿具有环境友好、投入资金少、效益高等优势,已成功地应用于多种矿物和固体废弃物中有价金属的提取应用[3]

浸矿微生物是生物浸矿的关键,在酸性条件下,这些浸矿微生物具有氧化Fe2+或/和硫的能力,铁氧化菌对三价铁的再生速度比化学自氧化快106倍,硫氧化菌可以把还原态无机硫化物氧化成SO42−[4]。相比化学浸出而言,生物浸出可以明显加快矿物中金属的溶出[5]。在生物浸出工艺中,水作为浸矿微生物的培养溶液和浸出介质,是生物浸出的必要条件之一。然而,由于气候变化、淡水资源的日益紧缺以及海水淡化和淡水长距离运输成本高昂等因素,限制了一些地区(如智利、澳大利亚、伊朗等)生物浸矿技术的应用和推广[6-7]。因此,近年来人们加大了对耐盐微生物的研究,主要涵盖微生物的筛选分类、鉴定、耐盐机制、高盐有机废水处理和生物脱硫等方面[8-13],以及耐盐浸矿微生物在生物浸出方面应用潜力的开发[13-15]。本文系统地综述了耐盐浸矿微生物的种类、耐盐机理及浸矿应用的进展,为耐盐浸矿微生物的深入研究和应用,特别是高盐地区矿产资源的开发提供基础性参考。

1 耐盐浸矿微生物种类及耐盐机制 1.1 耐盐浸矿微生物定义及种类

根据微生物对盐的需要可分为耐盐微生物和嗜盐微生物[16-18]。嗜盐微生物包括轻度嗜盐微生物(在含0.2−0.5 mol/L盐的培养基中生长较好)、中度嗜盐微生物(在含0.5−2.5 mol/L盐的培养基中生长最好,能在低于0.1 mol/L盐中生长的被认为兼性嗜盐微生物)、极端嗜盐微生物(在含盐1.5 mol/L以上的培养基中生长最好)[9]。然而耐盐微生物属于非嗜盐微生物,在无盐条件下可以正常生长,在较高盐浓度条件下仍可生长。耐盐微生物大多是由于生长环境中盐浓度较高而逐渐形成了耐受能力[18]

耐盐浸矿微生物是指在发挥其矿物浸出功能时对所处的含盐环境具有一定耐受能力的一类浸矿微生物。早有报道发现一些具有浸矿功能的耐盐/嗜盐菌,如Kamimura等从海洋中分离出的嗜酸菌株Acidithiobacillus thiooxidans SH,需要一定浓度的NaCl才能正常生长[19-20]。Huber等从意大利的一座火山附近分离到具有金属浸出功能的耐盐菌Thiobacillus prosperus,而且后来发现的许多具有不同氯离子耐受能力和要求的菌株都归属于这个物种[21]。除此之外,常见的浸矿菌微生物如Acidithiobacillus ferrooxidansAcidimicrobium ferrooxidansSulfobacillus thermosulfidooxidansLeptospirillum ferriphilum等对盐也有不同的耐受能力,多介于0.02−1.5 mol/L,并且在不同含盐浸出环境下对矿物浸出能力也不同[13, 15, 22]。按功能分类可以将耐盐浸矿微生物分为铁氧化耐盐浸矿微生物(Acidimicrobium ferrooxidansLeptospirillum ferriphilum)、硫氧化耐盐浸矿微生物(Acidithiobacillus thiooxidans)和铁硫氧化耐盐浸矿微生物(Acidithiobacillus ferrooxidansSulfobacillus thermosulfidooxidans)。

1.2 耐盐浸矿微生物的耐盐机制

1.2.1 渗透调节机制

渗透调节机制包括内盐机制和有机渗透机制,其中内盐机制(也称KCl机制,图 1)属于无机渗透机制。微生物通过体内积累高浓度KCl,以K+和Cl作为渗透剂来维持渗透平衡。大多数极端耐盐微生物采用此种机制。利用内盐机制进行渗透调节的微生物,细胞内的蛋白质含有大量的酸性氨基酸,利于蛋白质形成水合外层,从而保持正常的构型和功能。如ClAt. ferrooxidans和At. thiooxidans的抑制机理是由于Cl通过细胞膜大量涌入,使细胞膜电位(ΔΨ)消散,随后质子进入细胞质,导致pH稳态的破坏[23]。有研究指出,在缺乏一个解偶联剂时,由于细胞内部之间保持正的电位和pH梯度保持平衡,如果没有阴离子或阳离子的被动流入或流出,质子不会有机会进入细胞质膜[24]

图 1 内盐机制(KCl机制)示意图 Figure 1 Schematic diagram of internal salt mechanism (KCl mechanism) 注:A:低渗条件下,由于酶表面的负电荷产生的排斥力使蛋白质变性;B:高渗条件下,K+中和负电荷,降低酶表面的排斥力. Note: A: Under the condition of hypoosmosis, the protein is denatured due to the repulsive force generated by the negative charge on the enzyme surface; B: Under hypertonic condition, K+ neutralizes the negative charge and reduces the repulsive force on the enzyme surface.

另一方面是有机渗透机制(也称亲和性溶质机制,图 2)。耐盐微生物可以通过自身合成或细胞外吸收来积聚亲和性溶质(在生理pH条件下不带净电荷、高度可溶的小分子有机物,这些物质不影响细胞的正形态,结构和功能,既能提高胞内水活度,又不影响细胞正常代谢)以增加渗透压,以防止细胞脱水[25]。当环境中渗透压增高时,耐盐微生物会摄取、合成并积累亲和溶质,亲和溶质的积累补偿了外界高渗透压条件下导致的内外部渗透压不均衡,在一定程度上缓解了高盐环境对细胞的胁迫[18]。此外,这类小分子相容性溶质在细胞内能够被迅速地合成和降解,有利于耐盐微生物克服高盐环境下的渗透压[26]。如At. ferrooxidansAt. thiooxidans使用脯氨酸和甜菜碱作为渗透保护剂[27]。除了保护细胞免受阳离子的侵害,这些相容溶质也可能在盐环境下保护蛋白质避免变性方面发挥作用[28],如Acidimicrobium ferrooxidans氧化铁蛋白的差异表达表明,在有氯离子存在的情况下,脂肪酸分解代谢减少,而生物合成增加[29]。然而研究表明不饱和脂肪酸和环丙烷脂肪酸参与耐酸等[30]

图 2 有机渗透机制示意图 Figure 2 Schematic diagram of organ osmosis mechanism 注:A:无亲和性溶质时蛋白质结构在高渗透压环境中结构遭到破坏;B:亲和性溶质作为稳定剂使耐盐菌在渗透压升高时蛋白质结构稳定. Note: A: In the absence of affine solute, the structure of protein was destroyed in the high osmotic pressure environment; B: Compatibility solute as a stabilizer to stabilize the protein structure of halophiles when osmotic pressure is increased.

1.2.2 Na+输出机制

耐盐微生物能在高盐环境下生存,它们具有能够及时排出Na+来维持胞内适宜的Na+浓度而避免其对细胞的毒害作用的Na+输出系统[9]。目前,在耐盐微生物中已报道存在两种Na+输出系统,即初级钠泵和次级钠泵[31](图 3)。

图 3 细菌中通过初级钠泵和次级钠泵进行Na+循环的组合示意图 Figure 3 Schematic diagram of Na+ cycle in bacteria through primary and secondary sodium pumps 注:1:Na+/H+逆向转运蛋白;2:脱羧酶;3:呼吸酶;4:甲基四氢叶酸喋呤辅酶;5:V型ATP酶;6:F1F0 ATP合成酶;7:鞭毛马达的运动;8:溶质吸收. Note: 1: Na+/H+ reverse transporter; 2: Decarboxylase; 3: Respiratory enzyme; 4: Methyotrexate coenzyme; 5: V-ATP enzyme, 6: F1F0 ATP synthetase; 7: The movement of the flagellum motor; 8: The solute absorption.

初级钠泵包括四类:(1)脱羧酶,催化草酰乙酸脱羧在催化脱羧反应时向胞外输出钠离子;(2)甲基转移酶复合体,催化甲基从甲基四氢甲烷喋呤转移到辅酶M,在此过程中偶联钠离子输出;(3) ATP酶,其与细胞膜相连,伴随ATP酶水解将钠离子从细胞内转移到细胞外;(4) NADH泛醌氧化还原酶,其是大多数细菌呼吸链中的一个组成成分,在呼吸过程中输出钠离子。

次级钠泵常称为Na+/H+逆向转运蛋白,是具有代表性的钠离子输出系统,广泛存在于耐盐微生物系统中,在微生物耐受高盐环境胁迫应答中起到了不可忽视的作用[32]。Na+/H+逆向转运蛋白属于跨膜蛋白,催化单价阳离子(Na+、K+)输出,与质子(H+)的输入偶联;根据结构不同可以分为两类:单亚基Na+逆向转运蛋白和多亚基Na+逆向转运蛋白;大多数微生物都存在多个Na+/H+逆向转运蛋白;Na+/H+逆向转运蛋白不仅介导Na+输出,还参与抗生素外排、芽孢形成等生理活动[31]

2 氯离子对生物浸出及浸矿微生物的影响 2.1 氯离子对黄铜矿浸出的促进作用

黄铜矿是储量最丰富的原生硫化铜矿,约占世界已知铜矿储量的70%[33],多年来黄铜矿的生物浸出一直是硫化铜矿湿法冶金研究的焦点。已有研究发现添加Cl能通过减少矿物表面单质硫的堆积,有效提升黄铜矿的浸出效率[34];Carneiro等[35]通过实验对比发现,在浸出介质中不添加Cl时黄铜矿的铜浸出率仅有45%,而在浸出介质中添加0.5−1.0 mol/L的Cl会显著提高浸出效果,添加1.0 mol/L Cl则铜的浸出率超过90%。

2.2 氯离子对浸矿微生物生长的影响

耐盐浸矿微生物对氯离子的耐受能力因区域、属和种的不同而具有差异性[15, 36-37]。研究表明,At. ferrooxidans对氯离子的最高耐受浓度为4.2 g/L,S. thermosulfidooxidans的最高耐受浓度为12 g/L,L. ferriphilum的最高耐受浓度为12.3 g/L[38]。有些古生菌,如Sulfolobus spp.在培养基中含有18 g/L氯化物时生长才会受到抑制[39]

氯离子会延长微生物生长的迟滞期[22, 24, 40-41]。对于L. ferriphilumS. thermosulfidooxidans,当加入5.8 g/L和11.6 g/L的NaCl时,L. ferriphilum的迟滞期由不加NaCl的15 h分别延长至18 h和27 h,当加入NaCl的浓度高于11.6 g/L时,会对S. thermosulfidooxidans达到指数生长期有负面影响,出现较长时间的滞后期;当氯化物浓度高于12 g/L时则大部分非耐/嗜盐微生物的生长完全受到抑制,但S. thermosulfidooxidans对NaCl的耐受能力最大可达到31 g/L[42]。然而,适应性进化能够提高微生物不同菌株的耐盐性能,Vakylabad等[33]通过对常温菌、中等嗜热菌和极端嗜热菌的适应性驯化后发现,在含有2 g/L NaCl的培养基中,浸矿微生物的生长情况和活性丝毫不受影响。值得注意的是,由于细胞活性、培养方法、培养条件(如生长基质、生长培养基或实验时间)的差异,同一品系有不同氯离子耐受水平也可能存在显著差异[43]

2.3 氯离子对耐盐浸矿微生物的铁、硫氧化能力的影响

氯离子对浸矿微生物的抑制主要体现在铁、硫氧化能力上,对不同浸矿微生物的抑制效果不同。研究发现当NaCl的含量为7 g/L时,几种混合的嗜酸铁氧化微生物的生长速率和Fe2+氧化能力均下降超过50%[44],而且对At. ferrooxidans的铁氧化能力抑制性比硫氧化能力更显著[45]。同时,Gahan等的研究发现,没有氯化物存在时L. ferriphilum对Fe2+的氧化速度可达到0.4 g/(L·h);当添加3−9 g/L的氯后,该菌对Fe2+的氧化速率在0.28−0.15 g/(L·h)之间;当添加11 g/L氯时,其氧化速率进一步降低至0.014 g/(L·h);利用恒化器模型研究发现,在L. ferriphilum的培养过程中,当NaCl的含量为2−3 g/L时,微生物对Fe2+的利用率由原来的93%下降到23%−24%[46]。我们课题组之前从太平洋热液区分离得到一株耐盐菌株TPY,经鉴定与Sulfobacillus acidophilus的16S rRNA基因相似性达到99%,该菌能在20 g/L的NaCl下维持很好的铁/硫氧化能力[47-49],并具有很好的金属浸出效果,已成功应用于从成分复杂的电镀污泥等固体废弃物中回收有价金属的产业化处理[50-52]。Kamimura等从海洋中分离出的嗜酸菌株At. thiooxidans SH需要一定浓度的NaCl才能正常生长和刺激其硫氧化能力[19]。Nicolle等发现Thiobacillus prosperus是一种嗜盐微生物,其需要一定量的氯离子作为生长因子来达到与At. ferrooxidans类似的Fe2+氧化速率[53]。最新分离出的耐盐浸矿微生物可以耐受更高的氯离子浓度,如Khaleque等对所分离到的V6和V8两株耐盐浸矿微生物的研究发现,这两株微生物的纯培养物可以耐受高达75 g/L的氯离子,远远高于其他微生物的耐受能力[14, 54]

3 耐盐微生物在矿物浸出中的应用研究

研究人员发现,耐盐微生物在矿物浸出的应用研究中具有很大的应用前景。Khaleque等从酸性高盐废水中分离纯化的一株属于Ac. prosperus的耐盐杆菌F5菌株,在30 g/L氯离子及18 g/L氯离子条件下能够从黄铁矿、黄铜矿中浸出金属,在45 g/L的氯离子存在条件下仍可实现对镍黄铁矿的高效浸出[54]。由于各种因素的影响,耐盐浸矿微生物在含盐条件下的矿物浸出效率存在差异。

耐盐浸矿微生物在含盐条件下矿物浸出效率的差异,与微生物的物种差异有关。如Huynh等在L. ferriphilumS. thermosulfidooxidans对黄铜矿的生物浸出研究中发现,在添加200 mmol/L的NaCl条件下,S. thermosulfidooxidans对黄铜矿的浸出效果和不添加NaCl的浸出效果基本相同,而L. ferriphilum的浸出效果却下降了50%左右,说明S. thermosulfidooxidansL. ferriphilum更加适合含盐矿物的生物浸出[42]。Khaleque等研究发现,能够同时氧化铁还原硫的耐盐浸矿微生物通常比铁氧化耐盐浸矿微生物对氯离子的耐受性更高,相同的NaCl浓度条件下,能够同时氧化铁还原硫的耐盐浸矿微生物对黄铁矿浸出的效率更高[55]

除了微生物物种不同,导致耐盐浸矿微生物矿物浸出效率差异的还有矿物种类的差异。Huynh等的研究还发现,S. thermosulfidooxidans在200 mmol/L的NaCl浓度条件下浸出黄铜矿和闪锌矿,相比不添加NaCl,黄铜矿的浸出效率基本不变,闪锌矿的浸出效率受到明显抑制[42]

NaCl浓度差异也是导致矿物浸出效率差异的直接原因。Rea等在利用耐盐微生物浸出铜矿的研究过程中发现,5%的NaCl (50 g/L)浓度条件相比2.5%的NaCl (25 g/L)浓度条件,铜的浸出速率下降,三价铁减少约20%[36]。Thangavelu的研究结果显示,在NaCl浓度从0.01 g/L向0.5 g/L提升过程中,Aspergillus foetidus对镍红土矿的浸出效果逐渐降低[56]

4 总结和展望

由于耐盐浸矿微生物能在含盐条件下浸矿的特点,目前在浸矿微生物研究领域引起广泛关注。耐盐浸矿微生物不仅能以海水为基质进行浸矿,解决很多矿物丰度但淡水缺乏地区的矿产开发问题,还能通过以生物浸出和化学浸出相结合的方式提高浸矿效率。此外,耐盐浸矿微生物在高盐有机废水的处理、危险废弃物的生物降解及资源再回收、石油污染环境的修复、盐碱地的改造、海水淡化和医药或食品开发等方面同样能有广泛的应用,具有广阔的应用前景。

然而,耐盐浸矿微生物的研究还处于实验室阶段,未投入应用,主要问题在于以下几点:(1)除了耐盐浸矿微生物对金属硫化矿作用机理有所研究外,对其他矿物的作用机理未深入研究;(2)尽管耐盐菌能够改善浸出,含盐环境会对其浸矿功能产生影响,如S. acidophile TPY在盐浓度剧烈波动的环境下很容易丧失铁氧化功能[57];(3)耐盐浸矿微生物用于矿物浸出的工艺研究停留在生物浸出和NaCl浸出分段结合的阶段,生物浸出和化学浸出同步进行的工艺不成熟;(4)耐盐浸矿微生物的大规模高密度培养技术不成熟,难以满足应用需要。

综上所述,未来重要的研究方向有以下几项:(1)进一步探究耐盐微生物在高盐条件、极端温度和极端pH等条件下的代谢产物、极端条件下的代谢能力;(2)结合代谢组学等手段研究耐盐浸矿微生物的浸矿机理;(3)借助高通量筛选技术与诱变、适应性进化等手段获得浸矿效果更好、环境适应性更强的耐盐浸矿微生物菌株;(4)改良耐盐浸矿微生物的浸矿工艺;(5)开发耐盐浸矿微生物大规模高密度培养技术。

REFERENCES
[1]
Zhou HB, Mao F, Wang YG. Acidophilic microorganisms and bioleaching technology[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(2): 269-276. (in Chinese)
周洪波, 毛峰, 王玉光. 嗜酸微生物与生物冶金技术[J]. 矿物岩石地球化学通报, 2015, 34(2): 269-276.
[2]
de Andrade LM, Rosario CGA, de Carvalho MA, et al. Copper recovery from printed circuit boards from smartphones through bioleaching[A]//TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series[C]. Cham: Springer, 2019: 837-844
[3]
Faramarzi MA, Mogharabi-Manzari M, Brandl H. Bioleaching of metals from wastes and low-grade sources by HCN-forming microorganisms[J]. Hydrometallurgy, 2020, 191: 105228. DOI:10.1016/j.hydromet.2019.105228
[4]
Lacey DT, Lawson F. Kinetics of the liquid-phase oxidation of acid ferrous sulfate by the bacterium Thiobacillus ferrooxidens[J]. Biotechnology and Bioengineering, 1970, 12(1): 29-50.
[5]
Johnson DB, Hallberg KB. Carbon, iron and sulfur metabolism in acidophilic micro-organisms[J]. Advances in Microbial Physiology, 2008, 54: 201-255. DOI:10.1016/S0065-2911(08)00003-9
[6]
Madani K. Water management in Iran: what is causing the looming crisis?[J]. Journal of Environmental Studies & Sciences, 2014, 4(4): 315-328.
[7]
Rea SM, McSweeney NJ, Degens BP, et al. Salt-tolerant microorganisms potentially useful for bioleaching operations where fresh water is scarce[J]. Minerals Engineering, 2015, 75: 126-132. DOI:10.1016/j.mineng.2014.09.011
[8]
Chen JC, Feng SS, Gao K, et al. Isolation, identification and biodesufurization performance research of salt-tolerant sulfur oxidizing bacteria[J]. Microbiology China, 2015, 42(9): 1651-1661. (in Chinese)
陈金才, 冯守帅, 高凯, 等. 耐盐硫氧化菌的筛选、鉴定及脱硫性能研究[J]. 微生物学通报, 2015, 42(9): 1651-1661.
[9]
Wang WW, Tang HZ, Xu P. Salt-tolerance related genes in halophilic bacteria and archaea[J]. Microbiology China, 2015, 42(3): 550-558. (in Chinese)
王伟伟, 唐鸿志, 许平. 嗜盐菌耐盐机制相关基因的研究进展[J]. 微生物学通报, 2015, 42(3): 550-558.
[10]
Li L, Zhao CC, Liu QY, et al. Study on screening and degradation characteristics of moderately halophilic bacteria degrading PASHs[J]. Chemistry & Bioengineering, 2014, 31(2): 44-47. (in Chinese)
李琳, 赵朝成, 刘其友, 等. 降解含硫杂环芳烃中度嗜盐菌的筛选及降解特性研究[J]. 化学与生物工程, 2014, 31(2): 44-47.
[11]
Li M, Guo WB, Chen XH. A novel NADPH-dependent reductase of Sulfobacillus acidophilus TPY phenol hydroxylase: expression, characterization, and functional analysis[J]. Applied Microbiology and Biotechnology, 2016, 100(24): 10417-10428. DOI:10.1007/s00253-016-7704-4
[12]
Wang G, Liu Q, Zhou HB, et al. Expression, purification and function of cysteine desulfurase from Sulfobacillus acidophilus TPY isolated from deep-sea hydrothermal vent[J]. 3 Biotech, 2017, 7(6): 360. DOI:10.1007/s13205-017-0995-z
[13]
Bomberg M, Miettinen H, Wahlström M, et al. Post operation inactivation of acidophilic bioleaching microorganisms using natural chloride-rich mine water[J]. Hydrometallurgy, 2018, 180: 236-245. DOI:10.1016/j.hydromet.2018.06.013
[14]
Khaleque HN, Kaksonen AH, Boxall NJ, et al. Chloride ion tolerance and pyrite bioleaching capabilities of pure and mixed halotolerant, acidophilic iron- and sulfur-oxidizing cultures[J]. Minerals Engineering, 2018, 120: 87-93. DOI:10.1016/j.mineng.2018.02.025
[15]
Bobadilla-Fazzini RA, Pérez A, Gautier V, et al. Primary copper sulfides bioleaching vs. chloride leaching: Advantages and drawbacks[J]. Hydrometallurgy, 2017, 168: 26-31.
[16]
Zarea MJ. Salt-tolerant microbes: Isolation and adaptation[A]//Giri B, Varma A. Microorganisms in Saline Environments: Strategies and Functions[M]. Cham: Springer, 2019: 285-301
[17]
Liu TH, Zhou PJ. Halophilic microorganisms[J]. Microbiology China, 1999, 26(3): 232. (in Chinese)
刘铁汉, 周培瑾. 嗜盐微生物[J]. 微生物学通报, 1999, 26(3): 232.
[18]
Hao C, Tang B, Tang XF. Recent progress in industrial application of halophiles[J]. Biotic Resources, 2019, 41(4): 281-288. (in Chinese)
郝闯, 唐兵, 唐晓峰. 嗜盐微生物的工业应用研究及进展[J]. 生物资源, 2019, 41(4): 281-288.
[19]
Kamimura K, Higashino E, Kanao T, et al. Effects of inhibitors and NaCl on the oxidation of reduced inorganic sulfur compounds by a marine acidophilic, sulfur-oxidizing bacterium, Acidithiobacillus thiooxidans strain SH[J]. Extremophiles, 2005, 9(1): 45-51. DOI:10.1007/s00792-004-0420-5
[20]
Kamimura K, Higashino E, Moriya S, et al. Marine acidophilic sulfur-oxidizing bacterium requiring salts for the oxidation of reduced inorganic sulfur compounds[J]. Extremophiles, 2003, 7(2): 95-99. DOI:10.1007/s00792-002-0300-9
[21]
Huber H, Stetter KO, et al. Thiobacillus prosperus sp. nov., represents a new group of halotolerant metal-mobilizing bacteria isolated from a marine geothermal field[J]. Archives of Microbiology, 1989, 151(6): 497-485.
[22]
Wang YG, Su LJ, Zhang LJ, et al. Bioleaching of chalcopyrite by defined mixed moderately thermophilic consortium including a marine acidophilic halotolerant bacterium[J]. Bioresource Technology, 2012, 121: 348-354. DOI:10.1016/j.biortech.2012.06.114
[23]
Guo X, Jiang CY, Luo YM, et al. Proteomic and molecular investigations revealed that Acidithiobacillus caldus adopts multiple strategies for adaptation to NaCl stress[J]. Chinese Science Bulletin, 2014, 59(3): 301-309. DOI:10.1007/s11434-013-0039-y
[24]
Zammit CM, Mangold S, Jonna VR, et al. Bioleaching in brackish waters-effect of chloride ions on the acidophile population and proteomes of model species[J]. Applied Microbiology and Biotechnology, 2012, 93(1): 319-329.
[25]
van Bodegom P. Microbial maintenance: a critical review on its quantification[J]. Microbial Ecology, 2007, 53(4): 513-523. DOI:10.1007/s00248-006-9049-5
[26]
Romantsov T, Guan ZQ, Wood JM. Cardiolipin and the osmotic stress responses of bacteria[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2009, 1788(10): 2092-2100. DOI:10.1016/j.bbamem.2009.06.010
[27]
Ren PG, Zhou PJ. Research progress of moderately halophilic eubacteria[J]. Acta Microbiologica Sinica, 2003, 43(3): 427-431. (in Chinese)
任培根, 周培瑾. 中度嗜盐菌的研究进展[J]. 微生物学报, 2003, 43(3): 427-431.
[28]
Slonczewski JL, Fujisawa M, Dopson M, et al. Cytoplasmic pH measurement and homeostasis in bacteria and archaea[J]. Advances in Microbial Physiology, 2009, 55: 1-79. DOI:10.1016/S0065-2911(09)05501-5
[29]
Ventosa A, Nieto JJ, Oren A. Biology of moderately halophilic aerobic bacteria[J]. Microbiology and Molecular Biology Reviews, 1998, 62(2): 504-544.
[30]
Fu KB, Dong FQ, Chen S, et al. Review on passivation and elimination way during bioleaching of chalcopyrite[J]. Journal of Wuhan University of Technology, 2013, 35(6): 128-133. (in Chinese)
傅开彬, 董发勤, 谌书, 等. 黄铜矿生物浸出钝化及调控研究进展[J]. 武汉理工大学学报, 2013, 35(6): 128-133.
[31]
Yang LF, Zhao BS, Yang SS. Sodium ion transportation system and its possible mechanisms in bacteria[J]. Acta Microbiologica Sinica, 2007, 47(6): 1110-1114. (in Chinese)
杨礼富, 赵百锁, 杨苏声. 细菌钠离子输出系统的类型及其可能机制[J]. 微生物学报, 2007, 47(6): 1110-1114.
[32]
Zou YJ, Yang LF, Wang L, et al. Cloning and characterization of a Na+/H+ antiporter gene of the moderately halophilic bacterium Halobacillus aidingensis AD-6T[J]. The Journal of Microbiology, 2008, 46(4): 415-421.
[33]
Vakylabad AB, Schaffie M, Naseri A, et al. Optimization of staged bioleaching of low-grade chalcopyrite ore in the presence and absence of chloride in the irrigating lixiviant: ANFIS simulation[J]. Bioprocess and Biosystems Engineering, 2016, 39(7): 1081-1104. DOI:10.1007/s00449-016-1586-9
[34]
Liang CL, Xia JL, Nie ZY, et al. Effect of sodium chloride on sulfur speciation of chalcopyrite bioleached by the extreme thermophile Acidianus manzaensis[J]. Bioresource Technology, 2012, 110: 462-467. DOI:10.1016/j.biortech.2012.01.084
[35]
Carneiro MFC, Leão VA. The role of sodium chloride on surface properties of chalcopyrite leached with ferric sulphate[J]. Hydrometallurgy, 2007, 87(3/4): 73-82.
[36]
Rea SM, McSweeney NJ, Degens BP, et al. Salt-tolerant microorganisms potentially useful for bioleaching operations where fresh water is scarce[J]. Minerals Engineering, 2015, 75: 126-132. DOI:10.1016/j.mineng.2014.09.011
[37]
Johnson DB. Development and application of biotechnologies in the metal mining industry[J]. Environmental Science and Pollution Research, 2013, 20(11): 7768-7776. DOI:10.1007/s11356-013-1482-7
[38]
Lawson EN, Nicholas CJ, Pellat H. The toxic effects of chloride ions on Thiobacillus ferrooxidans[A]//Vargas T, Jerez CA, Wiertz JV, et al. Biohydrometallurgy Processing[M]. San Diego: University of Chile, 1995: 165-174
[39]
Salo-Zieman VLA, Sivonen T, Plumb JJ. Characterization of a thermophilic sulfur oxidizing enrichment culture dominated by a Sulfolobus sp. obtained from an underground hot spring for use in extreme bioleaching conditions[J]. Journal of Industrial Microbiology and Biotechnology, 2006, 33(12): 984-994.
[40]
Davis-Belmar CS, Nicolle JLC, Norris PR. Ferrous iron oxidation and leaching of copper ore with halotolerant bacteria in ore columns[J]. Hydrometallurgy, 2008, 94(1/4): 144-147.
[41]
Boxall NJ, Rea SM, Li J, et al. Effect of high sulfate concentrations on chalcopyrite bioleaching and molecular characterisation of the bioleaching microbial community[J]. Hydrometallurgy, 2017, 168: 32-39. DOI:10.1016/j.hydromet.2016.07.006
[42]
Huynh D, Giebner F, Kaschabek SR, et al. Effect of sodium chloride on Leptospirillum ferriphilum DSM 14647T and Sulfobacillus thermosulfidooxidans DSM 9293T: growth, iron oxidation activity and bioleaching of sulfidic metal ores[J]. Minerals Engineering, 2019, 138: 52-59. DOI:10.1016/j.mineng.2019.04.033
[43]
Hu YH, Qiu GZ, Wang J, et al. The effect of silver-bearing catalysts on bioleaching of chalcopyrite[J]. Hydrometallurgy, 2002, 64(2): 81-88. DOI:10.1016/S0304-386X(02)00015-4
[44]
Shiers DW, Blight KR, Ralph DE. Sodium sulphate and sodium chloride effects on batch culture of iron oxidising bacteria[J]. Hydrometallurgy, 2005, 80(1/2): 75-82.
[45]
Harahuc L, Lizama HM, Suzuki I. Selective inhibition of the oxidation of ferrous iron or sulfur in Thiobacillus ferrooxidans[J]. Applied and Environmental Microbiology, 2000, 66(3): 1031-1037. DOI:10.1128/AEM.66.3.1031-1037.2000
[46]
Gahan CS, Sundkvist JE, Dopson M, et al. Effect of chloride on ferrous iron oxidation by a Leptospirillum ferriphilum-dominated chemostat culture[J]. Biotechnology and Bioengineering, 2010, 106(3): 422-431.
[47]
Qi HZ, Chen H, Ao JQ, et al. Isolation and identification of a strain of moderate thermophilic and acidophilic bacterium from deep sea[J]. Acta Oceanologica Sinica, 2009, 31(2): 152-158. (in Chinese)
漆辉洲, 陈红, 敖敬群, 等. 一株深海中等嗜热嗜酸菌的分离及鉴定[J]. 海洋学报, 2009, 31(2): 152-158.
[48]
Guo WB, Zhou WG, Zhou HB, et al. Characterization of enzymatic properties of two novel enzymes, 3, 4-dihydroxyphenylacetate dioxygenase and 4-hydroxyphenylacetate 3-hydroxylase, from Sulfobacillus acidophilus TPY[J]. BMC Microbiology, 2019, 19(1): 40.
[49]
Guo WB, Zhang HJ, Zhou WG, et al. Sulfur metabolism pathways in Sulfobacillus acidophilus TPY, a gram-positive moderate thermoacidophile from a hydrothermal vent[J]. Frontiers in Microbiology, 2016, 7: 1861.
[50]
Zhou WG, Guo WB, Zhou HB, et al. Phenol degradation by Sulfobacillus acidophilus TPY via the meta-pathway[J]. Microbiological Research, 2016, 190: 37-45. DOI:10.1016/j.micres.2016.05.005
[51]
Zhang LJ, Zhou WB, Liu YD, et al. Bioleaching of dewatered electroplating sludge for the extraction of base metals using an adapted microbial consortium: Process optimization and kinetics[J]. Hydrometallurgy, 2020, 191: 105227. DOI:10.1016/j.hydromet.2019.105227
[52]
Zhou WB, Zhang LJ, Peng J, et al. Cleaner utilization of electroplating sludge by bioleaching with a moderately thermophilic consortium: A pilot study[J]. Chemosphere, 2019, 232: 345-355. DOI:10.1016/j.chemosphere.2019.05.185
[53]
Nicolle JLC, Simmons S, Bathe S, et al. Ferrous iron oxidation and rusticyanin in halotolerant, acidophilic 'Thiobacillus prosperus'[J]. Microbiology, 2009, 155(4): 1302-1309. DOI:10.1099/mic.0.023192-0
[54]
Khaleque HN, Shafique R, Kaksonen AH, et al. Quantitative proteomics using SWATH-MS identifies mechanisms of chloride tolerance in the halophilic acidophile Acidihalobacter prosperus DSM 14174[J]. Research in Microbiology, 2018, 169(10): 638-648. DOI:10.1016/j.resmic.2018.07.002
[55]
Khaleque HN, Corbett MK, Ramsay JP, et al. Complete genome sequence of Acidihalobacter prosperus strain F5, an extremely acidophilic, iron-and sulfur-oxidizing halophile with potential industrial applicability in saline water bioleaching of chalcopyrite[J]. Journal of Biotechnology, 2017, 262: 56-59. DOI:10.1016/j.jbiotec.2017.10.001
[56]
Thangavelu V, Tang J, Ryan D, et al. Effect of saline stress on fungi metabolism and biological leaching of weathered saprolite ores[J]. Minerals Engineering, 2006, 19(12): 1266-1273. DOI:10.1016/j.mineng.2006.02.007
[57]
Liu RH, Chen YZ, Tian Z, et al. Enhancing microbial community performance on acid resistance by modified adaptive laboratory evolution[J]. Bioresource Technology, 2019, 287: 121416. DOI:10.1016/j.biortech.2019.121416