微生物学通报  2020, Vol. 47 Issue (9): 2974−2983

扩展功能

文章信息

刘玉冰, 王增如, 高天鹏
LIU Yu-Bing, WANG Zeng-Ru, GAO Tian-Peng
温带荒漠生物土壤结皮微生物群落结构与功能演替研究综述
Succession of microbial community structure and their functions of biological soil crusts in temperate desert: a review
微生物学通报, 2020, 47(9): 2974-2983
Microbiology China, 2020, 47(9): 2974-2983
DOI: 10.13344/j.microbiol.china200320

文章历史

收稿日期: 2020-03-30
接受日期: 2020-06-11
网络首发日期: 2020-06-30
温带荒漠生物土壤结皮微生物群落结构与功能演替研究综述
刘玉冰1 , 王增如1 , 高天鹏2,3     
1. 中国科学院西北生态环境资源研究院  甘肃省寒区旱区逆境生理与生态重点实验室    甘肃  兰州    730000;
2. 西安文理学院生物与环境工程学院    陕西  西安    710065;
3. 甘肃省矿区污染治理与生态修复工程研究中心    甘肃  兰州    730070
摘要: 生物土壤结皮(biological soil crusts,BSC)在荒漠植被的恢复及稳定性维持方面发挥了重要作用,被誉为“荒漠生态系统工程师”。BSC微生物群落是其发挥功能的主要成分,参与了BSC的形成、土壤性状的改善、土壤团聚体的稳定及植被的发育等过程。由于技术方法的限制,以往对BSC微生物群落发育如何调控荒漠植被稳定性的机理尚不清楚。近年来,随着土壤微生物组学技术的快速发展,BSC微生物群落组成及其功能的研究取得了较大进展,关于BSC微生物群落对荒漠生态系统贡献的认识日渐清晰。本文总结了温带荒漠BSC演替过程中微生物不同类群细菌、真菌、古菌群落的组成结构及参与碳氮循环的潜在功能变化,并对影响微生物群落结构和功能的土壤因素进行了剖析,阐释了BSC微生物群落与土壤功能性状相互作用及协同演替的模式,厘清了BSC促进荒漠土壤改善的机理,为温带荒漠植被恢复及荒漠生态系统对全球贡献的理解提供了依据。
关键词: 荒漠生态系统    生物土壤结皮    微生物群落    细菌    真菌    古菌    
Succession of microbial community structure and their functions of biological soil crusts in temperate desert: a review
LIU Yu-Bing1 , WANG Zeng-Ru1 , GAO Tian-Peng2,3     
1. Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou,  Gansu 730000, China;
2. School of Biological and Environmental Engineering, Xi'an University, Xi'an, Shaanxi 10065, China;
3. The Engineering Research Center of Mining Pollution Treatment and Ecological Restoration of Gansu Province, Lanzhou, Gansu 730070, China
Abstract: Biological soil crusts (BSC), known as "desert ecosystem engineer", play an important role in the restoration and stability maintenance of desert vegetation. BSC microbial communities are the main components of their functions. They participate in the formation of BSC, the improvement of soil physiochemical properties, the stability of soil aggregates and the development of vegetation. In the early stage, due to the limitation of technical methods, the mechanism of how BSC microbial communities regulate the stability of desert vegetation is unclear. However, with the rapid development of soil microbiome technologies in recent years, the research on the composition and function of BSC microbial communities has made great progress, and the contribution of BSC microbial communities to desert ecosystem has a clearer understanding. In this paper, the compositional structure of bacterial, fungal and archaeal communities and their potential functional changes in the carbon and nitrogen cycles during BSC succession in temperate desert are reviewed. Additionally, the soil environmental factors affecting the structure and function of microbial communities are summarized, and the successional model of interaction between different BSC microbial groups and soil physiochemical properties is explained. These results help us to clarify the mechanism of BSC promoting the improvement of desert soil conditions, and to provide theoretical basis for understanding the restoration process of desert vegetation and the contribution of temperate desert ecosystems to the world.
Keywords: Desert ecosystems    Biological soil crusts    Microbial community    Bacteria    Fungi    Archaea    

生物土壤结皮(biological soil crust,BSC)是由土壤微生物(细菌、真菌和古菌)、隐花植物(藻类、地衣和藓类)以及其他微小生命体通过菌丝体、假根和多聚糖等分泌物与土壤表层颗粒胶结形成的复合体[1-3]。BSC的生物组成是已知最早的生命形式之一,早在26亿年前就已经出现在化石记录中[4-5]。BSC的最初形成象征着陆地生态系统的起源,随着BSC的发育和气候、土壤条件的改善,维管束植物出现,并凭借其强大的竞争力而形成不同类型的生态系统[3]。在水分不能满足维管束植物覆盖的地区,BSC群落分布广泛,形成了几乎连续的干旱荒漠区活体皮肤[3, 6]。由于干旱区面积占全球陆地面积的40%以上,BSC作为干旱区陆表的一个主要特征,被誉为“荒漠生态系统工程师”,成为评价荒漠生态系统健康的有力指标[2-3]

BSC的形态结构多样,包括藻类、地衣、藓类以及混生为主的各种不同类型。尽管各种各样的BSC形成了地球上主要的群落类型之一,但对BSC的研究起步较晚,而且前期研究进展缓慢。蓝藻、藻类、古菌、细菌及微型真菌是形成BSC的基本基体[7-18],它们共同促进了地衣、苔藓植物、微型动物的定殖[19-23]。在全球和区域尺度上,特定BSC群落的组成和生物量主要取决于气候条件[24]。在潜在蒸散量较大的区域,BSC主要由低生物量的蓝藻、细菌和微型真菌组成,即蓝藻结皮,不存在苔藓或地衣[25-26]。随着蒸散量的减少,蓝藻生物量增加,地衣和苔藓植物出现,结皮类型呈现多样化[27-28]。在区域尺度上,除气候之外,土壤环境是控制BSC类型的重要因素,包括土壤类型、质地、养分含量、盐碱度、pH值和湿度等[24, 29]。随着对BSC生命体的研究不断深入,对BSC在荒漠生态系统结构和功能中所起的中心作用的认识日益加深。例如,通过BSC产生的土壤团聚体稳定了土壤颗粒和土壤结构[30-31],进而影响了荒漠生态系统的生态水文过程[2-3]及对资源(如土壤、有机质、种子和富营养灰尘)的捕获和保留[32-35];BSC通过固定大气中的碳氮进一步提高了土壤肥力[36-37],并将其分泌到下层土壤中,为全球碳氮循环做出贡献[21];BSC还可能改变其他营养物质的生物利用度,如磷元素[38-39];BSC的真菌群落在BSC与维管植物之间建立了直接的营养输送和碳连接[40-41]。这些功能综合影响了维管植物萌发和建立的时间、空间位置及营养水平。因此,BSC介导了荒漠土壤表面边界的大部分物质和能量的输入、转运和输出。由于体积小、易于操作、组成和功能具有多样性等特征,近几年BSC被成功用于研究陆表土壤生态系统基本生态学理论的模型[42-43]

BSC通常按表层可见的光自养生物类型分类,但细菌、真菌和古菌群落也是非常重要的组成部分。然而,探讨这些生物的生物量、物种组成或生态作用在不同环境条件下的变化,近些年才刚刚开始。前期研究由于技术方法的限制,很难估计其多样性。随着分子生物学技术的发展,过去十年里微生物组学技术应用到BSC微生物群落的研究取得了丰硕的成果。本文基于作者最新研究结果和国际相关研究动态,综述温带荒漠BSC演替过程中微生物细菌、真菌、古菌群落组成结构及其参与碳氮循环的潜在功能变化,总结影响不同群落结构与功能的环境因子,阐释BSC微生物群落与土壤理化性质互作的演替模式,揭示温带荒漠植被恢复及荒漠生态系统稳定性维持机理,以期为荒漠系统对全球贡献的理解提供依据。

1 温带荒漠BSC微生物群落组成结构及其演替变化

BSC微生物群落组成结构变化与BSC类型密切相关[13-14, 16, 44-46]。温带荒漠BSC主要演替趋势依次为蓝藻结皮→藻类-地衣结皮→地衣结皮→地衣-藓类结皮→藓类结皮[2],有些生境无藓类结皮出现。我们按照BSC演替序列分别就细菌、真菌、古菌群落组成结构进行了分析,主要参考通过Illumina MiSeq高通量测序技术对16S rRNA和ITS基因序列测序的结果和微生物定量分析的结果,总结了BSC微生物群落优势物种、群落结构多样性及群落丰富度的变化趋势。

1.1 细菌群落组成结构及演替

16S rRNA基因高通量测序技术检测到温带荒漠BSC细菌群落达459个属(数据库目前已知的属名,还有多种未确定属名)以上,分属于32个门[16, 46],其中优势菌门(占总物种的相对丰度均 > 1%)不少于10个。厚壁菌门(Firmicutes)在无BSC的荒漠表层土壤中相对丰度最高,随着BSC的演替,其相对丰度逐渐下降;蓝细菌门(Cyanobacteria)在藻类结皮中相对丰度最高,BSC演替过程中逐渐下降;除此之外,放线菌门(Actinobacteria)、变形菌门(Proteobacteria)、绿弯菌门(Chloroflexi)、酸杆菌门(Acidobacteria)、芽单胞菌门(Gemmatimonadetes)、拟杆菌门(Bacteroidetes)、浮霉菌门(Planctomycetes)、疣微菌门(Verrucomicrobia)和奇异球菌-栖热菌门(Deinococcus-Thermus)也是BSC系统的优势物种,而且随着BSC的演替,它们的相对丰度逐渐增加[14, 16, 46]。在属水平上,无BSC土壤中属种类相对较少,有芽胞杆菌属(Bacillus)、肠球菌属(Enterococcus)、乳球菌属(Lactococcus)、克罗诺菌属(Cronobacter)和嗜碱菌属(Alkaliphilus)等,它们的相对丰度随BSC演替序列逐渐下降;然而RB41、微鞘藻属(Microcoleus)、席藻属(Phormidium)以及数据库中目前无法命名的多种属的相对丰度逐渐增加,包括酸微菌目(Acidimicrobiales)、小单孢菌科(Micromonosporaceae)和放线菌纲(Actinobacteria)以及其他多种未确定的属[46]。属水平目前不确定属名的物种相对丰度随BSC演替逐渐增加,说明物种多样性在属水平上持续增高[14, 46]

细菌群落α多样性显示,群落丰富度在BSC演替的前17年显著增加,随后保持相对较高水平[14, 46];细菌群落16S rRNA基因绝对拷贝数变化与群落丰富度变化基本一致,证明了细菌群落的快速发育水平,无论生物量还是丰富度,在BSC形成后的十几年内能达到较高水平[47-48]。同时发现,荒漠BSC土壤细菌群落组成是高度分层的,仅数毫米至几厘米的BSC层细菌群落丰富度最高,而BSC下层土壤中细菌群落多样性最高;而且BSC层主要是能够进行光合作用的蓝细菌门等物种,下层土壤以养分和能量代谢为主的酸杆菌门、疣微菌门、芽单胞菌门、浮霉菌门和装甲菌门为主[17, 49]。表明荒漠地表BSC层相当于一个保护罩,能够维持下层土壤微生物群落更高的多样性。

1.2 真菌群落组成结构及演替

ITS高通量测序技术检测到的温带荒漠BSC真菌群落超过275个属,分属于8个门[13, 45],但优势菌门相对较少,仅3个,包括子囊菌门(Ascomycota)、担子菌门(Basidiomycota)和壶菌门(Chytridiomycota),而且BSC真菌群落组成结构随地理位置和季节的改变明显不同[13, 50]。BSC演替过程中,真菌群落在门水平上的物种组成变化不显著,无BSC的表土中壶菌门相对丰度较低;BSC中子囊菌门的相对丰度最高,不同演替阶段均超过60%[13]。优势门的属水平上主要有曲霉属(Aspergillus)、毛壳菌属(Chaetomium)、茎点霉属(Phoma)以及格孢腔菌目、粪壳菌目及其他不确定分类的属[13, 45]。地衣和藓类结皮中还存在丛枝菌根真菌,以球囊菌门的球囊霉属、类球囊霉属、盾巨孢囊霉属、巨孢囊霉属为主[51]。真菌群落α多样性显示其丰富度在BSC演替过程中持续增加,真菌ITS基因拷贝数也显著增加,说明真菌的物种多样性和生物量均随BSC演替阶段的推进而持续增加,演替后期(60年后)真菌数量越来越多[13, 48]。丛枝菌根真菌多样性显示,BSC下层土壤中孢子多样性显著高于BSC层,与细菌群落多样性变化一致,进一步证实了BSC层对微生物多样性的保护作用[51]

1.3 古菌群落组成结构及演替

古菌是地球上最古老的生命体,由于能够适应各种极端环境条件(如高酸、高热、高盐和高压等)而存活下来[52-53]。BSC微生物群落中,对细菌和真菌的研究较多,古菌群落的研究相对较少,近几年才有涉及。16S rRNA基因高通量测序发现温带荒漠BSC古菌群落组成结构单一,仅有奇古菌门(Thaumarchaeota)、广古菌门(Euryarchaeota)和另一个暂时不确定的门[44]。古菌群落的演替趋势明显,随着BSC的发育,三者中奇古菌和广古菌的相对丰度逐渐下降,而另一个门的相对丰度逐渐增加;其中,奇古菌的相对丰度在无BSC的表土层占70%以上,BSC演替50年后也能达到50%以上,广古菌在BSC演替后期占比很低;属水平的BSC古细菌仅有4种,包括SCG (Soil_Crenarchaeotic_ Group_SCG)、MG II (Marine_Group_II)、氨氧化古菌Candidatus_Nitrososphaera和一个不确定分类的属;SCG和MG II的相对丰度逐渐下降,后两者的相对丰度逐渐增加[44]。其中,SCG和Candidatus_Nitrososphaera的相对丰度在50多年的BSC演替过程中均高于10%,为优势属;演替后期SCG、Candidatus_Nitrososphaera和另一个属的占比基本相当,MG II的比例很低[54]。古菌群落的丰富度和古菌16S rRNA基因的拷贝数在BSC演替初期增加,5−7年后逐渐下降,BSC演替后期古菌数量显著减少[44]

1.4 三类微生物群落组成结构之间的相互关系

BSC演替过程中细菌、真菌和古菌群落组成结构的β多样性聚类分析显示,温带BSC微生物群落的发育过程可分为3个阶段:无BSC覆盖的土壤中3类微生物群落结构单独聚为一类,为第一阶段;BSC演替初期的蓝藻-藻类结皮微生物群落聚为第二类,为第二阶段;地衣结皮及演替后期的藓类结皮微生物群落聚为另一类,为最终阶段[13, 44-45]。荒漠环境由于水分和养分都极其有限,古菌群落在BSC演替初期能够在极端环境中进行生长和繁殖,并快速达到群落组成结构的较高多样性状态,有效地改善了土壤环境[52-53];而细菌和真菌群落对极端环境的适应性小于古菌群落,除厚壁菌门和蓝细菌门外,细菌在古菌群落对土壤条件进行初步改善的基础上才能完成自身群落组成结构的快速发育,真菌需要细菌群落发育相对稳定且土壤质量相对较好的条件下才逐步拓殖[53, 55]。同时,由于土壤资源的有限和对空间环境的竞争[56-58],三类微生物群落的竞争力不同,古菌群落竞争力相对较弱,演替后期生物量在三大类群中占比很低,细菌生物量占比在整个演替过程中始终最高,而真菌在BSC演替后期其生物量才占有较高水平[13, 44, 46, 59-60]

2 温带荒漠BSC微生物群落参与碳氮循环的潜在功能及其演替变化

BSC微生物群落作为荒漠生态系统的重要组成部分,是荒漠系统生物地球化学循环过程的主要驱动者,在物质循环和能量流动过程中发挥着重要作用,也是BSC系统发挥功能的主要成分[1-2, 61]。微生物参与的碳循环过程包括碳固定、碳降解和甲烷(CH4)代谢途径[62-64]。在碳固定过程中,微生物通过卡尔文循环、还原性乙酰辅酶A途径、还原性柠檬酸循环(还原性TCA循环)等不同途径将大气中的CO2固定到土壤中,促进土壤环境中有机质的合成[63]。在碳降解过程中,微生物将土壤中的易降解碳(淀粉、半纤维素和纤维素等)和难降解碳(芳烃类和木质素等)降解生成CO2释放到大气中,改变了土壤中的碳库[64-65]。微生物群落也是CH4生成和氧化的主要来源[66]。微生物参与的氮循环通常为固氮作用、硝化作用、氨化作用、反硝化作用、厌氧氨氧化作用和(同化/异化)氮还原作用组成的循环过程[67-68]。固氮微生物将大气中的氮气(N2)转化为可以被利用的铵态氮(NH4+-N),硝化微生物在有氧环境下将土壤中的铵态氮转化为硝态氮(NO3-N),反硝化微生物在厌氧环境下将土壤中的硝态氮转化为一氧化氮(NO)、一氧化二氮(N2O)和N2返回到大气中[68-69]

BSC微生物群落参与生物地化循环的功能基因中,丰度较高的主要为碳循环的功能基因,氮循环基因次之[48, 62],细菌、真菌和古菌群落共同参与到BSC碳氮循环过程中。

2.1 BSC微生物碳循环基因结构及物种

利用GeoChip功能基因芯片技术,通过研究BSC微生物群落参与碳循环的功能基因,发现BSC演替过程中不同阶段的功能基因组成结构相似[48],与通过宏基因组测序方法得到的结果基本一致[70]。碳降解、碳固定和CH4代谢途径的相关功能基因丰度分别为BSC碳循环功能基因总丰度的70.06%、27.41%和2.53%,而细菌、真菌和古菌群落的功能基因丰度分别为BSC碳循环功能基因总丰度的84.78%、11.41%和3.80%[47]。参与碳降解的相关功能基因主要来源于细菌群落,其中降解易降解类底物淀粉的功能基因丰度最高,真菌中主要为降解难降解碳的基因[47-48]。BSC微生物群落的碳固定过程主要为卡尔文循环、还原性乙酰辅酶A途径和还原性TCA循环的功能基因,这些基因全部来源于细菌群落,但古菌补充了另一种碳固定途径的基因二羧酸/4-羟基丁酸循环,其是迄今发现的最为古老的碳固定途径之一[47]。甲烷氧化基因均来自细菌群落,但甲烷生成基因来源于古菌[44],因此BSC演替过程中古菌群落生物量的减少有利于限制荒漠生态系统甲烷的释放,减弱碳源效应。

利用宏基因组测序的方法分析藻类和藓类结皮微生物碳循环基因,同样证明卡尔文循环为这两种类型BSC碳固定的最主要途径,其中编码一氧化碳脱氢酶的基因丰度远高于编码核酮糖-1, 5-二磷酸羧化酶/加氧酶(RubisCO)的基因丰度[70],说明卡尔文循环过程中微生物自身释放的CO2比固定的更高。Xu等[71]研究发现,藓类结皮与其他类型BSC相比会产生更多难降解碳基质,从而导致对难降解碳具有偏好性的真菌群落的降解功能显著增加。更多的研究也证实了真菌群落在难降解碳降解过程中的突出贡献[72-73],说明BSC微生物群落在一定程度上可改变荒漠生态系统的碳收支。

2.2 BSC微生物氮循环基因结构及物种

利用GeoChip功能基因芯片技术研究发现,BSC氮循环的反硝化作用、氨化作用、氮固定作用相关功能基因的丰度较高,其中,参与反硝化作用的narGnirK/SnosZ基因和参与氮固定的nifH基因及参与氨化作用的ureC基因,是细菌氮循环功能基因中丰度最高的基因[44, 48]。BSC演替过程中氮循环的不同功能基因组成结构基本一致,细菌、真菌和古菌群落的功能基因丰度分别为BSC氮循环功能基因总丰度的95.12%、0.82%和4.05%,也就是说,BSC微生物氮循环主要是细菌群落发挥功能;BSC演替过程中,变形菌门、放线菌门、厚壁菌门、蓝细菌门、拟杆菌门、Candidatus Methylomirabilis、浮霉菌门和疣微菌门为细菌群落参与氮循环过程的优势功能菌门[44]。参与反硝化作用、氮固定作用、异化氮还原作用和硝化作用的功能基因主要来源于变形菌门,参与氨化作用和同化氮还原作用的功能基因主要来源于变形菌门和放线菌门,而参与厌氧氨氧化作用的功能基因主要来源于浮霉菌门[44, 47, 63]

利用宏基因组测序方法的相关研究发现,藻类结皮微生物主要参与同化氮还原过程,藓类结皮微生物主要参与异化氮还原过程[70],这种功能上的差异主要取决于土壤有机碳含量的不同。Wang等[69]通过对演替过程中微生物固氮酶基因(nifH)特定区段PCR产物进行高通量测序分析,发现蓝细菌门为BSC演替过程中的优势固氮微生物,主要包括鱼腥藻属(Anabaena)、眉藻属(Calothrix)、筒孢藻属(Cylindrospermum)、节球藻属(Nodularia)、念珠藻属(Nostoc)和鞭枝藻属(Mastigocladus)等。与寒带和热带荒漠BSC微生物群落的研究结果相比,变形菌门为美国科罗拉多高原BSC演替过程中固氮作用的优势菌门[74],与通过GeoChip功能基因芯片技术对温带荒漠BSC的研究结果[47]相吻合。此外,氨氧化细菌是寒带沙漠BSC氨氧化作用的主要物种,氨氧化古菌是温带沙漠BSC氨氧化作用的主要功能种[75],而变形菌门是阿曼苏丹的热带荒漠藻类结皮和地衣结皮氨氧化作用的主要物种[76]

2.3 三类微生物群落参与碳氮循环的相互关系

细菌、真菌和古菌群落参与碳氮循环的功能基因显示,三类微生物群落均参与了BSC的生物地化循环过程。BSC碳循环过程中,碳固定主要由细菌群落和古菌群落的功能基因共同参与,其中变形菌门的卡尔文循环途径基因、泉古菌门的二羧酸/ 4-羟基丁酸循环途径基因为碳固定的关键功能基因[47, 63]。碳降解过程主要由细菌群落和真菌群落的功能基因共同参与,其中变形菌门和放线菌门的淀粉降解相关基因、担子菌门和子囊菌门的木质素降解相关基因是关键功能基因[47, 70]。甲烷的生成与氧化过程由细菌和古菌群落的功能基因共同参与,细菌中甲基弯曲菌(Methylosinus)和甲基细胞菌属(Methylocella)的功能基因负责甲烷氧化,古菌群落只参与甲烷的生成,功能基因主要来源于广古菌门[44]。BSC微生物氮循环过程相对于碳循环来说,基本由细菌完成[47]。由此可见,三类微生物群落在碳氮循环过程中密切相关,但在功能上又有侧重分工。结合BSC微生物群落的组成结构变化特征,由此可推测,在BSC演替初期,古菌的古老碳固定途径和蓝细菌的光合作用为BSC的土壤改良提供了便利,细菌由于群落生物量在BSC演替过程中最高而成为碳氮循环过程的主要执行者,真菌在BSC演替后期通过降解土壤中积累的稳态碳库进一步改善土壤性状。

3 微生物群落对BSC系统稳定性的贡献

在BSC演替过程中,土壤理化性质发生了显著变化,包括土壤湿度、pH值、粘粉粒、有机质、全碳、全氮、速效氮及速效磷含量等[2, 48]。其中,土壤过氧化物酶、脱氢酶、脲酶和蔗糖酶的活性在BSC演替过程中逐渐增加,土壤碱性蛋白酶活性逐渐下降[48, 77]。BSC细菌和真菌群落组成结构与土壤粘粉粒和养分含量呈正相关关系,与土壤pH值呈负相关关系[16, 45-46]。古菌群落组成结构与土壤养分含量呈负相关关系,而与土壤碱性蛋白酶活性呈正相关关系[44]。由此可见,土壤过氧化物酶活性、有机质含量和粘粉粒含量可以指示BSC演替过程中微生物群落组成结构的变化。同时,这些指标也是影响BSC微生物群落功能基因结构变化的关键因子[48, 63, 70]

在BSC演替过程中,土壤性状与微生物群落存在耦合作用和协同变化。由于BSC层厚度逐渐增加,保水能力提高,土壤微生物分解速率加快,土壤中的矿质氮、有机氮和易降解有机碳含量增加[78],从而改变了微生物群落结构与功能;同时,BSC微生物群落降低了活性氮NO、HONO和NO2的排放值,转变为土壤中的氮化合物[79-80],土壤中微生物基础呼吸、微生物碳、碳源利用率和分解代谢活性也有所提高[81-82],微生物群落通过调控生物地化循环过程反过来又改善了土壤性状,最终BSC系统趋向于一种良性稳态循环,维持着荒漠系统的稳定性。此外,BSC又是研究土壤生态系统结构与功能的模式系统,其微生物群落结构与功能的研究结果可以作为评价土壤系统对全球贡献的参考。

4 结论与展望

温带荒漠BSC细菌、真菌和古菌群落演替过程中,细菌群落结构在BSC发育的前17年多样性增加速率最快,与土壤理化性质的变化速率基本一致;真菌对环境因子较敏感,其发育需要相对较好的土壤环境,至少需要60年以上甚至上百年的时间达到最高多样性,与BSC的发育趋势吻合;古菌群落在BSC形成初期(0−7年)多样性增加,随着土壤养分含量增加,其多样性和丰富度都下降。因此,细菌是BSC发挥功能和改善土壤理化性质的主要微生物种群,真菌群落结构多样性具有衡量BSC发育程度和土壤质量的指示作用,古菌和蓝细菌门是BSC发育的先锋微生物种群。

由此可见,细菌、真菌和古菌在BSC演替的不同阶段发挥作用。细菌由于丰度最高,在生物地化循环、能量代谢及响应环境因子等功能中发挥绝对优势,真菌主要在BSC演替后期碳循环过程中补充降解难降解碳,古菌在BSC演替初期以一种古老的碳固定途径为BSC的发育提供条件。BSC的细菌、真菌和古菌群落之间由于共同的资源存在竞争关系,但在功能上具有潜在的互补效应。三类微生物群落之间具有显著的协同进化关系,其发育过程与土壤理化性质的改善相互依存,为荒漠植被的恢复及荒漠生态系统稳定性维持奠定了基础。

近年来,随着各种组学技术的快速发展,不同环境微生物群落及其功能的研究已成为热点,特别是近几年各种组学组合技术的成功应用,开启了人们对微生物群落不同水平(物种组成、基因水平、转录水平、蛋白质水平和代谢水平等)研究的综合分析,为人们研究不同生态系统的微生物群落组成和功能提供了便利,取得了前所未有的成果。BSC微生物群落的研究正是在这样的背景下受到了国际上的广泛重视。虽然微生物群落在BSC演替过程中所起的作用不容置疑,但与农田、海洋、森林等生态系统相比,对荒漠BSC生态系统的研究相对较少。目前的研究还需要从微生物群落各个层次和不同水平进行深入分析,为荒漠生态系统稳定性及植被恢复提供更坚实的理论基础。同时,需要借助现代基因工程技术,对微生物的代谢特性(如产多糖特性[83])加以改造,将其通过人工接种手段用于加速BSC这种“荒漠生物地毯”工程的进度,使其更好地为荒漠生态系统服务,并为全球生态环境可持续健康发展做出贡献。

REFERENCES
[1]
Belnap J, Lange OL. Biological Soil Crusts: Structure, Function, and Management[M]. Berlin: Springer-Verlag, 2003.
[2]
Li XR. Eco-hydrology of Biological Soil Crusts in Desert Regions of China[M]. Beijing: Higher Education Press, 2012. (in Chinese)
李新荣. 荒漠生物土壤结皮生态与水文学研究[M]. 北京: 高等教育出版社, 2012.
[3]
Weber B, Büdel B, Belnap J. Biological Soil Crusts: An Organizing Principle in Drylands[M]. Berlin: Springer-Verlag, 2016.
[4]
Beraldi-Campesi H, Retallack GJ. Terrestrial ecosystems in the precambrian[A]//Weber B, Büdel B, Belnap J. Biological Soil Crusts: An Organizing Principle in Drylands[M]. Switzerland: Springer-Verlag, 2016: 37-54
[5]
Beraldi-Campesi H, Hartnett HE, Anbar A, et al. Effect of biological soil crusts on soil elemental concentrations: implications for biogeochemistry and as traceable biosignatures of ancient life on land[J]. Geobiology, 2009, 7(3): 348-359. DOI:10.1111/j.1472-4669.2009.00204.x
[6]
Aslam SN, Dumbrell AJ, Sabir JS, et al. Soil compartment is a major determinant of the impact of simulated rainfall on desert microbiota[J]. Environmental Microbiology, 2016, 18(12): 5048-5062. DOI:10.1111/1462-2920.13474
[7]
Beraldi-Campesi H. Early life on land and the first terrestrial ecosystems[J]. Ecological Processes, 2013, 2: 1. DOI:10.1186/2192-1709-2-1
[8]
Abed RMM, Tamm A, Hassenrück C, et al. Habitat-dependent composition of bacterial and fungal communities in biological soil crusts from Oman[J]. Scientific Reports, 2019, 9: 6468. DOI:10.1038/s41598-019-42911-6
[9]
Muñoz-Martín MA, Becerra-Absalón I, Perona E, et al. Cyanobacterial biocrust diversity in Mediterranean ecosystems along a latitudinal and climatic gradient[J]. New Phytologist, 2019, 221(1): 123-141. DOI:10.1111/nph.15355
[10]
Ferrenberg S, Tucker CL, Reed SC. Biological soil crusts: diminutive communities of potential global importance[J]. Frontiers in Ecology and the Environment, 2017, 15(3): 160-167. DOI:10.1002/fee.1469
[11]
Rossi F, Li H, Liu YD, et al. Cyanobacterial inoculation (cyanobacterisation): Perspectives for the development of a standardized multifunctional technology for soil fertilization and desertification reversal[J]. Earth-Science Reviews, 2017, 171: 28-43. DOI:10.1016/j.earscirev.2017.05.006
[12]
Blay ES, Schwabedissen SG, Magnuson TS, et al. Variation in biological soil crust bacterial abundance and diversity as a function of climate in cold steppe ecosystems in the Intermountain West, USA[J]. Microbial Ecology, 2017, 74(3): 691-700. DOI:10.1007/s00248-017-0981-3
[13]
Liu LC, Liu YB, Hui R, et al. Recovery of microbial community structure of biological soil crusts in successional stages of Shapotou desert revegetation, northwest China[J]. Soil Biology & Biochemistry, 2017, 107: 125-128.
[14]
Lan SB, Ouyang HL, Wu L, et al. Biological soil crust community types differ in photosynthetic pigment composition, fluorescence and carbon fixation in Shapotou region of China[J]. Applied Soil Ecology, 2017, 111: 9-16. DOI:10.1016/j.apsoil.2016.11.009
[15]
Steven B, Gallegos-Graves LV, Belnap J, et al. Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material[J]. FEMS Microbiology Ecology, 2013, 86(1): 101-113.
[16]
Zhang BC, Zhang YQ, Li XZ, et al. Successional changes of fungal communities along the biocrust development stages[J]. Biology and Fertility of Soils, 2018, 54(2): 285-294. DOI:10.1007/s00374-017-1259-0
[17]
Maier S, Schmidt TSB, Zheng LJ, et al. Analyses of dryland biological soil crusts highlight lichens as an important regulator of microbial communities[J]. Biodiversity and Conservation, 2014, 23(7): 1735-1755. DOI:10.1007/s10531-014-0719-1
[18]
Wang F, Michalski G, Luo H, et al. Role of biological soil crusts in affecting soil evolution and salt geochemistry in hyper-arid Atacama Desert, Chile[J]. Geoderma, 2017, 307: 54-64. DOI:10.1016/j.geoderma.2017.07.035
[19]
Concostrina-Zubiri L, Martínez I, Escudero A. Lichen-biocrust diversity in a fragmented dryland: Fine scale factors are better predictors than landscape structure[J]. Science of the Total Environment, 2018, 628/629: 882-892.
[20]
Xiao B, Veste M. Moss-dominated biocrusts increase soil microbial abundance and community diversity and improve soil fertility in semi-arid climates on the Loess Plateau of China[J]. Applied Soil Ecology, 2017, 117/118: 165-177.
[21]
Elbert W, Weber B, Burrows S, et al. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen[J]. Nature Geoscience, 2012, 5(7): 459-462. DOI:10.1038/ngeo1486
[22]
Weber B, Wu DM, Tamm A, et al. Biological soil crusts accelerate the nitrogen cycle through large NO and HONO emissions in drylands[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(50): 15384-15389. DOI:10.1073/pnas.1515818112
[23]
Li XR, Song G, Hui R, et al. Precipitation and topsoil attributes determine the species diversity and distribution patterns of crustal communities in desert ecosystems[J]. Plant and Soil, 2017, 420(1/2): 163-175.
[24]
Bowker MA, Belnap J, Büdel B, et al. Controls on distribution patterns of biological soil crusts at micro- to global scales[A]//Weber B, Büdel B, Belnap J. Biological Soil Crusts: An Organizing Principle in Drylands[M]. Switzerland: Springer-Verlag, 2016: 173-197
[25]
Williams W, Chilton A, Schneemilch M, et al. Microbial biobanking–cyanobacteria-rich topsoil facilitates mine rehabilitation[J]. Biogeosciences, 2019, 16(10): 2189-2204. DOI:10.5194/bg-16-2189-2019
[26]
Belnap J, Büdel B, Lange OL. Biological soil crusts: Characteristics and distribution[A]//Belnap J, Lange OL. Biological Soil Crusts: Structure, Function, and Management[M]. Berlin: Springer, 2001: 3-30
[27]
Machado-de-Lima NM, Fernandes VMC, Roush D, et al. The compositionally distinct cyanobacterial biocrusts from Brazilian Savanna and their environmental drivers of community diversity[J]. Frontiers in Microbiology, 2019, 10: 2798. DOI:10.3389/fmicb.2019.02798
[28]
Belnap J, Miller DM, Bedford DR, et al. Pedological and geological relationships with soil lichen and moss distribution in the eastern Mojave Desert, CA, USA[J]. Journal of Arid Environments, 2014, 106: 45-57. DOI:10.1016/j.jaridenv.2014.02.007
[29]
Ochoa-Hueso R, Delgado-Baquerizo M, Gallardo A, et al. Climatic conditions, soil fertility and atmospheric nitrogen deposition largely determine the structure and functioning of microbial communities in biocrust-dominated Mediterranean drylands[J]. Plant and Soil, 2016, 399(1/2): 271-282.
[30]
Deng SQ, Zhang DY, Wang GH, et al. Biological soil crust succession in deserts through a 59-year-long case study in China: How induced biological soil crust strategy accelerates desertification reversal from decades to years[J]. Soil Biology & Biochemistry, 2020, 141: 107665. DOI:10.1016/S1002-0160(17)60477-6
[31]
Cania B, Vestergaard G, Kublik S, et al. Biological soil crusts from different soil substrates harbor distinct bacterial groups with the potential to produce exopolysaccharides and lipopolysaccharides[J]. Microbial Ecology, 2020, 79(2): 326-341. DOI:10.1007/s00248-019-01415-6
[32]
Belnap J, Wilcox BP, van Scoyoc M W, et al. Successional stage of biological soil crusts: an accurate indicator of ecohydrological condition[J]. Ecohydrology, 2013, 6(3): 474-482. DOI:10.1002/eco.1281
[33]
Shi W, Wang XP, Zhang YF, et al. The effect of biological soil crusts on soil moisture dynamics under different rainfall conditions in the Tengger Desert, China[J]. Hydrological Processes, 2018, 32(10): 1363-1374. DOI:10.1002/hyp.11493
[34]
Mallen-Cooper M, Eldridge DJ. Laboratory-based techniques for assessing the functional traits of biocrusts[J]. Plant and Soil, 2016, 406(1/2): 131-143.
[35]
Pietrasiak N, Regus JU, Johansen JR, et al. Biological soil crust community types differ in key ecological functions[J]. Soil Biology & Biochemistry, 2013, 65: 168-171.
[36]
Garibotti IA, Polo MG, Tabeni S. Linking biological soil crust attributes to the multifunctionality of vegetated patches and interspaces in a semiarid shrubland[J]. Functional Ecology, 2018, 32(4): 1065-1078.
[37]
Colesie C, Green TGA, Haferkamp I, et al. Habitat stress initiates changes in composition, CO2 gas exchange and C-allocation as life traits in biological soil crusts[J]. The ISME Journal, 2014, 8(10): 2104-2115. DOI:10.1038/ismej.2014.47
[38]
Baumann K, Siebers M, Kruse J, et al. Biological soil crusts as key player in biogeochemical P cycling during pedogenesis of sandy substrate[J]. Geoderma, 2019, 338: 145-158. DOI:10.1016/j.geoderma.2018.11.034
[39]
Baumann K, Glaser K, Mutz JE, et al. Biological soil crusts of temperate forests: Their role in P cycling[J]. Soil Biology & Biochemistry, 2017, 109: 156-166.
[40]
Dettweiler-Robinson E, Sinsabaugh RL, Rudgers JA. Fungal connections between plants and biocrusts facilitate plants but have little effect on biocrusts[J]. Journal of Ecology, 2020, 108(3): 894-907.
[41]
Chaudhary VB, Akland K, Johnson NC, et al. Do soil inoculants accelerate dryland restoration? A simultaneous assessment of biocrusts and mycorrhizal fungi[J/OL]. Restoration Ecology [2019-11-22].http://doi.org/10.1111//doi rec.13088
[42]
Bowker MA, Maestre FT, Escolar C. Biological crusts as a model system for examining the biodiversity-ecosystem function relationship in soils[J]. Soil Biology & Biochemistry, 2010, 42(3): 405-417.
[43]
Bowker MA, Maestre FT, Eldridge D, et al. Biological soil crusts (biocrusts) as a model system in community, landscape and ecosystem ecology[J]. Biodiversity and Conservation, 2014, 23(7): 1619-1637. DOI:10.1007/s10531-014-0658-x
[44]
Zhao LN, Liu YB, Yuan SW, et al. Development of archaeal communities in biological soil crusts along a revegetation chronosequence in the Tengger Desert, north central China[J]. Soil and Tillage Research, 2020, 196: 104443. DOI:10.1016/j.still.2019.104443
[45]
Wang ZR, Liu YB, Zhao LN. Development of fungal community is a potential indicator for evaluating the stability of biological soil crusts in temperate desert revegetation[J]. Applied Soil Ecology, 2020, 147: 103404. DOI:10.1016/j.apsoil.2019.103404
[46]
Liu LC, Liu YB, Zhang P, et al. Development of bacterial communities in biological soil crusts along a revegetation chronosequence in the Tengger Desert, northwest China[J]. Biogeosciences, 2017, 14(16): 3801-3814. DOI:10.5194/bg-14-3801-2017
[47]
Zhao LN, Liu YB, Wang ZR, et al. Bacteria and fungi differentially contribute to carbon and nitrogen cycles during biological soil crust succession in arid ecosystems[J]. Plant and Soil, 2020, 447(1/2): 379-392.
[48]
Liu YB, Zhao LN, Wang ZR, et al. Changes in functional gene structure and metabolic potential of the microbial community in biological soil crusts along a revegetation chronosequence in the Tengger Desert[J]. Soil Biology & Biochemistry, 2018, 126: 40-48.
[49]
Liu YB, Wang ZR, Zhao LN, et al. Differences in bacterial community structure between three types of biological soil crusts and soil below crusts from the Gurbantunggut Desert, China[J]. European Journal of Soil Science, 2019, 70(3): 630-643.
[50]
Zhao YL. Microbial diversity analysis of biological soil crusts in Inner Mongollia desert[D]. Inner Mongollia: Doctoral Dissertation of Inner Mongollia Agricultral University, 2011 (in Chinese)
赵宇龙.内蒙古荒漠生物土壤结皮中微生物多样性分析[D].内蒙古: 内蒙古农业大学博士学位论文, 2011
[51]
Qi JH, Liu YB, Li XR, et al. AMF diversity analysis of lichen and moss biocrusts in Shapotou Region[J]. Acta Pedologica Sinica, 2020, 57(4): 986-994 (in Chinese). (in Chinese)
漆婧华, 刘玉冰, 李新荣, 等. 沙坡头地区地衣和藓类结皮丛枝菌根真菌多样性研究[J]. 土壤学报, 2020, 57(4): 986-994.
[52]
Offre P, Kerou M, Spang A, et al. Variability of the transporter gene complement in ammonia-oxidizing archaea[J]. Trends in microbiology, 2014, 22(12): 665-675. DOI:10.1016/j.tim.2014.07.007
[53]
Koonin EV, Wolf YI. Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world[J]. Nucleic Acids Research, 2008, 36(21): 6688-6719. DOI:10.1093/nar/gkn668
[54]
Zhao LN, Li XR, Yuan SW, et al. Shifts in community structure and function of ammonia-oxidizing archaea in biological soil crusts along a revegetation chronosequence in the Tengger Desert[J]. Sciences in Cold and Arid Regions, 2019, 11(2): 139-149.
[55]
Liu XB, Pan J, Liu Y, et al. Diversity and distribution of archaea in global estuarine ecosystems[J]. Science of the Total Environment, 2018, 637/638: 349-358.
[56]
Garcia-Pichel F, Wojciechowski MF. The evolution of a capacity to build supra-cellular ropes enabled filamentous cyanobacteria to colonize highly erodible substrates[J]. PLoS One, 2009, 4(11): e7801.
[57]
Feng K, Zhang ZJ, Cai WW, et al. Biodiversity and species competition regulate the resilience of microbial biofilm community[J]. Molecular Ecology, 2017, 26(21): 6170-6182. DOI:10.1111/mec.14356
[58]
Bates ST, Berg-Lyons D, Caporaso JG, et al. Examining the global distribution of dominant archaeal populations in soil[J]. The ISME Journal, 2011, 5(5): 908-917. DOI:10.1038/ismej.2010.171
[59]
Bates ST, Nash TH III, Garcia-Pichel F. Patterns of diversity for fungal assemblages of biological soil crusts from the southwestern United States[J]. Mycologia, 2012, 104(2): 353-361.
[60]
Bates ST, Nash TH III, Sweat KG, et al. Fungal communities of lichen-dominated biological soil crusts: Diversity, relative microbial biomass, and their relationship to disturbance and crust cover[J]. Journal of Arid Environments, 2010, 74(10): 1192-1199. DOI:10.1016/j.jaridenv.2010.05.033
[61]
Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive Earth's biogeochemical cycles[J]. Science, 2008, 320(5879): 1034-1039. DOI:10.1126/science.1153213
[62]
Hu YG, Zhang ZS, Huang L, et al. Shifts in soil microbial community functional gene structure across a 61-year desert revegetation chronosequence[J]. Geoderma, 2019, 347: 126-134. DOI:10.1016/j.geoderma.2019.03.046
[63]
Berg IA. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways[J]. Applied and Environmental Microbiology, 2011, 77(6): 1925-1936. DOI:10.1128/AEM.02473-10
[64]
Zhou JZ, Xue K, Xie JP, et al. Microbial mediation of carbon-cycle feedbacks to climate warming[J]. Nature Climate Change, 2012, 2(2): 106-110.
[65]
Yang YF, Gao Y, Wang SP, et al. The microbial gene diversity along an elevation gradient of the Tibetan grassland[J]. The ISME Journal, 2014, 8(2): 430-440. DOI:10.1038/ismej.2013.146
[66]
Ferré C, Zechmeister-Boltenstern S, Comolli R, et al. Soil microbial community structure in a rice paddy field and its relationships to CH4 and N2O fluxes[J]. Nutrient Cycling in Agroecosystems, 2012, 93(1): 35-50. DOI:10.1007/s10705-012-9497-x
[67]
Li YD, Jing HM, Xia XM, et al. Metagenomic insights into the microbial community and nutrient cycling in the western subarctic pacific ocean[J]. Frontiers in Microbiology, 2018, 9: 623. DOI:10.3389/fmicb.2018.00623
[68]
Liu YR, Delgado-Baquerizo M, Trivedi P, et al. Identity of biocrust species and microbial communities drive the response of soil multifunctionality to simulated global change[J]. Soil Biology & Biochemistry, 2017, 107: 208-217.
[69]
Wang J, Bao JT, Li XR, et al. Molecular ecology of nifH genes and transcripts along a chronosequence in revegetated areas of the Tengger Desert[J]. Microbial Ecology, 2016, 71(1): 150-163.
[70]
Li JY, Jin XY, Zhang XC, et al. Comparative metagenomics of two distinct biological soil crusts in the Tengger Desert, China[J]. Soil Biology & Biochemistry, 2020, 140: 107637.
[71]
Xu L, Zhu BJ, Li CN, et al. Development of biological soil crust prompts convergent succession of prokaryotic communities[J]. Catena, 2020, 187: 104360. DOI:10.1016/j.catena.2019.104360
[72]
de Boer W, Folman LB, Summerbell RC, et al. Living in a fungal world: impact of fungi on soil bacterial niche development[J]. FEMS Microbiology Reviews, 2005, 29(4): 795-811. DOI:10.1016/j.femsre.2004.11.005
[73]
Schneider T, Keiblinger KM, Schmid E, et al. Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions[J]. The ISME Journal, 2012, 6(9): 1749-1762. DOI:10.1038/ismej.2012.11
[74]
Yeager CM, Kuske CR, Carney TD, et al. Response of biological soil crust diazotrophs to season, altered summer precipitation, and year-round increased temperature in an arid grassland of the Colorado Plateau, USA[J]. Frontiers in Microbiology, 2012, 3: 358.
[75]
Marusenko Y, Bates ST, Anderson I, et al. Ammonia-oxidizing archaea and bacteria are structured by geography in biological soil crusts across North American arid lands[J]. Ecological Processes, 2013, 2: 9. DOI:10.1186/2192-1709-2-9
[76]
Abed RMM, Lam P, de Beer D, et al. High rates of denitrification and nitrous oxide emission in arid biological soil crusts from the Sultanate of Oman[J]. The ISME Journal, 2013, 7(9): 1862-1875. DOI:10.1038/ismej.2013.55
[77]
Liu YM, Xing ZS, Yang HY. Effect of biological soil crusts on microbial activity in soils of the Tengger Desert (China)[J]. Journal of Arid Environments, 2017, 144: 201-211. DOI:10.1016/j.jaridenv.2017.04.003
[78]
Morillas L, Gallardo A. Biological soil crusts and wetting events: Effects on soil N and C cycles[J]. Applied Soil Ecology, 2015, 94: 1-6. DOI:10.1016/j.apsoil.2015.04.015
[79]
Meusel H, Tamm A, Kuhn U, et al. Emission of nitrous acid from soil and biological soil crusts represents an important source of HONO in the remote atmosphere in Cyprus[J]. Atmospheric Chemistry and Physics, 2018, 18(2): 799-813. DOI:10.5194/acp-18-799-2018
[80]
Weber B, Tamm A, Maier S, et al. Biological soil crusts of the Succulent Karoo: A review[J]. African Journal of Range & Forage Science, 2018, 35(3/4): 335-350.
[81]
Yu J, Glazer N, Steinberger Y. Carbon utilization, microbial biomass, and respiration in biological soil crusts in the Negev Desert[J]. Biology and Fertility of Soils, 2014, 50(2): 285-293. DOI:10.1007/s00374-013-0856-9
[82]
Li H, Li RH, Rossi F, et al. Differentiation of microbial activity and functional diversity between various biocrust elements in a heterogeneous crustal community[J]. Catena, 2016, 147: 138-145. DOI:10.1016/j.catena.2016.07.008
[83]
Zhao LN, Li XR, Wang ZR, et al. A new strain of Bacillus tequilensis CGMCC 17603 isolated from biological soil crusts: A promising sand-fixation agent for desertification control[J]. Sustainability, 2019, 11(22): 6501. DOI:10.3390/su11226501