微生物学通报  2020, Vol. 47 Issue (9): 2833−2847

扩展功能

文章信息

严嘉慧, 周岐海, 蒋云伟, 陈济宇, 李强, 李忠义
YAN Jia-Hui, ZHOU Qi-Hai, JIANG Yun-Wei, CHEN Ji-Yu, LI Qiang, LI Zhong-Yi
长期不同施肥措施下岩溶水稻土可培养细菌群落变化及其主要影响因素
Variation of cultivable bacterial community structure and the main influencing factors in karst paddy soil under different fertilization regimes
微生物学通报, 2020, 47(9): 2833-2847
Microbiology China, 2020, 47(9): 2833-2847
DOI: 10.13344/j.microbiol.china.200672

文章历史

收稿日期: 2020-07-01
接受日期: 2020-08-26
网络首发日期: 2020-08-31
长期不同施肥措施下岩溶水稻土可培养细菌群落变化及其主要影响因素
严嘉慧1,2,3 , 周岐海1 , 蒋云伟4 , 陈济宇2,3 , 李强1,2,3 , 李忠义5     
1. 珍稀濒危动植物生态与环境保护教育部重点实验室  广西珍稀濒危动物生态学重点实验室  广西师范大学    广西  桂林    541006;
2. 自然资源部/广西岩溶动力学重点实验室  中国地质科学院岩溶地质研究所    广西  桂林    541004;
3. 联合国教科文组织国际岩溶研究中心    广西  桂林    541004;
4. 桂林市农业科学研究中心    广西  桂林    541004;
5. 广西农业科学院农业资源与环境研究所    广西  南宁    530007
摘要: 【背景】 施肥是目前提高作物产量的较优策略,不同的施肥措施在不同程度上影响土壤肥力和微生物群落结构。【目的】 探究岩溶水稻土理化性质变化与细菌群落变化的对应关系,进而反映不同施肥措施对土壤可培养细菌群落的影响。最后选出最优施肥方案,为后续的合理施肥工作提供依据。【方法】 对岩溶水稻土进行不施肥、常规施肥、常规施肥加绿肥3种施肥处理,通过对土壤理化性质、可培养细菌群落丰度及多样性变化的研究,探究在不同施肥措施下对岩溶水稻土壤细菌群落的影响。【结果】 对比不施肥处理,常规施肥处理下土壤pH值和有机碳含量下降,结合大量研究结果证明,无机肥或氮肥的长期过量施加使土壤pH值下降,常规施肥加绿肥有利于有机碳的积累。分离纯化共得到164株菌,分别来自ActinobacteriaBacteroidetesFirmicutesProteobacteria。属水平上常规施肥配施绿肥较常规施肥组优势菌属SphingomonasLysobacter的相对丰度增加。细菌群落多样性增加,出现PaenibacillusStreptomycesPseudomonas等特有功能菌属。优势菌属SphingopyxisLysobacterPaenibacillusBoseaStreptomycesPseudomonasBacillus与TN存在显著正相关,在常规施肥加绿肥处理土壤中增加。【结论】 常规施肥加绿肥处理下,固氮、溶磷等功能菌丰度增加,增加土壤肥力,保持土壤养分的可利用性,对作物的增产起重要作用。岩溶水稻土常规施肥配施绿肥处理的效果优于不施肥和常规施肥处理。
关键词: 施肥措施    可培养细菌    群落特征    功能菌    
Variation of cultivable bacterial community structure and the main influencing factors in karst paddy soil under different fertilization regimes
YAN Jia-Hui1,2,3 , ZHOU Qi-Hai1 , JIANG Yun-Wei4 , CHEN Ji-Yu2,3 , LI Qiang1,2,3 , LI Zhong-Yi5     
1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education; Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi 541006, China;
2. Key Laboratory of Karst Dynamics, Ministry of Natural Resources & Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, Guangxi 541004, China;
3. International Research Center on Karst under the Auspices of United Nations Educational, Scientific and Cultural Organization, Guilin, Guangxi 541004, China;
4. Guilin Research Center of Agricultural Science, Guilin, Guangxi 541004, China;
5. Agricultural Resource and Environment Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
Abstract: [Background] Fertilization is the better strategy to improve crop yield. Fertilization measures can affect soil fertility and microbial community structure. [Objective] The inter-relationship between physicochemical properties and soil culturable bacterial communities will be explored. An optimal fertilization plan will be selected, and the result will provide the basic data for future work. [Methods] Three fertilization treatments of no fertilization, conventional fertilization, conventional fertilization and green manure were carried out on karst paddy soil. Based on the study of soil physical and chemical properties, abundance and diversity of cultivable bacterial communities, the effect of different fertilization measures on karst paddy soil was discussed about influence bacterial community. [Results] Compared with no fertilization treatment, the soil pH value and organic carbon content decreased along conventional fertilization treatment. Combined with a large number of research results, it proved that the long-term excessive application of inorganic fertilizer or nitrogen fertilizer decreased the soil pH value. The accumulation of organic carbon appeared in conventional fertilization plus green manure. A total of 164 strains of bacteria were obtained by separation and purification, which were from Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria. At the genus level, the abundance of conventional fertilization combined with green manure was higher than that of the conventional fertilization group of dominant bacteria of Sphingomonas and Lysobacter. The diversity of bacterial communities has increased with the emergence of specific functional bacterial genera such as Paenibacillus, Streptomyces and Pseudomonas. The dominant bacteria Sphingopyxis, Lysobacter, Paenibacillus, Bosea, Streptomyces, Pseudomonas and Bacillus were significantly positively correlated with TN, and they were enriched in soil treated with conventional fertilization and green manure. [Conclusion] Under the treatment of conventional fertilization and green manure, the abundance of functional bacteria relating to nitrogen fixation and phosphorus increased which could increase soil fertility and have an important role in increasing crop production. The effect of conventional fertilization combined with green manure treatment on karst paddy soil is better than those with no fertilizer and conventional fertilization treatment.
Keywords: Fertilization measures    Culturable bacteria    Bacterial community structure    Functional bacteria    

我国岩溶地貌主要分布在贵州、广西、云南三省,面积约55万km2,占我国土地面积的1/3[1]。岩溶区碳酸盐岩成土速率慢、土层厚度薄,因此存在特殊的脆弱性[2-3]。水稻在我国农业粮食生产中起重要作用,如何在岩溶地区高效种植水稻以满足当地粮食需求是目前需要攻克的难题[4]

为了增加土壤肥力,从而最终实现作物产量提高,施肥是当前最有效的措施之一[5]。土壤细菌不仅参与了土壤C、N和P等元素循环及腐殖质形成的生化过程[6],而且是土壤肥力的重要指标,能够迅速反馈土壤质量的变化[7-8]。研究表明,不同施肥措施在不同程度上影响土壤肥力,进一步影响微生物群落丰度和多样性,从而影响作物产量[9-12]。Geisseler等[13]在研究施肥对水稻系统土壤微生物的影响中,发现有机肥的施加对土壤理化性质和细菌群落的影响比无机肥更明显。

石灰性土壤为岩溶区代表性土壤,前人对石灰红壤性水稻土与细菌之间的关系进行了深入研究[14-15]。然而不同施肥措施下棕色石灰性土壤细菌群落、细菌与土壤因子的关系尚未涉及。因此,研究不同施肥措施对棕色石灰性土壤和细菌群落的影响,探究细菌群落与土壤理化性质之间的关系,有助于优化岩溶水稻土壤的施肥方案,进而为岩溶地区作物增产提供理论依据。为此,本文通过研究岩溶(棕色石灰土)水稻土壤细菌群落结构在不施肥、常规施肥、常规施肥加绿肥3种施肥措施下的变化,探究岩溶土壤理化性质与细菌群落之间的关系,进而反映不同施肥条件与土壤可培养细菌群落的对应关系,以期选出最优施肥方案,为后续合理施肥提供依据。

1 材料与方法 1.1 试验材料

试验土壤样品采自广西桂林国家级耕地质量监测点,该站点建于1987年,土壤类型为棕色石灰土母质潴育水稻土,并对土壤进行连续20年的不施肥、常规施肥和常规施肥配施绿肥处理。早稻和晚稻常规施肥量为N:P2O5:K2O=160:82.5:180 kg/hm2,常规施肥加绿肥处理方式具体为紫云英与水稻轮作,紫云英还田量约为22 500 kg/hm2。于2019年6月在该站点相应处理点进行采样,每个施肥措施区用“S”形多点采样法将土壤表层(0-15 cm)土壤混合,装入无菌装样袋立即低温运回实验室,去除动植物残体后一部分土壤用于土壤细菌培养,一部分土壤自然风干后用于土壤理化性质测定。

1.2 主要试剂和仪器

PCR所用引物、核酸染色剂、PCR反应体系混合试剂,生工生物工程(上海)股份有限公司;Chelex100,西格玛奥德里奇(上海)贸易有限公司;培养基使用R2A与SC培养基,具体配方参考任坤等的研究方法[16]。紫外可见分光光度计、原子吸收分光光度计,北京普析通用仪器有限责任公司;PCR仪,Bio-Rad公司。

1.3 土壤理化性质的测定

土壤pH值采用电位计法测定;速效钾(available potassium,AK)的测定采用醋酸铵-火焰光度计法;碱解氮(available nitrogen,AN)的测定采用碱解扩散法;有效磷(available phosphorus,AP)的测定采用碳酸氢钠浸提为钼锑抗比色法;土壤有机碳(soil organic carbon,SOC)的测定采用重铬酸钾容量法-稀释热法;全氮(total nitrogen,TN)的测定采用硫酸钾、硫酸铜和硒粉作催化剂,加入浓硫酸消煮,定氮仪自动分析法。交换性钙(exchangeable calcium,E-Ca)、镁(exchangeable magnesium,E-Mg)的测定采用乙酸铵溶液作交换剂,浸出交换性钙、镁后使用原子吸收分光光度法测定。具体分析方法步骤见土壤农业化学分析方法[17]

1.4 可培养细菌的培养纯化

试验采用两种培养基,分别为R2A和SC。研究表明R2A培养基适合大部分细菌生长,而且可培养出某些特有细菌,用SC培养基可以观察是否能培养出难培养菌种[18]。根据培养结果进一步选择合适的培养基进行后续培养。根据不同施肥措施与不同培养基组合,分别命名为不施肥R2A、不施肥SC、常规施肥R2A、常规施肥SC、常规施肥加绿肥R2A、常规施肥加绿肥SC。

无菌条件下在不施肥组土样中称取相当于干土1.44 g于25 mL锥形瓶,常规施肥和常规施肥加绿肥两组同理分别称取相当于干土1.60 g、1.43 g于锥形瓶中,置于28 ℃培养箱中风干后,向锥形瓶加入20 mL无菌水,适当振速振荡1 h后,制作样品梯度稀释液(10-1、10-2、10-3和10-4)。分别吸取100 µL稀释梯度为10-3、10-4样液加入两种培养基平板上涂布,设2组重复,将所得平板倒置于28 ℃培养箱中培养。观察平板菌生长状况,10-14 d后对细菌进行鉴别统计。

无菌环境下使用尖头竹签挑取单菌落,将挑选的菌落采用平板划线法[19]转接至R2A培养基上,倒置于28 ℃培养箱培养,并观察菌种生长情况、纯化程度,若非纯菌则对其继续进行纯化,直到得到纯种菌落,收集转至20%甘油管中,置于-80 ℃冰箱保存备用。

1.5 细菌DNA提取及PCR扩增

无菌环境下取50 µL Chelex 100溶液置于装有菌株的PCR管中,搅拌均匀后在PCR仪上进行Chelex程序裂解,Chelex程序参数:99 ℃ 25 min。随后室温下使用微型离心机1 000 r/min离心1 min至分层,上清液即为所提取的DNA。获取到的菌株DNA进行16S rRNA基因序列扩增、测序。扩增使用正向引物27F (5′-AGAGTTTGATCCTGGCT-3′)和反向引物1492R (5′-GGTTACCTTGTTACGACTT-3′)。PCR反应体系(25 µL):反应体系混合液12.5 µL,正、反向引物浓度为0.4 µmol/L,样品DNA提取液1 µL,双蒸水补足。PCR反应条件:95 ℃ 5 min;94 ℃ 30 s,52 ℃ 30 s,72 ℃ 1.5 min,35个循环;72 ℃ 10 min;12 ℃保存。

PCR扩增结束后用0.8% (质量体积比)琼脂糖凝胶对PCR产物进行凝胶电泳检测,预计目的条带为1 500 bp左右[20],将PCR产物送至生工生物工程(上海)股份有限公司广州分公司进行测序。

1.6 数据处理

测序得到的16S rRNA基因序列使用Mothur软件进行去重复[21]和OTU聚类,从每个OTU中选择一条作为代表序列,在NCBI中进行BLAST比对。使用MEGA 5.0[22]构建NJ系统发育进化树,将建树参数中的No. of Bootstrap Replications值改为1 000,其余参数默认。基于OTU聚类分析结果,使用Pearson相关系数方法对土壤理化性质与丰度大于1%的优势OTU结合进行相关性分析,并用R语言绘制相关性热图,对不同措施下可培养细菌进行α多样性分析。

2 结果与分析 2.1 不同施肥措施下土壤理化性质的测定

通过不施肥、常规施肥和常规施肥加绿肥处理下的土壤理化性质测定结果如表 1所示。常规施肥处理下土壤pH为6.72,有机碳含量为21.66 g/kg,碱解氮含量为131.55 mg/kg,上述指标及交换性钙、镁含量均低于不施肥和常规施肥加绿肥两组土壤测定值。同时,有效磷、全氮和速效钾含量随不施肥、常规施肥和常规施肥加绿肥处理方式呈现递增趋势,其中常规施肥加绿肥组增长幅度最大,该组全氮含量为3 733.23 mg/kg、有效磷含量为28.88 mg/kg,而不施肥土壤有效磷含量只有2.80 mg/kg。

表 1 不同施肥措施下土壤理化性质 Table 1 Physical and chemical properties of soil under different fertilization
理化参数
Physical and chemical parameters
不施肥
No fertilization
常规施肥
Conventional fertilization
常规施肥加绿肥
Conventional fertilization and green manure
pH 7.26 6.72 7.36
土壤有机碳Soil organic carbon (g/kg) 30.33 21.66 37.21
有效磷Available phosphorus (mg/kg) 2.80 15.22 28.88
全氮Total nitrogen (mg/kg) 1 886.55 1 927.05 3 733.23
碱解氮Available nitrogen (mg/kg) 160.40 131.55 189.95
速效钾Available potassium (mg/kg) 95.99 127.94 166.99
交换性钙Exchangeable calcium (cmol/kg) 28.85 10.23 18.65
交换性镁Exchangeable magnesium (cmol/kg) 1.45 1.05 1.51
2.2 可培养细菌丰度

培养完全结束后,比较可培养菌株数量得出:常规施肥加绿肥 > 不施肥 > 常规施肥;使用培养法最大值计算得到可培养细菌丰度。3组所得最大值都来自R2A培养基,其中不施肥组最大值为1.20×104 CFU/g,与常规施肥加绿肥组最大值1.29×104 CFU/g相近,而且均大于常规施肥组最大值7.60×103 CFU/g,丰度最小值为3.00×102 CFU/g,出现在SC培养基下不施肥组(表 2)。

表 2 可培养细菌丰度表 Table 2 Abundance table of culturable bacteria (CFU/g)
项目
Item
不施肥
No fertilization
常规施肥
Conventional fertilization
常规施肥加绿肥
Conventional fertilization and green manure
培养基
Culture medium
R2A 1.20×104 7.60×103 1.29×104
SC 3.00×102 3.35×103 8.50×102
最大值Maximum 1.20×104 7.60×103 1.29×104
2.3 可培养细菌系统发育

通过对不同措施下土壤细菌纯化培养共获得164株菌,其中不施肥组得到65株菌,常肥组得到29株菌,常规施肥加绿肥组得到70株菌。使用Mothur软件去重复后得到79个OTU,不施肥组分属48个OTU,常规施肥组分属17个OTU,常规施肥加绿肥组分属39个OTU (表 3)。此次培养得出细菌有变形菌门、放线菌门、拟杆菌门和厚壁菌门,其中变形菌门菌株数占总菌株数比最高,达73.17%。根据系统发育进化树显示(图 1),本次可培养细菌分别属于ActinobacteriaSphingobacteriiaFlavobacteriiaBacilliAlphaproteobacteriaBetaproteobacteriaGammaproteobacteriaChitinophagia。结合表 4来看,纲水平上常规施肥加绿肥组丰度最高,变形菌门Alphaproteobacteria在不施肥组和常规施肥加绿肥组占比最大,分别为49.2%和45.7%,常规施肥组中占比最大的则为变形菌门Gammaproteobacteria(44.8%)。另外,常规施肥加绿肥组培养出Sphingobacteriia,其他两组均无。

表 3 不同施肥措施土壤培养细菌的系统发育关系及组成 Table 3 Phylogenetic relationship and composition of soil culturable bacteria under different fertilization
样品
Sample
不施肥
No fertilization
常规施肥
Conventional fertilization
常规施肥加绿肥
Conventional fertilization and green manure
Total strain 65 29 70
Number of OTUs 48 17 39
Actinobacteria 8(12.3%) 2(6.9%) 9(12.9%)
Sphingobacteriia 1(1.4%)
Flavobacteriia 1(1.5%) 4(13.8%) 2(2.9%)
Bacilli 1(1.5%) 4(13.8%) 9(12.9%)
Alphaproteobacteria 32(49.2%) 4(13.8%) 32(45.7%)
Betaproteobacteria 5(7.7%) 2(6.9%) 6(8.6%)
Gammaproteobacteria 17(26.2%) 13(44.8%) 9(12.9%)
Chitinophagia 1(1.5%) 2(2.9%)
Note: The numbers in the brackets are the relative abundance.

图 1 3种施肥措施下土壤可培养细菌种群发育进化树 Figure 1 Evolutionary tree of soil culturable bacteria population under three fertilization Note:The letters and numbers in the first bracket indicate the NCBI registration number, and the other bracket indicates the number of strains obtained by this OTU. If the number is "1", it will not be marked. The number of branching points indicates bootstrap values based on 1 000 replications are listed as percentages at the branching points. The ruler in Figure A indicates 0.02 substitutions per nucleotide position, the ruler in Figure B indicates 0.01 substitutions per nucleotide position. Figure B is the folded part of the black triangle in Figure A.

表 4 不同施肥措施下土壤可培养细菌菌株α多样性指数 Table 4 Alpha diversity index of soil culturable bacteria strains under different fertilization (at 97% OTU level)
施肥措施
Fertilization measures
菌株数(个)
Number of bacteria
Shannon index Simpson index Equitability index
不施肥No fertilization 65 3.09 0.95 0.97
常规施肥Conventional fertilization 29 2.15 0.80 0.81
常规施肥加绿肥
Conventional fertilization and green manure
70 2.95 0.94 0.97
2.4 可培养细菌α多样性分析

使用R语言计算得出不同施肥措施下土壤可培养细菌菌株16S rRNA基因在97% OTU水平下的α多样性指数(表 4)。不施肥处理下Shannon、Simpson和Equitability指数分别为3.09、0.95和0.97,常规施肥加绿肥处理下Shannon、Simpson和Equitability指数分别为2.95、0.94和0.97,3组中常规施肥组的3个多样性指数最低,依次为2.15、0.8和0.81。

本次3组样品可培养细菌共164株分别来自变形菌门、放线菌门、拟杆菌门和厚壁菌门4门8纲20目31科41属。门水平各门菌株数大小关系为:变形菌门 > 放线菌门 > 厚壁菌门 > 拟杆菌门。属水平上来看,占总菌株数比最高的是Sphingomonas,达23.8%;其次为Stenotrophomonas,占总菌株数7.9%,可以看出Sphingomonas数量明显高于其他类群(图 2)。但对比图 3可发现,Sphingomonas在不施肥组(24.2%)和常肥加绿肥组(30%)中占比最大,高于其他优势类群,而在常规施肥组占比最大优势类群则为Stenotrophomonas(40.7%)。

图 2 获得总可培养细菌属水平分布情况 Figure 2 Obtain the horizontal distribution of total culturable bacteria

图 3 不同措施下土壤可培养细菌柱状图 Figure 3 Histogram of culturable bacteria in soil under different fertilization

从属水平分析不同施肥措施下土壤可培养细菌的群落结构,结果如图 3所示,比较可培养菌株属水平丰度得出:不施肥>常肥加绿肥>常规施肥。在3种施肥措施下,不施肥组样品分离得到菌株62株,分别属于4门7纲14目20科25属;常规施肥组样品分离得到菌株27株,分别属于4门6纲8目9科11属;常规施肥加绿肥组样品分离得到菌株70株,分别属于4门8纲16目17科22属。

BrevundimonasStagnimonasRoseomonasSphingorhabdusHydrogenophagaEnterobacterMicromonosporaNocardioidesPseudolabrysDevosiaAltererythrobacterArenimonasMicrococcusTetrasphaera为不施肥组特有种群,共14个属,其中分属变形菌门有10个,数量最多,其余属于放线菌门。常规施肥组中特有种群有3个,分别为GordoniaMesorhizobiumXanthomonas,分别属于变形菌门(66.7%)、放线菌门(33.3%);常规施肥加绿肥组发现特有种群10个,分别为PaenibacillusMesorhizobiumStreptomycesBoseaBradyrhizobiumPseudomonasPedobacterGemmobacterKribbellaNonomuraea,此组特有种群多数来自变形菌门(50%)。属于Pseudomonas的菌株共分离得到2株,占总菌株量1.2%,在系统发育进化树上显示与Pseudomonas migulae存在100%相似度(图 3),此外,该组特有种群中Paenibacillus属于厚壁菌门,Pedobacter属于拟杆菌门,其他两组均无属于上述两门的特有类群。

2.5 土壤理化性质和占优势可培养细菌群落的关系

土壤理化性质和优势OTU (> 1%)的关系如图 4所示。OTU3 (Stenotrophomonas maltophilia)与pH、交换性镁(E-Mg)显著负相关,与有效磷(AP)、速效钾(AK)相关性不显著;OTU (7、14、18、13、17、22和27,SphingopyxisLysobacterPaenibacillusBoseaStreptomycesPseudomonasBacillus)与全氮(TN)显著正相关,与碱解氮(AN)和有效磷(AP)正相关;OTU10 (Lysobacter)与有机碳(SOC)显著相关,与AN存在极显著正相关关系,与pH、TN和E-Mg正相关;OTU (9和11,BrevibacillusDelftia)与E-Ca显著负相关。

图 4 优势OTU与土壤理化性质显著相关关系图 Figure 4 The correlation diagram between dominant OTUs and soil physical and chemical properties Note: Significance levels are denoted as follows: P < 0.05 (*) and P < 0.01(**).
3 讨论

土壤pH值主要受成土母质影响,棕色石灰土母质主要以白云岩和石灰岩为主,偏碱是其显著特征之一[23]。本研究中常规施肥处理发现土壤pH值下降,而常规施肥加绿肥处理土壤pH值未受影响(表 1),说明长期施无机肥或氮肥的过量施加都会造成土壤pH值下降[24],主要是由于尿素经水解、硝化反应生成的硝酸根与土壤中氢离子结合,导致土壤变酸[25],这与丁建莉等[26]、刘平静等[27]实验结果一致。本研究表明可培养细菌丰度变化与土壤pH值及有机碳含量变化规律一致(表 12),说明土壤pH值下降抑制了某些细菌的生长繁殖,导致细菌丰度和多样性降低[28]。前人研究指出施肥造成土壤pH改变时,pH值为影响土壤细菌群落结构的主导因子[29]。土壤有机碳为土壤细菌提供碳源,以维持细菌活性[30],常规施肥处理下土壤可利用碳源减少,不足以支持细菌的生命活动[31],因此可培养细菌丰度下降;部分细菌对生长环境要求低,在低碳源条件下仍能维持生长[32]。例如Lysobacter对营养要求低,可利用碳源广泛,如单糖和苹果酸等[33],因此能够在寡营养环境下生存。类似的优势菌属Sphingomonas是异养好氧的革兰氏阴性菌,细胞膜具有鞘脂糖[34],耐受极端营养环境[35]。然而常规施肥组中上述细菌可培养丰度极低,造成了不同施肥处理下可培养细菌丰度差异的原因可能是不同类型菌群自身生存策略不同[36]。此外,细菌固定CO2是碳循环的关键环节,其中卡尔文循环是固定CO2的主要途径。常规施肥加绿肥处理组特有的BradyrhizobiumMesorhizobium具有核酮糖-1, 5-二磷酸羧化酶/加氧酶(RubisCO)[37],通过卡尔文循环固定CO2,在碳循环中起关键作用[38]。同时,它们还可利用丰富的多糖类物质作为碳源合成自身有机物质——聚羟基烷酸酯进行异养繁殖[39];常规施肥加绿肥处理后,优势菌Sphingomonas丰度和多样性增加,该菌属主要通过降解木质素实现参与碳循环[40],木质素是含芳香化合物最多也是含有机碳最多的混合物,能够在土壤中转化成腐殖质,其降解对碳循环有着重要意义[41]。研究表明这类固碳菌丰度和多样性的降低是加速土壤有机碳损失的重要原因[42],本次研究中固碳细菌与有机碳的互作关系与Kandeler等[43]研究结果一致。施肥增加了土壤有机碳含量,其中有机肥配施化肥的处理效果最明显[44-46]。单施有机肥或有机肥配施化肥为土壤细菌提供碳源和生长所需营养[47],增强土壤细菌活性,促进其对新鲜有机物质的固定[48],进而明显提高土壤有机碳贮量[49]。有机碳贮量增加可为作物提供营养,促进其生长[50]。因此,在石灰性土壤上进行绿肥配施化肥较常规施肥处理更利于保持土壤pH值稳定,增加细菌多样性和有机碳的累积。

通过对不同施肥措施下细菌群落结构的分析,发现不同处理下的优势类群在门、纲水平上相似。本研究土壤中变形菌门和放线菌门为优势类群,与前人研究结果一致[51-52]。培养得到的功能菌如固氮菌属Bacillus[53]Paenibacillus[54]Pseudomonas[55]等及溶磷菌属GordoniaEnterobacter[56],与张翔等[57]研究结果相似。石灰性水稻土碳酸钙含量高,石灰反应强烈,土壤有机碳易于积累,但营养元素供给速率慢[58]。基于这些特性,提高石灰性水稻土营养元素的供应能力和对水稻种植至关重要。TN是土壤中各种形态无机氮和有机氮的总量,也是土壤肥力的核心之一[59],土壤氮素的有效性指标通常是碱解氮。本研究中,优势菌属SphingopyxisLysobacterPaenibacillusBoseaStreptomycesPseudomonasBacillus与TN存在显著正相关,与AN正相关(图 4),说明与N相关的细菌在该处理的土壤中大量出现,其中具固氮功能的菌属占比较大,表明土壤N含量的增加可能是固氮功能菌发挥主导作用,氮素循环过程主要由细菌参与[60],固氮环节中Paenibacillus[61]Pseudomonas[62]等可将空气中的分子氮转化为有机氮,这在很大程度上增加了土壤的氮素营养,从而促进了作物增产[63]。然而在氮素循环的其他环节均有功能细菌参与[64],如MicrococcusFlavobacterium参与氨化作用,将有机氮分解成为氨与氨化合物[65]

磷作为作物的必需营养元素,而石灰土中大量碳酸钙与其结合生成难溶的、不易被作物吸收的磷酸钙盐,导致磷素供应能力低[66]。本实验结果表明,通过与不施肥处理相比,施肥可提高土壤有效P含量,不同施肥措施土壤AP含量变化(表 1)与溶磷菌丰度与多样性变化具有相同趋势,与罗明等[67]研究一致。解磷细菌可以将难溶性无机磷转化为可溶性磷,提高土壤有效磷含量并促进作物吸收[68]。释放葡萄糖酸或柠檬酸等有机酸是细菌溶磷的重要途径之一[69],可培养的溶磷菌PseudomonasK3主要通过分泌苹果酸,同时络合土壤中各种金属离子与矿物吸附磷发生竞争吸附,从而溶解不溶性磷[70];此外,也有学者认为Pseudomonas某些菌种通过呼吸作用或NH4+同化作用产生质子[71],而Sphingomonas主要通过产磷酸酶溶解土壤无机磷[72],从而使难溶性无机磷溶解。另外,大部分溶磷菌具有促进作物生长和提高作物产量的能力[73],如Enterobacter能够分泌吲哚乙酸促进作物生长,在一定条件下对水稻也存在促生作用[74]。因此,我们推测在土壤细菌群落中溶磷细菌丰度和多样性是影响土壤P含量变化的关键因素之一,并对作物生长和增产起一定作用。

综上所述,营养元素含量作为土壤肥力的重要指标,对作物生长和增产起重要作用。本研究中土壤理化性质的变化与其对应功能菌属的变化保持一致,可见土壤细菌在土壤元素转化中具有重要作用。

4 结论

(1) 长期施无机肥或氮肥的过量施加都会使土壤pH值下降,pH值是影响岩溶水稻土壤可培养细菌丰度的主要原因。

(2) 常规施肥处理下土壤有机碳含量明显降低,土壤细菌可利用碳源减少导致活性下降,固碳速率降低,而常规施肥加绿肥更有利于细菌活性功能的保持和有机碳的积累。

(3) 常规施肥加绿肥处理下,土壤细菌群落多样性和优势菌丰度增加,固碳、固氮和溶磷功能菌大量出现,土壤理化性质的变化与其相应功能菌属的变化具有相同变化趋势,岩溶水稻土进行常规施肥配施绿肥处理所得效果要优于不施肥和常规施肥。

REFERENCES
[1]
Yuan DX. Chinese Karstology[M]. Beijing: Geological Publishing House, 1994: 1-2. (in Chinese)
袁道先. 中国岩溶学[M]. 北京: 地质出版社, 1994: 1-2.
[2]
Ren JC, Zhang PJ, Pan GX, et al. Indices of eco-geochemical characteristics in a degradation-reclamation sequence of soils in mountainous karst area: a case study in Guanling-Zhenfeng Region, Guizhou, China[J]. Advances in Earth Science, 2006, 21(5): 504-512. (in Chinese)
任京辰, 张平究, 潘根兴, 等. 岩溶土壤的生态地球化学特征及其指示意义——以贵州贞丰—关岭岩溶石山地区为例[J]. 地球科学进展, 2006, 21(5): 504-512.
[3]
Xie CW. Soil types and characteristics of karst areas in Guangxi[J]. Journal of Guangxi Agricultural and Biological Science, 1982(1): 83-93. (in Chinese)
谢传维. 广西岩溶地区土壤类型及特性[J]. 广西农业生物科学, 1982(1): 83-93.
[4]
Yan DH, He TB, Ning J, et al. A preliminary study on the segment characteristic of calcareous paddy soil in Karst Mountain of Guizhou Province[J]. Journal of Mountain Agriculture and Biology, 2009, 28(2): 109-114. (in Chinese)
颜德宏, 何腾兵, 宁婧, 等. 喀斯特山区石灰性水稻土部分发生特征研究[J]. 山地农业生物学报, 2009, 28(2): 109-114.
[5]
Denef K, Roobroeck D, Wadu MCWM, et al. Microbial community composition and rhizodeposit-carbon assimilation in differently managed temperate grassland soils[J]. Soil Biology and Biochemistry, 2009, 41(1): 144-153. DOI:10.1016/j.soilbio.2008.10.008
[6]
Buther SS, Challson RJ, Orians GH, et al. Global Biochemical Cycles[M]. San Diego: Academic Press, 1992: 263-284.
[7]
Vimal SR, Singh JS, Arora NK, et al. Soil-plant-microbe interactions in stressed agriculture management: a review[J]. Pedosphere, 2017, 27(2): 177-192. DOI:10.1016/S1002-0160(17)60309-6
[8]
Song DL, Xi XY, Zheng Q, et al. Soil nutrient and microbial activity responses to two years after maize straw biochar application in a calcareous soil[J]. Ecotoxicology and Environmental Safety, 2019, 180: 348-356. DOI:10.1016/j.ecoenv.2019.04.073
[9]
Sun J, Liu M, Li LJ, et al. The effect of different fertilization treatments on soil physical and chemical property[J]. Acta Agriculturae Boreali-Sinica, 2010, 25(4): 221-225. (in Chinese)
孙建, 刘苗, 李立军, 等. 不同施肥处理对土壤理化性质的影响[J]. 华北农学报, 2010, 25(4): 221-225.
[10]
Tao MH, Suo QY, Zhang SG, et al. Effects of different fertilization on the number of soil microbiologic and soil enzyme activities[J]. Northern Horticulture, 2017(9): 154-159. (in Chinese)
陶梦慧, 索全义, 张曙光, 等. 不同施肥对土壤微生物量和酶活性的影响[J]. 北方园艺, 2017(9): 154-159.
[11]
Liu Z, Sun ZH. Effects of different fertilization treatments on soil properties and crop yield[J]. Land Development and Engineering Research, 2019, 4(9): 56-60. (in Chinese)
刘哲, 孙增慧. 不同施肥处理对土壤性质及作物产量的影响[J]. 西部大开发(土地开发工程研究), 2019, 4(9): 56-60.
[12]
Li Y, Nie C, Liu YH, et al. Soil microbial community composition closely associates with specific enzyme activities and soil carbon chemistry in a long-term nitrogen fertilized grassland[J]. Science of the Total Environment, 2019, 654: 264-274. DOI:10.1016/j.scitotenv.2018.11.031
[13]
Geisseler D, Linquist BA, Lazicki PA. Effect of fertilization on soil microorganisms in paddy rice systems-A meta-analysis[J]. Soil Biology and Biochemistry, 2017, 115: 452-460. DOI:10.1016/j.soilbio.2017.09.018
[14]
Yuan HZ, Qin HL, Liu SL, et al. Response of abundance and composition of the bacterial community to long-term fertilization in paddy soils[J]. Scientia Agricultura Sinica, 2011, 44(22): 4610-4617. (in Chinese)
袁红朝, 秦红灵, 刘守龙, 等. 长期施肥对红壤性水稻土细菌群落结构和数量的影响[J]. 中国农业科学, 2011, 44(22): 4610-4617.
[15]
Lu YH, Liao YL, Zhou X, et al. Effect of long-term fertilization on rice yield and basic soil productivity in red paddy soil under double-rice system[J]. Acta Pedologica Sinica, 2015, 52(3): 597-606. (in Chinese)
鲁艳红, 廖育林, 周兴, 等. 长期不同施肥对红壤性水稻土产量及基础地力的影响[J]. 土壤学报, 2015, 52(3): 597-606.
[16]
Ren K, Shen LC, Yuan DX, et al. Carbon cycle characteristics in Karst cave system of Xueyu cave from 2012 to 2013[J]. Earth Science, 2016, 41(8): 1424-1434. (in Chinese)
任坤, 沈立成, 袁道先, 等. 2012—2013年重庆雪玉洞洞穴系统碳循环特征[J]. 地球科学, 2016, 41(8): 1424-1434.
[17]
Lu RK. Soil Agrochemical Analysis Method[M]. Beijing: China Agricultural Science and Technology Press, 2000: 146-195. (in Chinese)
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000: 146-195.
[18]
Hu YS, Li CX, Sun FL, et al. Improved culturability of soil bacteria using proper combination with various culturing medium[J]. Acta Microbiologica Sinica, 2007, 47(5): 882-887. (in Chinese)
胡元森, 李翠香, 孙富林, 等. 不同培养基组合提高土壤细菌可培养性的研究[J]. 微生物学报, 2007, 47(5): 882-887.
[19]
Zhou FL, Dong YM, Jin GM, et al. Environment specimens cultured by pour plate method and streak plate method: comparative study on the results[J]. Chinese Journal of Nosocomiology, 2012, 22(21): 4926-4927. (in Chinese)
周凤玲, 董玉梅, 靳桂明, 等. 环境采样标本倾注平皿和平板划线两种方法接种结果对比分析[J]. 中华医院感染学杂志, 2012, 22(21): 4926-4927.
[20]
Han MX. Study on the diversity of culturable Actinobacteria and their antibacterial activities in Karst caves from Guizhou Province, China[D]. Kunming: Master's Thesis of Kunming University of Science and Technology, 2017 (in Chinese)
韩明贤.贵州典型喀斯特洞穴可培养放线菌多样性及其抗菌活性的研究[D].昆明: 昆明理工大学硕士学位论文, 2017 http://cdmd.cnki.com.cn/Article/CDMD-10674-1017220557.htm
[21]
Shi HL, Xiang BK, Peng WX, et al. Effects of combined application of organic and inorganic fertilizers on flue-cured tobacco soil nutrients and bacterial community structure[J]. Soil and Fertilizer Sciences in China, 2019(4): 58-66. (in Chinese)
施河丽, 向必坤, 彭五星, 等. 有机无机肥料配施对植烟土壤养分及细菌群落结构的影响[J]. 中国土壤与肥料, 2019(4): 58-66.
[22]
Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology and Evolution, 2011, 28(10): 2731-2739. DOI:10.1093/molbev/msr121
[23]
Liu CQ, Lang YC, Li SL, et al. Researches on biogeochemical processes and nutrient cycling in Karstic ecological systems, southwest China: a review[J]. Earth Science Frontiers, 2009, 16(6): 1-12. (in Chinese)
刘丛强, 郎赟超, 李思亮, 等. 喀斯特生态系统生物地球化学过程与物质循环研究:重要性、现状与趋势[J]. 地学前缘, 2009, 16(6): 1-12.
[24]
Guo JH, Liu XJ, Zhang Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010. DOI:10.1126/science.1182570
[25]
Zhang XL, Zhou BK, Sun L, et al. Black soil acidity as affected by applying fertilizer and manure[J]. Chinese Journal of Soil Science, 2008, 39(5): 1221-1223. (in Chinese)
张喜林, 周宝库, 孙磊, 等. 长期施用化肥和有机肥料对黑土酸度的影响[J]. 土壤通报, 2008, 39(5): 1221-1223.
[26]
Ding JL, Jiang X, Guan DW, et al. Responses of micropopulation in black soil of northeast China to long-term fertilization and crops[J]. Scientia Agricultura Sinica, 2016, 49(22): 4408-4418. (in Chinese)
丁建莉, 姜昕, 关大伟, 等. 东北黑土微生物群落对长期施肥及作物的响应[J]. 中国农业科学, 2016, 49(22): 4408-4418.
[27]
Liu PJ, Xiao J, Sun BH, et al. Variation of bacterial community structure and the main influencing factors in Eum-orthic Anthrosols under different fertilization regimes[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(2): 307-315. (in Chinese)
刘平静, 肖杰, 孙本华, 等. 长期不同施肥措施下塿土细菌群落结构变化及其主要影响因素[J]. 植物营养与肥料学报, 2020, 26(2): 307-315.
[28]
Li GH. Effect of organic amendments and chemical fertilizer on soil microbial activity, biomass and community structure[J]. Chinese Agricultural Science Bulletin, 2010, 26(14): 204-208. (in Chinese)
李桂花. 不同施肥对土壤微生物活性、群落结构和生物量的影响[J]. 中国农学通报, 2010, 26(14): 204-208.
[29]
Zhang YT. The effect of long-term fertilization on soil microbial diversity and the accumulation of antibiotic resistance genes[D]. Chongqing: Doctoral Dissertation of Southwest University, 2017 (in Chinese)
张宇亭.长期施肥对土壤微生物多样性和抗生素抗性基因累积的影响[D].重庆: 西南大学博士学位论文, 2017 http://cdmd.cnki.com.cn/Article/CDMD-10635-1018807211.htm
[30]
Liu Q, Wei XM, Wu XH, et al. Chaeacteeistic of abundances and diveesity of carbon dioxide fixation miceobes in paddy soils[J]. Environmental Science, 2017, 38(2): 760-768. (in Chinese)
刘琼, 魏晓梦, 吴小红, 等. 稻田土壤固碳功能微生物群落结构和数量特征[J]. 环境科学, 2017, 38(2): 760-768.
[31]
Zhu HH, He XY, Wang KL, et al. Interactions of vegetation succession, soil bio-chemical properties and microbial communities in a Karst ecosystem[J]. European Journal of Soil Biology, 2012, 51: 1-7.
[32]
Wang FW, Wang XB, Li JC, et al. Effects of straw returning combination to fertility on the CO2-assimilating bacterial community in the lime concretion black soil[J]. Journal of Anhui Agricultural University, 2015, 42(5): 818-824. (in Chinese)
王伏伟, 王晓波, 李金才, 等. 秸秆还田配施化肥对砂姜黑土固碳细菌的影响[J]. 安徽农业大学学报, 2015, 42(5): 818-824.
[33]
Wang N, Wu KY, Cui LG, et al. Advance in bacteria identification and biocontrol mechanism of Lysobacter spp[J]. Journal of Northwest A & F University: Natural Science Edition, 2015, 43(5): 174-182, 191. (in Chinese)
王娜, 武坤毅, 崔浪军, 等. 溶杆菌属细菌鉴定及生防机制概况[J]. 西北农林科技大学学报:自然科学版, 2015, 43(5): 174-182, 191.
[34]
Kawasaki S, Moriguchi R, Sekiya K, et al. The cell envelope structure of the lipopolysaccharide-lacking gram-negative bacterium Sphingomonas paucimobilis[J]. Journal of Bacteriology, 1994, 176(2): 284-290. DOI:10.1128/JB.176.2.284-290.1994
[35]
Hu J, He XH, Li DP, et al. Progress in research of Sphingomonas[J]. Chinese Journal of Applied & Environmental Biology, 2007, 13(3): 431-437. (in Chinese)
胡杰, 何晓红, 李大平, 等. 鞘氨醇单胞菌研究进展[J]. 应用与环境生物学报, 2007, 13(3): 431-437.
[36]
Selesi D, Schmid M, Hartmann A. Diversity of green-like and red-like ribulose-1, 5-bisphosphate carboxylase/ oxygenase large-subunit genes (cbbL) in differently managed agricultural soils[J]. Applied and Environmental Microbiology, 2005, 71(1): 175-184.
[37]
Yuan HZ, Ge TD, Wu XH, et al. Long-term field fertilization alters the diversity of autotrophic bacteria based on the ribulose-1, 5-biphosphate carboxylase/oxygenase (RubisCO) large-subunit genes in paddy soil[J]. Applied Microbiology and Biotechnology, 2012, 95(4): 1061-1071. DOI:10.1007/s00253-011-3760-y
[38]
Nanba K, King GM, Dunfield K. Analysis of facultative lithotroph distribution and diversity on volcanic deposits by use of the large subunit of ribulose 1, 5-bisphosphate carboxylase/oxygenase[J]. Applied and Environmental Microbiology, 2004, 70(4): 2245-2253. DOI:10.1128/AEM.70.4.2245-2253.2004
[39]
Zhang W, Hu YG, Huang GH, et al. Soil microbial diversity of artificial peashrub plantation on North Loess Plateau of China[J]. Acta Microbiologica Sinica, 2007, 47(5): 751-756. (in Chinese)
张薇, 胡跃高, 黄国和, 等. 西北黄土高原柠条种植区土壤微生物多样性分析[J]. 微生物学报, 2007, 47(5): 751-756.
[40]
Nishikawa S, Sonoki T, Kasahara T, et al. Cloning and sequencing of the Sphingomonas (Pseudomonas) Paucimobilis gene essential for the O demethylation of vanillate and syringate[J]. Applied and Environmental Microbiology, 1998, 64(3): 836-842.
[41]
Zhang P. Research development of the degradation methods of lignin[J]. Guangdong Chemical Industry, 2015, 42(6): 100-101. (in Chinese)
张盼. 木质素降解方法的研究进展[J]. 广东化工, 2015, 42(6): 100-101.
[42]
Chen BX, Su YR, He XY, et al. Soil bacterial community composition and diversity respond to cultivation in Karst ecosystems[J]. World Journal of Microbiology and Biotechnology, 2012, 28(1): 205-213.
[43]
Kandeler E, Mosier AR, Morgan JA, et al. Transient elevation of carbon dioxide modifies the microbial community composition in a semi-arid grassland[J]. Soil Biology and Biochemistry, 2008, 40(1): 162-171. DOI:10.1016/j.soilbio.2007.07.018
[44]
Gao W, Yang J, Ren SR. Balance characteristics of soil organic carbon under different long-term fertilization models in the upland fluvo-aquic soil of North China[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(6): 1465-1472. (in Chinese)
高伟, 杨军, 任顺荣. 长期不同施肥模式下华北旱作潮土有机碳的平衡特征[J]. 植物营养与肥料学报, 2015, 21(6): 1465-1472.
[45]
Jiang D, Hengsdijk H, Dai TB, et al. Long-term effects of manure and inorganic fertilizers on yield and soil fertility for a winter wheat-maize system in Jiangsu, China[J]. Pedosphere, 2006, 16(1): 25-32. DOI:10.1016/S1002-0160(06)60022-2
[46]
Lin ZA, Zhao BQ, Yuan L, et al. Effects of organic manure and fertilizers long-term located application on soil fertility and crop yield[J]. Scientia Agricultura Sinica, 2009, 42(8): 2809-2819. (in Chinese)
林治安, 赵秉强, 袁亮, 等. 长期定位施肥对土壤养分与作物产量的影响[J]. 中国农业科学, 2009, 42(8): 2809-2819.
[47]
Gong W, Yan XY, Wang JY, et al. Long-term manure and fertilizer effects on soil organic matter fractions and microbes under a wheat-maize cropping system in northern China[J]. Geoderma, 2009, 149(3/4): 318-324.
[48]
Li ZP, Zhang TL, Chen BY, et al. Soil organic matter dynamics in a cultivation chronosequence of paddy fields in subtropical China[J]. Acta Pedologica Sinica, 2003, 40(3): 344-352. (in Chinese)
李忠佩, 张桃林, 陈碧云, 等. 红壤稻田土壤有机质的积累过程特征分析[J]. 土壤学报, 2003, 40(3): 344-352.
[49]
Pan GX, Zhou P, Li ZP, et al. Combined inorganic/organic fertilization enhances N efficiency and increases rice productivity through organic carbon accumulation in a rice paddy from the Tai Lake region, China[J]. Agriculture, Ecosystems & Environment, 2009, 131(3/4): 274-280.
[50]
Zhang QZ. The effect of soil organic matter on soil fertility——Lesson 4 Soil purification, plant growth and soil organic matter[J]. Xinjiang Farm Research of Science and Technology, 1986(2): 56-58. (in Chinese)
张琦珠. 土壤有机质对土壤肥力的作用——第四讲土壤净化、植物生长与土壤有机质[J]. 新疆农垦科技, 1986(2): 56-58.
[51]
Wang X, Li DP, Gao P, et al. Analysis of biosorption and biotransformation mechanism of Pseudomonas chengduensis strain MBR under Cd(II) stress from genomic perspective[J]. Ecotoxicology and Environmental Safety, 2020, 198: 110655. DOI:10.1016/j.ecoenv.2020.110655
[52]
Zhu JS, Zhang H, Ma LJ, et al. Diversity of the microbial community in rice paddy soil with biogas slurry irrigation analyzed by illumina sequencing technology[J]. Environmental Science, 2018, 39(5): 2400-2411. (in Chinese)
朱金山, 张慧, 马连杰, 等. 不同沼灌年限稻田土壤微生物群落分析[J]. 环境科学, 2018, 39(5): 2400-2411.
[53]
Ma T, Li M, Sun LQ, et al. Research on correlation of the soil microorganisms and soil element under different soil fertilities[J]. Northern Horticulture, 2015, 39(1): 160-163. (in Chinese)
马通, 李敏, 孙令强, 等. 不同肥力下土壤微生物与土壤元素相关性的研究[J]. 北方园艺, 2015, 39(1): 160-163.
[54]
Niu XB, Yang H, Sun JG, et al. Characterizations of three diazotrophic Paenibacillus spp. and their effect on Chinese pakchoi yield and soil enzyme activities[J]. Acta Microbiologica Sinica, 2018, 58(7): 1213-1223.
[55]
da Costa EM, de Lima W, Oliveira-Longatti SM, et al. Phosphate-solubilising bacteria enhance Oryza sativa growth and nutrient accumulation in an oxisol fertilized with rock phosphate[J]. Ecological Engineering, 2015, 83: 380-385. DOI:10.1016/j.ecoleng.2015.06.045
[56]
Zhang AM, Li NK, Zhao GY, et al. Research progress on the phosphate-solubilizing and potassium-solubilizing microorganisms[J]. Journal of Hebei University (Natural Science Edition), 2015, 35(4): 442-448. (in Chinese)
张爱民, 李乃康, 赵钢勇, 等. 土壤中解磷、解钾微生物研究进展[J]. 河北大学学报:自然科学版, 2015, 35(4): 442-448.
[57]
Zhang X, Song SH, Huang YL, et al. Analysis of bacterial diversity in cultivated soils in middle and southern Hebei Province based on high-throughput sequencing[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(4): 196-203. (in Chinese)
张翔, 宋水山, 黄亚丽, 等. 基于高通量测序分析河北省中南部地区耕地土壤细菌多样性[J]. 华北农学报, 2018, 33(4): 196-203.
[58]
Cao JH, Yuan DX, Pan GX. Some soil features in Karst ecosystem[J]. Advance in Earth Sciences, 2003, 18(1): 37-44. (in Chinese)
曹建华, 袁道先, 潘根兴. 岩溶生态系统中的土壤[J]. 地球科学进展, 2003, 18(1): 37-44.
[59]
Kucharik CJ, Brye KR, Norman JM, et al. Measurements and modeling of carbon and nitrogen cycling in agroecosystems of southern Wisconsin: potential for SOC sequestration during the next 50 years[J]. Ecosystems, 2001, 4(3): 237-258. DOI:10.1007/s10021-001-0007-2
[60]
Liu RX, He JZ, Zhang LM. Response of nitrification/denitrification and their associated microbes to soil moisture change in paddy soil[J]. Environmental Science, 2014, 35(11): 4275-4283. (in Chinese)
刘若萱, 贺纪正, 张丽梅. 稻田土壤不同水分条件下硝化/反硝化作用及其功能微生物的变化特征[J]. 环境科学, 2014, 35(11): 4275-4283.
[61]
da Silva Cerozi B, Fitzsimmons K. Use of Bacillus spp. to enhance phosphorus availability and serve as a plant growth promoter in aquaponics systems[J]. Scientia Horticulturae, 2016, 211: 277-282. DOI:10.1016/j.scienta.2016.09.005
[62]
Yang M, Gao T, Li YJ, et al. Isolation and screening of plant growth-promoting rhizobacteria in pepper and their disease-resistant growth-promoting characteristics[J]. Biotechnology Bulletin, 2020, 36(5): 104-109. (in Chinese)
杨茉, 高婷, 李滟璟, 等. 辣椒根际促生菌的分离筛选及抗病促生特性研究[J]. 生物技术通报, 2020, 36(5): 104-109.
[63]
Deng ZS, Li J, Su YJ. Research progress of mechanism of plant growth promoting rhizobacteria[J]. Journal of Anhui Agricultural Sciences, 2011, 39(10): 5844-5846. (in Chinese)
邓振山, 李军, 苏永杰. 植物根际促生菌作用机理的研究进展[J]. 安徽农业科学, 2011, 39(10): 5844-5846.
[64]
Li X. The role of microbic in the circle of nifrogen[J]. Songliao Journal (Natural Science Edition), 1998(4): 3-5. (in Chinese)
李霞. 微生物在氮循环中的作用[J]. 松辽学刊(自然科学版), 1998(4): 3-5.
[65]
Xiao CS, Liu DL, Zhou PJ. Preliminary approach on the soil microbial ecological effect in the Great Wall Station area, Antarctic[J]. Chinese Biodiversity, 1995, 3(3): 134-138. (in Chinese)
肖昌松, 刘大力, 周培瑾. 南极长城站地区土壤微生物生态作用的初步探讨[J]. 生物多样性, 1995, 3(3): 134-138.
[66]
Chen P. Phosphorus nutrition and application of phosphate fertilizer in calcareous paddy soil[J]. Guangxi Agricultural Sciences, 1992(2): 70-72. (in Chinese)
陈平. 石灰性水稻土的磷素营养与磷肥施用[J]. 广西农业科学, 1992(2): 70-72.
[67]
Luo M, Wen QK, Mu YJ, et al. Effects of different fertilization measures on amount of soil phosphobacteria and phosphorus inversion intensity in cotton field[J]. Soil and Environmental Sciences, 2001, 10(4): 316-318. (in Chinese)
罗明, 文启凯, 慕玉俊, 等. 不同施肥措施对棉田土壤磷细菌及磷转化强度的影响[J]. 土壤与环境, 2001, 10(4): 316-318.
[68]
Liu XM, Yang HX, Huang LX, et al. Isolation and identification of a high-efficiency phosphate solubilizing Pseudomonas and its phosphate solubilizing characteristics[J]. Journal of Tianjin Agricultural College, 2019, 26(4): 49-53. (in Chinese)
刘希旻, 杨海霞, 黄灵曦, 等. 一株高效解磷假单胞菌的分离鉴定及解磷特性[J]. 天津农学院学报, 2019, 26(4): 49-53.
[69]
Kim KY, Jordan D, McDonald GA. Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity[J]. Biology and Fertility of Soils, 1997, 26(2): 79-87. DOI:10.1007/s003740050347
[70]
Yu WB, Yang XM, Shen QR, et al. Mechanism on phosphate solubilization of Pseudomonas sp. K3 and its phosphate solubilization ability under buffering condition[J]. Plant Nutrition and Fertilizer Science, 2010, 16(2): 345-361. (in Chinese)
虞伟斌, 杨兴明, 沈其荣, 等. K3解磷菌的解磷机理及其对缓冲容量的响应[J]. 植物营养与肥料学报, 2010, 16(2): 354-361.
[71]
Illmer P, Schinner F. Solubilization of inorganic calcium phosphates-solubilization mechanisms[J]. Soil Biology and Biochemistry, 1995, 27(3): 257-263. DOI:10.1016/0038-0717(94)00190-C
[72]
Chen DY, Li HQ, Zhang BH, et al. Phosphate solubilization activities and action mechanisms of two phosphate- solubilizing bacteria[J]. Chinese Journal of Eco-Agriculture, 2017, 25(3): 410-418. (in Chinese)
陈丹阳, 李汉全, 张炳火, 等. 两株解磷细菌的解磷活性及作用机制研究[J]. 中国生态农业学报, 2017, 25(3): 410-418.
[73]
Hameeda B, Reddy YHK, Rupela OP, et al. Effect of carbon substrates on rock phosphate solubilization by bacteria from composts and macrofauna[J]. Current Microbiology, 2006, 53(4): 298-302. DOI:10.1007/s00284-006-0004-y
[74]
Wu ZH, Sun HM, Yang MY, et al. Isolation and identification of phosphate solubilizing bacteria from rice rhizosphere soil, and promoting effect on rice plant growth[J]. Journal of South China Agricultural University, 2017, 38(1): 50-57. (in Chinese)
武志海, 孙合美, 杨美英, 等. 水稻根际土壤溶磷菌的分离、鉴定及对水稻的促生作用[J]. 华南农业大学学报, 2017, 38(1): 50-57.