微生物学通报  2020, Vol. 47 Issue (3): 852−859

扩展功能

文章信息

王琴琴, 蔡兴东, 吴义, 马洪明, 黄志宏, 林敏娟, 陈丽, 骆文志, 廖华, 林嘉欣, 车丽, 刘升明
WANG Qin-Qin, CAI Xing-Dong, WU Yi, MA Hong-Ming, HUANG Zhi-Hong, LIN Min-Juan, CHEN Li, LUO Wen-Zhi, LIAO Hua, LIN Jia-Xin, CHE Li, LIU Sheng-Ming
鲍曼不动杆菌体外诱导耐药及其诱导前后交叉耐药和呼吸耗氧率分析
Intermediate resistance development in Acinetobacter baumannii in vitro and analysis of bacterial respiratory
微生物学通报, 2020, 47(3): 852-859
Microbiology China, 2020, 47(3): 852-859
DOI: 10.13344/j.microbiol.china.190537

文章历史

收稿日期: 2019-06-30
接受日期: 2019-10-12
网络首发日期: 2019-10-21
鲍曼不动杆菌体外诱导耐药及其诱导前后交叉耐药和呼吸耗氧率分析
王琴琴 , 蔡兴东 , 吴义 , 马洪明 , 黄志宏 , 林敏娟 , 陈丽 , 骆文志 , 廖华 , 林嘉欣 , 车丽 , 刘升明     
暨南大学附属第一医院呼吸与危重症医学科    广东  广州    510630
摘要: 【背景】 鲍曼不动杆菌是院内感染的重要病原菌,因其耐药率高、治疗难度大而备受关注。然而,对于该菌的交叉耐药及耐药相关因素尚未完全阐明。【目的】 通过体外诱导分别获得耐美罗培南或耐替加环素的鲍曼不动杆菌菌株,并研究其诱导前后的交叉耐药性和细菌呼吸耗氧率差异。【方法】 采用多步法对鲍曼不动杆菌ATCC19606进行体外诱导耐药,PCR扩增诱导前后菌株的16S rRNA基因并测序鉴定,微量肉汤稀释法检测诱导前后鲍曼不动杆菌对美罗培南、亚胺培南、替加环素、阿米卡星、头孢吡肟及左氧氟沙星等抗菌药物的最低抑菌浓度变化,Seahorse XFe96细胞能量代谢实时测定仪对诱导前后菌株的耗氧率进行分析。【结果】 通过88 d的体外诱导实验,分别获得耐美罗培南或耐替加环素的鲍曼不动杆菌ATCC19606菌株。耐美罗培南鲍曼不动杆菌ATCC19606对替加环素、亚胺培南、阿米卡星、左氧氟沙星仍处于敏感状态,但是对头孢吡肟交叉耐药;耐替加环素鲍曼不动杆菌ATCC19606对美罗培南、亚胺培南、阿米卡星、左氧氟沙星及头孢吡肟仍处于敏感状态。鲍曼不动杆菌ATCC19606被美罗培南或替加环素诱导耐药之后的耗氧率均下降,差异均具有统计学意义。【结论】 美罗培南的使用不仅可能诱导鲍曼不动杆菌ATCC19606对美罗培南耐药,也可能会导致该菌对其它一种或几种抗菌药物产生交叉耐药。鲍曼不动杆菌ATCC19606对美罗培南或替加环素耐药后其耗氧率下降,从而说明呼吸耗氧率下降可能是该菌耐药的因素之一。
关键词: 鲍曼不动杆菌    细菌呼吸    替加环素    美罗培南    耐药性    
Intermediate resistance development in Acinetobacter baumannii in vitro and analysis of bacterial respiratory
WANG Qin-Qin , CAI Xing-Dong , WU Yi , MA Hong-Ming , HUANG Zhi-Hong , LIN Min-Juan , CHEN Li , LUO Wen-Zhi , LIAO Hua , LIN Jia-Xin , CHE Li , LIU Sheng-Ming     
Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
Abstract: [Background] Acinetobacter baumannii is an important pathogen of nosocomial infection, which has attracted much attention due to its high drug resistance rate and difficulty in treatment. However, the cross-resistance and the factors related to drug resistance of this bacterium have not been fully elucidated. [Objective] In order to study the cross-resistance and the differences of respiratory oxygen consumption between Acinetobacter baumannii resistant to meropenem or tigecycline and Acinetobacter baumannii sensitive to them, Acinetobacter baumannii was intermediated in vitro with meropenem or tigecycline. [Methods] Meropenem and tigecycline susceptible Acinetobacter baumannii ATCC19606 was induced resistance in vitro, and sequenced PCR products of 16S rRNA of strains before and after drug induction. The minimal inhibitory concentrations (MIC) of meropenem, imipenem, tigecycline, amikacin, cefepime and levofloxacin were determined by a broth microdilution method. Bacterial respiration before and after drug induction, expressed as oxygen consumption rate, was quantified using Seahorse XFe96 extracellular flux analyzer. [Results] Through a 88 d in vitro induction experiment, strain of Acinetobacter baumannii ATCC19606 resistant to meropenem or tigecycline was obtained, respectively. Meropenem-resistant Acinetobacter baumannii ATCC19606 was still sensitive to tigecycline, imipenem, amikacin and levofloxacin, but was cross-resistant to cefepime. Tigecycline-resistant Acinetobacter baumannii ATCC19606 was still sensitive to all antimicrobial agents tested. After Acinetobacter baumannii ATCC19606 was induced by meropenem or tigecycline respectively, the oxygen consumption rate decreased, and the difference was statistically significant. [Conclusion] The use of meropenem may not only induce resistance to meropenem in Acinetobacter baumannii ATCC19606, but also may cause cross-resistance of the bacterium to one or more other antimicrobial agents. The oxygen consumption rate of Acinetobacter baumannii ATCC19606 decreased after its resistance to meropenem or tigecycline, suggesting that the decrease in oxygen consumption rate may be one of the factors contributing to the resistance of this bacterium.
Keywords: Acinetobacter baumannii    Bacterial respiration    Tigecycline    Meropenem    Resistance    

鲍曼不动杆菌(Acinetobacter baumannii,Ab)是院内感染的重要病原菌之一,常引起呼吸机相关肺炎、中心静脉导管相关的血流感染、皮肤软组织感染及尿路感染[1-2]。近年来,因多重耐药鲍曼不动杆菌(multidrug-resistant Acinetobacter baumannii,MDRAB)和泛耐药鲍曼不动杆菌(extensively drug-resistant Acinetobacter baumannii,XDRAB)不断出现且在世界范围内迅速传播[1, 3],而新药的研发明显滞后,使临床治疗越发困难。虽然耐美罗培南(meropenem,MEM)和耐替加环素(tigecycline,TGC)的鲍曼不动杆菌逐渐增多,但除多粘菌素外,这两种抗菌药物仍然是目前治疗MDR/XDR鲍曼不动杆菌感染的“重要选择”。临床上抗菌药物的广泛使用会导致鲍曼不动杆菌耐药。通过WHONET软件对临床上碳青霉烯类抗菌药物的使用与鲍曼不动杆菌耐药率进行相关性分析,结果显示碳青霉烯类抗菌药物与其它类别的抗菌药物如β-内酰胺类、氟喹诺酮类及氨基糖苷类之间存在交叉耐药[4],那么体外诱导鲍曼不动杆菌对碳青霉烯类抗菌药物耐药后是否导致交叉耐药不得而知。另外,研究发现增加结核分枝杆菌呼吸可以防止该菌出现耐药[5]。然而,鲍曼不动杆菌对美罗培南或替加环素的耐药是否与其呼吸存在相关性尚不清楚。

因此,本研究选取鲍曼不动杆菌ATCC19606进行美罗培南或替加环素的体外诱导耐药,PCR扩增诱导前后菌株的16S rRNA基因并测序鉴定,微量肉汤稀释法检测诱导前后鲍曼不动杆菌ATCC19606对美罗培南、亚胺培南、替加环素、阿米卡星、头孢吡肟及左氧氟沙星等抗菌药物的最低抑菌浓度(minimum inhibitory concentration,MIC)变化,Seahorse XFe96细胞能量代谢实时测定仪对诱导前后细菌呼吸进行分析。

1 材料与方法 1.1 材料

1.1.1 菌株来源

鲍曼不动杆菌ATCC19606由第三军医大学大坪医院野战外科研究所重庆市医院感染控制中心王政教授惠赠;大肠埃希菌ATCC25922和铜绿假单胞菌ATCC27853由呼吸疾病国家重点实验室卓超教授惠赠。

1.1.2 主要试剂和仪器

美罗培南临床品,住友制药(苏州)有限公司;替加环素临床品,浙江海正药业股份有限公司;Mueller-Hinton (MH)培养基、调节过阳离子的Mueller-Hinton肉汤(CAMHB)和革兰氏阴性菌药敏板,赛默飞世尔科技(中国)有限公司;PCR反应所用的PrimeSTAR Max DNA Polymerase、dNTPs和细菌基因组DNA提取试剂盒,宝日医生物技术(北京)有限公司;多聚-D-赖氨酸,上海碧云天生物技术有限公司;M9基本培养基,北京雷根生物技术有限公司;引物和16S rRNA基因测序由生工生物工程(上海)股份有限公司完成。VITEK2 DENSICHEK细菌比浊仪,梅里埃公司;Seahorse XFe96细胞能量代谢实时测定仪,安捷伦科技(中国)有限公司。

1.2 方法

1.2.1 最低抑菌浓度测定

采用微量肉汤稀释法测定鲍曼不动杆菌对MEM和TGC的MIC值,严格按照美国临床实验室标准化委员会(Clinical and Laboratory Standards Institute,CLSI)的操作方法进行,用大肠埃希菌ATCC25922和铜绿假单胞菌ATCC27853作为质控。采用美国CLSI中MEM对不动杆菌属体外敏感性判断标准执行:敏感≤2 μg/mL,中介=4 μg/mL,耐药≥8 μg/mL。由于美国CLSI、美国食品药品监督管理局(Food and Drug Administration,FDA)及英国抗微生物化疗学会(British Society for Antimicrobial Chemotherapy,BSAC)等均无TGC对不动杆菌体外敏感性判读标准,本研究采用FDA中TGC对肠杆菌科细菌体外敏感性判读标准执行,根据所测的MIC值判读:敏感≤2 μg/mL,中介=4 μg/mL,耐药≥8 μg/mL。

1.2.2 多步法体外诱导耐药试验

参考Zhu等[6]所建立的方法,略有改动,具体步骤如下:(1)挑取培养18−24 h的鲍曼不动杆菌ATCC19606菌落,用新鲜配制的MH培养基悬浮,并调节成0.5麦氏菌悬液,此时的细菌浓度为1×108 CFU/mL;(2)取25 μL上述菌悬液分别接种于5 mL含1/4 MIC美罗培南或1/8 MIC替加环素的MH培养基中,使其最终细菌接种量为5×105 CFU/mL,37 ℃培养24 h为1代,连续培养5代;(3)取24 h的细菌培养物用MH培养基稀释制备为1×108 CFU/mL的菌悬液(0.5麦氏菌悬液),取25 μL菌悬液分别接种于5 mL含1/2 MIC美罗培南或1/4 MIC替加环素的MH培养基中,37 ℃下培养24 h,连续培养5代;(4)重复如上步骤,通过连续转种培养,每个药物浓度培养5代,美罗培南的浓度自1/4 MIC开始,直至128 μg/mL,替加环素的浓度自1/8 MIC开始,直至32 μg/mL;(5)分别将存活于含128 μg/mL美罗培南或32 μg/mL替加环素的细菌转接于不含任何抗生素的肉汤培养基中,连续培养10代以维持其耐药的稳定性;(6)再次将耐药菌分别重新接种含128 μg/mL美罗培南或32 μg/mL替加环素的培养基中培养,存活菌株被认为有稳定的耐药性,即得到耐128 μg/mL美罗培南鲍曼不动杆菌ATCC19606的稳定株、耐32 μg/mL替加环素的鲍曼不动杆菌ATCC19606的稳定株,分别以鲍曼不动杆菌ATCC19606-128和鲍曼不动杆菌ATCC19606-32表示;(7)稳定的耐药菌株接种于血平板上用于保种;(8)当菌株生长状态不佳时,用相同或相对低的抗菌药物浓度去重复诱导;(9)设置未加抗菌药物和未加菌的对照组;(10)测定诱导后鲍曼不动杆菌ATCC19606对美罗培南、替加环素、亚胺培南、头孢吡肟、阿米卡星及左氧氟沙星的MIC值。

1.2.3 诱导前后菌株的鉴定

DNA的提取按照细菌基因组DNA提取试剂盒说明书进行。16S rRNA基因扩增引物序列为Forward primer:5′-AGAGTTTGATCMTGGCTC AG-3′;Reverse primer:5′-GGTTACCTTGTTACGA CTT-3′。50 μL PCR反应体系:PrimeSTAR Max Premix (2×) 25 μL,上、下游引物(100 μmol/L)各0.1 μL,模板DNA (20−100 ng) 2 μL,加ddH2O至50 μL。PCR反应条件:98 ℃ 3 min;98 ℃ 10 s,55 ℃ 15 s,72 ℃ 30 s,34次循环;72 ℃ 6 min。结束后,将PCR产物保存于4 ℃。

PCR产物电泳检测,以目标片段处出现条带为阳性。PCR产物直接送生工生物工程(上海)股份有限公司测序。将诱导前后的菌株的16S rRNA基因序列进行比对。

1.2.4 细菌呼吸检测

细菌呼吸以耗氧率(oxygen consumption rates,OCRs)表示,利用Seahorse XFe96细胞能量代谢实时测定仪对活细菌的OCRs进行定量,具体步骤如下[7]:(1)用多聚-D-赖氨酸(poly-D-lysine,PDL)包被XF Cell Culture Microplate:在微量板的微孔加入15 μL 1 mg/mL PDL,过夜干燥,次日吸除PDL,然后再用30 μL灭菌超纯水润洗一次,吸除超纯水备用;(2)各取1.25 mL诱导前后的过夜培养菌液(鲍曼不动杆菌ATCC19606、鲍曼不动杆菌ATCC19606-128及鲍曼不动杆菌ATCC19606-32)分别接种到25 mL新鲜的M9基本培养基中,37 ℃、300 r/min培养,先每0.5 h测一次OD600值,然后根据不同菌株生长情况安排监测时间间隔,直到OD600约为0.3;(3)然后用灭菌超纯水将OD600 0.3稀释成0.02,分别加90 μL上述菌悬液于PDL包被的XF Cell Culture Microplate,1 400×g离心10 min,然后再加90 μL的M9基本培养基;(4) Seahorse XFe96细胞能量代谢实时测定仪参数设置:每6 min检测一次细菌的OCRs。

1.3 统计学分析

采用SPSS 13.0统计软件包进行统计学分析,诱导前与诱导后比较用配对t检验,检验水准α=0.05。P < 0.05为差异有统计学意义。

2 结果与分析 2.1 美罗培南或替加环素诱导耐药的结果

通过88 d分别用美罗培南或替加环素对鲍曼不动杆菌ATCC19606进行诱导耐药,结果如表 1所示。分别获得耐128 μg/mL美罗培南的鲍曼不动杆菌ATCC19606稳定株(ATCC19606-128)及耐32 μg/mL替加环素的鲍曼不动杆菌ATCC19606稳定株(ATCC19606-32)。

表 1 美罗培南或替加环素诱导鲍曼不动杆菌ATCC19606前后MIC的比较 Table 1 MIC of Acinetobacter baumannii before and after meropenem or tigecycline
菌株名称Strains 诱导前美罗培南MIC
MICs of meropenem parental strains (μg/mL)
诱导后美罗培南MIC
MICs of meropenem treated strains (μg/mL)
诱导前替加环素MIC
MICs of tigecycline parental strains (μg/mL)
诱导后替加环素MIC
MICs of tigecycline treated strains (μg/mL)
鲍曼不动杆菌ATCC19606
Acinetobacter baumannii ATCC19606
0.5 0.25
鲍曼不动杆菌ATCC19606-128
Acinetobacter baumannii ATCC19606-128
128 0.25
鲍曼不动杆菌ATCC19606-32
Acinetobacter baumannii ATCC19606-32
1 32
注:鲍曼不动杆菌ATCC19606-128和鲍曼不动杆菌ATCC19606-32分别表示耐128 μg/mL美罗培南的鲍曼不动杆菌ATCC19606稳定株及耐32 μg/mL替加环素的鲍曼不动杆菌ATCC19606稳定株.
Note: Acinetobacter baumannii ATCC19606-128 and Acinetobacter baumannii ATCC19606-32 show stable strain of Acinetobacter baumannii ATCC19606 resistant to 128 μg/mL meropenem and stable strain of Acinetobacter baumannii ATCC19606 resistant to 32 μg/mL tigecycline, respectively.
2.2 诱导前后耐药菌株的鉴定结果

将诱导前后菌株提取基因组DNA,PCR扩增16S rRNA基因并对其PCR产物进行电泳(图 1)并测序,测序结果利用DNAStar软件对鲍曼不动杆菌ATCC19606、鲍曼不动杆菌ATCC19606-128和鲍曼不动杆菌ATCC19606-32的PCR扩增产物16S rRNA基因序列与PubMed上发布的鲍曼不动杆菌的16S rRNA基因序列进行比对,结果显示诱导前后的菌株均为鲍曼不动杆菌。

图 1 16S rRNA基因的扩增 Figure 1 Amplification of 16S rRNA gene 注:1、2:鲍曼不动杆菌ATCC19606-32扩增产物;3、4:鲍曼不动杆菌ATCC19606-128扩增产物;5、6:鲍曼不动杆菌ATCC19606扩增产物;M:DL15000 DNA标准分子量. Note: 1, 2: PCR products of Acinetobacter baumannii ATCC19606-32; 3, 4: PCR products of Acinetobacter baumannii ATCC19606-128; 5, 6: PCR products of Acinetobacter baumannii ATCC19606; M: DL15000 DNA marker.
2.3 诱导后交叉耐药性分析

测定诱导前后鲍曼不动杆菌ATCC19606对美罗培南、替加环素、亚胺培南、头孢吡肟、阿米卡星及左氧氟沙星的MIC值,结果显示ATCC19606-128对替加环素、亚胺培南、阿米卡星、左氧氟沙星仍处于敏感状态,但是对头孢吡肟交叉耐药;ATCC19606-32对美罗培南、亚胺培南、阿米卡星、左氧氟沙星及头孢吡肟仍处于敏感状态(表 1表 2)。

表 2 美罗培南或替加环素诱导鲍曼不动杆菌ATCC19606前后对其它抗菌药物MIC的比较 Table 2 Other antimicrobial agents MIC of Acinetobacter baumannii before and after meropenem or tigecycline
菌株名称
Strains
诱导前亚胺培南MIC
MICs of impenem parental strains (μg/mL)
诱导后亚胺培南MIC
MICs of impenem treated strains (μg/mL)
诱导前头孢吡肟MIC
MICs of cefepime parental strains (μg/mL)
诱导后头孢吡肟MIC
MICs of cefepime treated strains (μg/mL)
诱导前阿米卡星MIC
MICs of amikacin parental strains (μg/mL)
诱导后阿米卡星MIC
MICs of amikacin treated strains (μg/mL)
诱导前左氧氟沙星MIC
MICs of levofloxacin parental strains (μg/mL)
诱导后左氧氟沙星MIC
MICs of levofloxacin treated strains (μg/mL)
鲍曼不动杆菌ATCC19606
Acinetobacter baumannii ATCC19606
< 0.5 < 4 < 8 < 1
鲍曼不动杆菌ATCC19606-128
Acinetobacter baumannii ATCC19606-128
1 32 < 8 < 1
鲍曼不动杆菌ATCC19606-32
Acinetobacter baumannii ATCC19606-32
< 0.5 < 4 < 8 2
注:鲍曼不动杆菌ATCC19606-128和鲍曼不动杆菌ATCC19606-32分别表示耐128 μg/mL美罗培南的鲍曼不动杆菌ATCC19606稳定株及耐32 μg/mL替加环素的鲍曼不动杆菌ATCC19606稳定株.
Note: Acinetobacte rbaumannii ATCC19606-128 and Acinetobacter baumannii ATCC19606-32 show stable strain of Acinetobacter baumannii ATCC19606 resistant to 128 μg/mL meropenem and stable strain of Acinetobacter baumannii ATCC19606 resistant to 32 μg/mL tigecycline, respectively.
2.4 诱导前后细菌呼吸的OCRs测定结果

分别测定鲍曼不动杆菌ATCC19606、鲍曼不动杆菌ATCC19606-128和鲍曼不动杆菌ATCC19606-32的OCRs,并比较鲍曼不动杆菌ATCC19606与鲍曼不动杆菌ATCC19606-128及鲍曼不动杆菌ATCC19606-32的OCRs,结果显示与鲍曼不动杆菌ATCC19606相比,鲍曼不动杆菌ATCC19606-128和鲍曼不动杆菌ATCC19606-32的OCRs均显著下降,并且鲍曼不动杆菌ATCC19606-128的OCRs下降更明显,差异具有统计学意义,如图 2图 3所示。

图 2 鲍曼不动杆菌ATCC19606与ATCC19606-128耗氧率(OCRs)的比较(P < 0.01) Figure 2 Oxygen consumption rates of Acinetobacter baumannii ATCC19606-128 were compared with Acinetobacter baumannii ATCC19606 注:鲍曼不动杆菌ATCC19606-128表示耐128 μg/mL美罗培南的鲍曼不动杆菌ATCC19606稳定株. Note: Acinetobacter baumannii ATCC19606-128 shows stable strain of Acinetobacter baumannii ATCC19606 resistant to 128 μg/mL meropenem.

图 3 鲍曼不动杆菌ATCC19606与ATCC19606-32耗氧率(OCRs)的比较(P < 0.05) Figure 3 Oxygen consumption rates of Acinetobacter baumannii ATCC19606-32 were compared with Acinetobacter baumannii ATCC19606 注:鲍曼不动杆菌ATCC19606-32表示耐32 μg/mL替加环素的鲍曼不动杆菌ATCC19606稳定株. Note: Acinetobacter baumannii ATCC19606-32 shows stable strain of Acinetobacter baumannii ATCC19606 resistant to 32 μg/mL tigecycline.
3 讨论与结论

鲍曼不动杆菌经过体外不断地接受抗菌药物的压力,容易产生耐药,研究表明利用多步法体外可成功诱导鲍曼不动杆菌对阿米卡星、头孢吡肟、他唑巴坦、亚胺培南等多种抗生素产生耐药[6, 8]。本研究采用多步法利用美罗培南或替加环素对鲍曼不动杆菌ATCC19606进行体外耐药诱导,分别得到对美罗培南或替加环素耐药的稳定株。与体外实验一致,临床抗菌药物的过度和不恰当的使用也会导致多重耐药及泛耐药鲍曼不动杆菌的迅速出现。

有研究者利用WHONET5.4软件分析发现美罗培南的使用导致鲍曼不动杆菌对哌拉西林/他唑巴坦、头孢他啶、头孢吡肟、阿米卡星及左氧氟沙星交叉耐药[4]。本研究所得到的结果与上述分析结果部分一致,鲍曼不动杆菌ATCC19606经美罗培南诱导耐药后,对头孢吡肟产生交叉耐药,但对替加环素、亚胺培南、阿米卡星、左氧氟沙星仍处于敏感状态。鲍曼不动杆菌ATCC19606经替加环素诱导耐药后,对美罗培南、亚胺培南、阿米卡星、左氧氟沙星及头孢吡肟仍处于敏感状态。实验结果提示临床上美罗培南的使用不仅可能诱导鲍曼不动杆菌对美罗培南耐药,也可能会导致该菌对其它一种或几种抗菌药物产生交叉耐药;替加环素仍是治疗鲍曼不动杆菌感染的最主要的抗菌药物之一,但需与其它抗菌药物联合使用。

目前已知的鲍曼不动杆菌其耐药机制主要包括产β-内酰胺酶、氨基糖苷类修饰酶、主动外排系统、孔蛋白及青霉素结合蛋白的修饰、脂多糖丢失等[9-10]。其中鲍曼不动杆菌对美罗培南耐药的机制主要包括D型β-内酰胺酶(也称苯唑西林酶)或金属β-内酰胺酶的出现,另外一些孔蛋白如Omp33-36表达下降也会导致此类抗菌药物耐药[11-12]。鲍曼不动杆菌主要通过使编码RND型外排泵(resistance-nodulation-division type efflux pumps)基因过表达从而导致对替加环素耐药[13]。整合子和转座子介导鲍曼不动杆菌多重耐药[14]。另外,AbeS是一种与多重耐药相关的外排泵蛋白质,影响不同类别抗菌药物的耐药性[15]。美罗培南诱导鲍曼不动杆菌对美罗培南耐药,并且导致对头孢吡肟交叉耐药的机制需要进一步研究。

Vilchèze等研究发现半胱氨酸或N-乙酰半胱氨酸与异烟肼联合使用可通过增加结核分枝杆菌的呼吸,从而抑制异烟肼耐药菌的出现,其主要机制是通过增加甲基萘醌menaquinol-9 (MKH2)量来增强该菌呼吸来发挥作用[5]。另外一项研究发现抑菌剂通过抑制细菌呼吸和新陈代谢从而抑制其生长,而杀菌剂则通过加速呼吸和干扰基础代谢达到杀死细菌的目的,即抗菌药物的疗效与细菌呼吸相关[16]。呼吸是所有活细胞的基本过程,由各种酶和辅酶参与发生一系列氧化还原反应,形成电子传递链(electron transport chain,ETC)。该电子转移过程中释放的自由能驱动质子穿过膜形成电化学梯度用于ATP合成和主动运输。与许多高等真核生物的线粒体中发现的呼吸系统不同,原核细胞可以诱导分支呼吸链利用多种氧化酶或使用替代电子受体,这有助于其定殖于微氧和缺氧环境[17]。呼吸一般以耗氧率来表示。本项研究发现鲍曼不动杆菌耐药可能与其耗氧率相关。通过比较美罗培南或替加环素诱导耐药前后鲍曼不动杆菌ATCC19606的耗氧率,结果显示鲍曼不动杆菌ATCC19606被美罗培南或替加环素诱导耐药之后的细菌基础耗氧率均下降,说明鲍曼不动杆菌对美罗培南或替加环素的耐药与其耗氧率存在相关性,从而推断呼吸耗氧率下降可能是该菌耐药的因素之一。

致谢: 感谢南开大学药学院山长亮教授对该项研究的指导和支持。
REFERENCES
[1]
Harding CM, Hennon SW, Feldman MF. Uncovering the mechanisms of Acinetobacter baumannii virulence[J]. Nature Reviews Microbiology, 2018, 16(2): 91-102. DOI:10.1038/nrmicro.2017.148
[2]
Weiner LM, Webb AK, Limbago B, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2011-2014[J]. Infection Control & Hospital Epidemiology, 2016, 37(11): 1288-1301.
[3]
Hu FP, Guo Y, Zhu DM, et al. Antimicrobial resistance profile of clinical isolates in hospitals across China: report from the CHINET Surveillance Program, 2017[J]. Chinese Journal of Infection and Chemotherapy, 2018, 18(3): 241-251. (in Chinese)
胡付品, 郭燕, 朱德妹, 等. 2017年CHINET中国细菌耐药性监测[J]. 中国感染与化疗杂志, 2018, 18(3): 241-251.
[4]
Cao J, Song W, Gu B, et al. Correlation between carbapenem consumption and antimicrobial resistance rates of Acinetobacter baumannii in a university-affiliated hospital in China[J]. The Journal of Clinical Pharmacology, 2013, 53(1): 96-102. DOI:10.1177/0091270011435988
[5]
Vilchèze C, Hartman T, Weinrick B, et al. Enhanced respiration prevents drug tolerance and drug resistance in Mycobacterium tuberculosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(17): 4495-4500. DOI:10.1073/pnas.1704376114
[6]
Zhu W, Wang H, Zhang JP. A comparison of adeB gene expression levels under conditions of induced resistance by different drugs in vitro in Acinetobacter baumannii[J]. Experimental and Therapeutic Medicine, 2017, 13(5): 2177-2182. DOI:10.3892/etm.2017.4242
[7]
Dwyer DJ, Belenky PA, Yang JH, et al. Antibiotics induce redox-related physiological alterations as part of their lethality[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(20): E2100-E2109. DOI:10.1073/pnas.1401876111
[8]
Zhang TT, Wang M, Xie YX, et al. Active efflux pump adeB is involved in multidrug resistance of Acinetobacter baumannii induced by antibacterial agents[J]. Experimental and Therapeutic Medicine, 2017, 13(4): 1538-1546. DOI:10.3892/etm.2017.4141
[9]
Lee CR, Lee JH, Park M, et al. Biology of Acinetobacter baumannii: pathogenesis, antibiotic resistance mechanisms, and prospective treatment options[J]. Frontiers in Cellular and Infection Microbiology, 2017, 7: 55.
[10]
Asif M, Alvi IA, Rehman SU. Insight into Acinetobacter baumannii: pathogenesis, global resistance, mechanisms of resistance, treatment options, and alternative modalities[J]. Infection and Drug Resistance, 2018, 11: 1249-1260. DOI:10.2147/IDR.S166750
[11]
Espinal P, Pantel A, Rolo D, et al. Relationship between different resistance mechanisms and virulence in Acinetobacter baumannii[J]. Microbial Drug Resistance, 2019, 25(5): 752-760. DOI:10.1089/mdr.2018.0182
[12]
Amin M, Navidifar T, Saleh Shooshtari F, et al. Association of the genes encoding metallo-β-lactamase with the presence of integrons among multidrug-resistant clinical isolates of Acinetobacter baumannii[J]. Infection and Drug Resistance, 2019, 12: 1171-1180. DOI:10.2147/IDR.S196575
[13]
Gerson S, Nowak J, Zander E, et al. Diversity of mutations in regulatory genes of resistance-nodulation-cell division efflux pumps in association with tigecycline resistance in Acinetobacter baumannii[J]. Journal of Antimicrobial Chemotherapy, 2018, 73(6): 1501-1508. DOI:10.1093/jac/dky083
[14]
Adams-Haduch JM, Paterson DL, Sidjabat HE, et al. Genetic basis of multidrug resistance in Acinetobacter baumannii clinical isolates at a tertiary medical center in Pennsylvania[J]. Antimicrobial Agents and Chemotherapy, 2008, 52(11): 3837-3843. DOI:10.1128/AAC.00570-08
[15]
Srinivasan VB, Rajamohan G, Gebreyes WA. Role of AbeS, a novel efflux pump of the SMR family of transporters, in resistance to antimicrobial agents in Acinetobacter baumannii[J]. Antimicrobial Agents and Chemotherapy, 2009, 53(12): 5312-5316. DOI:10.1128/AAC.00748-09
[16]
Lobritz MA, Belenky P, Porter CBM, et al. Antibiotic efficacy is linked to bacterial cellular respiration[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(27): 8173-8180. DOI:10.1073/pnas.1509743112
[17]
Bueno E, Mesa S, Bedmar EJ, et al. Bacterial adaptation of respiration from oxic to microoxic and anoxic conditions: redox control[J]. Antioxidants & Redox Signaling, 2012, 16(8): 819-852.