扩展功能
文章信息
- 赵子闻, 李佳, 侯俊青, 赵曼平, 赵吉, 武琳慧
- ZHAO Zi-Wen, LI Jia, HOU Jun-Qing, ZAHO Man-Ping, ZHAO Ji, WU Lin-Hui
- 自然生境中亚硝酸盐型厌氧甲烷氧化细菌研究进展
- Research progress of nitrite-dependent anaerobic methane oxidation bacteria in natural habitats
- 微生物学通报, 2020, 47(11): 3709-3718
- Microbiology China, 2020, 47(11): 3709-3718
- DOI: 10.13344/j.microbiol.china.191061
-
文章历史
- 收稿日期: 2019-12-18
- 接受日期: 2020-05-01
- 网络首发日期: 2020-05-21
2. 内蒙古自治区环境污染控制与废物资源化重点实验室 内蒙古 呼和浩特 010021
2. Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Hohhot, Inner Mongolia 010021, China
厌氧甲烷氧化过程(anaerobic methane oxidation,AMO)对减缓自然生境中温室气体甲烷的排放、调节地球气候大环境有重要作用[1]。亚硝酸盐型厌氧甲烷氧化过程(nitrite-dependent anaerobic methane oxidation,N-DAMO)自被发现以来就受到研究者们的广泛关注,此过程将氮碳循环耦合,使其作为温室气体甲烷汇的同时,还成为了氮污染的消减过程[2-3]。N-DAMO多发生在淡水及沿海湿地生态系统中,其功能菌亚硝酸盐型厌氧甲烷氧化细菌(Candidatus Methylomirabilis oxyfera,M. oxyfera)多存在于湿地生态系统上覆水-沉积物交界面及亚表层土壤中[3-4]。有关M. oxyfera生理生化特征及所参与的N-DAMO反应机理等领域的研究取得了一定进展[2-5]。在微生物生态研究领域,利用分子微生物学方法直接分析不可纯培养的N-DAMO功能细菌在不同生境中的群落组成、丰度和分布成为研究热点,且大量相关研究探讨了诸如pH、碳源、氮源、氧气含量等环境因子对其群落结构的影响[6-10]。本文简述了N-DAMO功能菌M. oxyfera的生理生化特征、N-DAMO反应机理,并整理了基于此菌的分子微生物学研究方法,同时归纳总结了近年来不同自然生境中该菌的研究报道及其与环境因子的相关性分析,进一步分析了不同生境年均降水量、年均温度、不同自然区划分等大尺度宏观环境因子对功能菌群落的潜在影响。
1 N-DAMO过程的发现最早被发现的厌氧甲烷氧化过程是以硫酸盐为电子受体的厌氧甲烷氧化过程,其对于减缓海洋沿海等生境中甲烷的排放起着重要的作用[11]。甲烷与亚硝酸盐在自然环境中共存,由吉布斯自由能角度分析可以发现,亚硝酸盐比硫酸盐更适合作为甲烷氧化的电子受体,但长期以来研究者们并没有发现以亚硝酸盐为电子受体进行厌氧甲烷氧化过程的微生物存在[12]。2006年,Raghoebarsing等[2]通过16个多月连续向运河沉积物富集培养物中投加甲烷、亚硝酸盐和硝酸盐的实验,首次得到了以亚硝酸盐为电子受体的厌氧甲烷氧化过程发生的直接证据,随后这个过程被命名为N-DAMO过程[5]。
自然生境中的厌氧甲烷氧化过程共分为三大类:亚硝酸盐型、硫酸盐型和金属离子型[2]。较多的研究关注于亚硝酸盐型厌氧甲烷氧化过程[6-9],且该反应多发生于淡水及沿海湿地生态系统中。硫酸盐型厌氧甲烷氧化过程多发生于海洋生态系统中,为减少海洋生态系统甲烷排放方面做出了巨大的贡献[13]。金属离子型厌氧甲烷氧化过程中电子受体多为Fe3+、Mn4+和Cr5+等金属离子[14],自从在海洋沉积物中发现此过程以来,丰富了厌氧甲烷氧化功能菌的多样性[11]。
2 M. oxyfera的生理生化特征及反应机理氮依赖型厌氧甲烷氧化过程的功能微生物共有两种,一种是以NO2-为电子受体的亚硝酸盐型厌氧甲烷氧化细菌(M. oxyfera),另一种则是以NO3-为电子受体的硝酸盐型厌氧甲烷氧化古菌(Candidatus Methanoperedens nitroreducens),在自然生态环境及富集反应器中这两种菌可共存[3],而且多项研究表明此功能细菌在N-DAMO过程功能菌群中占较大比重[2, 4],国内外研究多集中于此类型细菌展开。目前对该功能菌的生理生化研究较多,此细菌隶属于NC10门,革兰氏阴性菌,细胞直径为0.25-0.5 μm,细胞长为0.8-1.1 μm[5, 15]。通过扫描电镜、透射电镜和电子断层扫描等手段,有研究多角度证实了其独特的多边形星形细胞形态[5],而这一特殊细胞形态在其他细菌形态学观察报道中未曾出现[16],Wu等[17]和Luesken等[18]发现特异性蛋白结构层,以及用于编码类骨骼物质的mreB和ftsZ基因。Kool等[19]研究多种M. oxyfera富集培养物脂质组成后发现,此细菌所独有的脂肪酸10MeC16:△7约占总脂肪酸的10%,可作为该菌的生物化学标志物[19-20]。
甲烷是亚硝酸盐型厌氧甲烷氧化细菌唯一的碳源[21],适宜生长温度为20-35 ℃,pH为6.0-8.0[2, 22],世代时间约为1-2周,部分超过4周[22-26]。该细菌可进行N-DAMO反应的最高氯化钠浓度为20 g/L[27]。其对甲烷的亲和力极强,亲和力常数明显低于硫酸盐型厌氧甲烷氧化菌[16]。Luesken等[18]发现此细菌在环境氧气浓度超过2%时,甲烷转化率和亚硝酸盐转化率均受到严重抑制,大部分参与甲烷氧化过程的基因不再表达,参与反硝化途径和重要细胞功能的基因表达能力显著下降。
Ettwig等[5]对两种M. oxyfera富集培养物进行宏基因组测序和同位素分析,结果显示此细菌拥有编码完整好氧甲烷氧化途径的功能基因,后续的中心分解代谢及能量代谢研究再次证实了此细菌具有独立完成甲烷氧化的能力[21, 28]。此细菌所利用的电子受体亚硝酸盐首先在亚硝酸盐还原酶(NirS)的作用下还原为NO,NO双键被未知NO歧化酶(Nod)直接转化为N2和O2,略过中间体N2O的生成过程,而细胞自身通过NO歧化反应所产生的氧气中3/4被用于甲烷氧化途径,其余被用于细胞呼吸[5, 28]。研究者进而提出这种新型甲烷氧化细菌可能利用胞内好氧化途径参与地球早期甲烷氧化,而不直接依赖光合作用进行产氧,从而提出了地球早期代谢途径演化的猜想[5]。
3 基于M. oxyfera的分子微生物学研究除使用M. oxyfera的16S rRNA基因作为目标基因研究其生态学分布外[22],专属N-DAMO过程的pmoA功能基因也成为常见的选择[15],也有科学家尝试用NO歧化酶(Nod)的编码基因探究此功能细菌在诺尔盖湿地的生态分布[29]。相比于使用16S rRNA基因对M. oxyfera进行研究,直接使用功能基因作为分子标记可信度更高,因为核糖体基因在许多原核生物中是多拷贝的,这通常会导致同一细胞中核糖体基因序列的异质化,而功能基因在原核生物细胞中多数不存在多拷贝,Dahllöf等[30]最早在分子层面上验证了这一现象。在现有研究未能确定亚硝酸盐型厌氧甲烷氧化细菌中核糖体拷贝数的前提下,通过功能基因进行微生物生态学调查更具优势。
常用的M. oxyfera 16S rRNA基因巢式PCR引物对为202F/1545R和qP1F/qP2R[22]。以此菌专属的pmoA为目标基因设计的巢式PCR引物对为A189_b/cmo682和cmo182/cmo568[15]。基于nod功能基因设计的PCR引物对为nod684Fv2/nod1706Rv2[31]。对于M. oxyfera丰度的研究目前还没有成熟的专属pmoA功能基因的定量PCR引物,仅有少数自然生境成功使用这一功能基因进行定量(如漳江河口[32]引物对cmo182/cmo568、香港大榄涌水塘[33]引物对HP3F1/HP3R1等)。对于功能基因nod的定量,常选用nod1446F/nod1706Rv2作为引物[31]。大部分定量研究利用该菌16S rRNA基因进行,常用的定量PCR引物对有qP1F/qP1R[22]、qP2F/qP2R[22]、qP1F/qP2R[11]、qP1mF/qP1R[34],表 1整理了已发表的各种扩增引物及退火温度。
目标基因 Target gene |
引物 Primers |
退火温度 Annealing temperature (℃) |
参考文献 References |
M. oxyfera 16S rRNA | 202F/1545R, qP1F/qP2R | 57/63; 57/65; 63/63 | [22] |
M. oxyfera 16S rRNA (qPCR) | qP1F/qP1R | 54; 55; 63 | [22] |
qP2F/qP2R | 63; 65 | [22] | |
qP1F/qP2R | 60 | [11] | |
qP1mF/qP1R | 62 | [34] | |
N-DAMO pmoA | A189_b/cmo682, cmo182/cmo568 | 56/59 | [15] |
N-DAMO pmoA (qPCR) | cmo182/cmo568 | 59 | [15] |
HP3F1/HP3R1 | 54 | [33] | |
nod | nod684Fv2/nod1706Rv2 | 57 | [31] |
nod (qPCR) | nod1446F/nod1706Rv2 | 60 | [31] |
目前针对于自然生境中M. oxyfera的研究主要在我国不同区域的湖泊、河流、沿海及干旱土地等生境中逐渐开展,表 2汇总分析了我国不同生境中亚硝酸盐型厌氧甲烷氧化细菌群落的分布特征。然而国外基于自然生境中该菌的研究较少,仅有康斯坦斯湖(德国)、琵琶湖(日本)、昆士兰旱地(澳大利亚)[35]等报道。从M. oxyfera 16S rRNA基因丰度上来看,丰度最低值出现在三峡小江水位波动带(4.70×102 copies/g),这可能与此区域水位波动明显且此菌对生境中氧气含量较为敏感有关[18]。丰度最高值出现在长江口生境中(9.77×107 copies/g),长江入海口较适宜的生境温度[22]、丰富的营养盐和碳源[21]可能导致了该生境丰度水平较高的现象。
4.1 年均降水量和年均温度对M. oxyfera的影响Bahram等[60]对全球表层土微生物群落结构的大尺度生态研究表明,包含年均降水量在内的宏观环境因子影响着土壤细菌的功能多样性。本文通过综合我国不同生态环境中亚硝酸盐型厌氧甲烷氧化细菌群落的研究数据,将之与各生境年均降水量、年均气温、自然区划分等宏观大尺度环境因子相结合,分析其潜在的影响与关系。
研究表明M. oxyfera的pmoA功能基因多样性随气温升高而增加,低温低降水和高温高降水均有助于此菌多样性的表达[6-9, 29, 32-59]。值得注意的是在低于5 ℃的寒冷环境中此菌的多样性表达明显增加,Zhu等[25]也发现冬季样品M. oxyfera功能基因多样性表达高于夏季。随年均降水量和气温的升高,此菌16S rRNA基因丰度增大。Ettwig等[22]研究发现此菌生长适宜温度为20-35 ℃,这与其在自然生态环境中的表现相同。高降水量对应高丰度的现象可由两方面来诠释[8, 44, 49, 57]:(1)丰富的降水有助于为氧气敏感型的厌氧甲烷氧化细菌创造长期低氧无氧环境[61];(2)高降水量也可将陆地中的碳源、氮源等营养物质通过地表及地下水径流输入湿地生态系统中[62]有助于该菌丰度增加。
4.2 不同自然区中的M. oxyfera群落将现有M. oxyfera生态研究数据与我国自然区划分进行综合分析可发现,M. oxyfera群落在季风区中具有较为广谱的多样性和较高的丰度;其中温带湿润、半湿润区和热带湿润区多样性高于其他两类型季风区;丰度在亚热带湿润区和热带湿润区达到较高水平[6-9, 29, 32-59]。干旱、半干旱区多样性表达略高,这可能与此区内年均气温集中在10 ℃以下有关,而干旱、半干旱区和高寒区此功能菌丰度低于季风区[29, 36]。
研究对象 Habitats |
OTUs (16S rRNA gene) |
OTUs (pmoA) |
Shannon index (16S rRNA gene) |
Shannon index (pmoA) |
16S rRNA丰度 16S rRNA abundance (copies/g) |
参考文献 References |
诺尔盖湿地 Zoige wetland | ND | ND | ND | ND | 2.80×103 | [29] |
漳江河口 Zhangjiang estuary | 3-9[c] | 0-2[c] | 0.770-1.230 | 0.000-0.010 | 2.43×106-2.09×107 | [32] |
大榄涌水塘 Tailamchung reservoir | ND | 7[c] | ND | 1.890 | ND | [33] |
米埔芦苇床 Maipo reed bed | ND | 1[c] | ND | 0.290 | ND | [33] |
日喀则林地 Shigatse forestland | ND | 2[c] | ND | ND | 1.50×104 | [35] |
巴丹湖 Badain lake | 3-8[c] | 6-8[c] | 0.443-1.696 | 1.390-1.450 | ND | [36] |
苏木吉林湖 Sumujaran lake | 2-5[c] | 8-10[c] | 0.240-0.580 | 1.275-1.800 | 1.12×105-1.64×105 | [36] |
广州城市湿地 Guangzhou urban wetland | 1-5[c] | 1-5[c] | 0.000-0.780 | 0.000-0.990 | 8.74×105-4.80×106 | [37] |
浑河 Hun river | 3-6[c] | 0-5[a] | 0.520-1.400 | 0.000-1.570 | ND | [38] |
大辽河 Daliao river | 1-2[c] | 1-3[a] | 0.000-0.210 | 0.000-0.420 | ND | [38] |
青藏高原玛曲 Tibet plateau Maqu | 28-46[c] | ND | 0.160-1.390 | ND | 1.65×105-3.20×106 | [39] |
北运河 North canal | 2-6[d] | 2-9[c] | 0.270-0.770 | 0.210-1.480 | ND | [40] |
三峡白家溪 The Three Gorges Baijia stream | 3-8[c] | 1-4[c] | 0.235-1.148 | 0.000-0.975 | 4.72×102-5.32×104 | [41] |
三峡小河 The Three Gorges Xiao stream | 4-7[c] | 4-24[c] | 0.392-1.482 | 0.675-2.541 | 8.98×102-3.31×105 | [41] |
锡林河湿地 Xilin river wetland | 2-14[c] | 2-7[d] | 0.080-1.270 | 0.290-0.970 | 8.92×106-4.61×107[e] | [42] |
东海潮间带 East China Sea intertidal zone | 2-3[c] | ND | 0.300-0.900 | ND | 5.50×104-2.80×105 | [43] |
米埔湿地 Maipo wetland | ND | 3-4[b] | ND | 0.245-0.979 | 2.06×106-1.25×107 | [44] |
东江 Dong river | ND | 5-16[c] | ND | 1.480-2.490 | ND | [45] |
秋香江 Xiangqiu river | ND | 7-18[c] | ND | 1.560-2.580 | ND | [45] |
石马河 Shima river | ND | 2-12[c] | ND | 0.420-2.160 | ND | [45] |
新丰江 Xinfeng river | ND | 2-10[c] | ND | 0.420-2.070 | ND | [45] |
西枝江 Xizhi river | ND | 1-9[c] | ND | 0.000-1.970 | ND | [45] |
绿水湾湿地 Green bay wetland | 29-52[c] | ND | 1.890-2.140 | ND | 6.10×106-3.20×107 | [46] |
高州水库 Gaozhou reservoir | ND | 3-15[b] | ND | 0.320-2.500 | 1.37×105-8.24×105 | [47] |
舟山潮间带 Zhoushan intertidal zone | ND | 1-5[a] | ND | 0.000-1.330 | 4.90×104-3.27×105 | [48] |
长江口 Yangtze river estuary | 4-7[c] | 5-9[c] | 0.470-1.440 | 1.300-1.940 | 1.03×107-9.77×107[e] | [49] |
杭州湾 Hangzhou bay | 1-4[c] | ND | 0.000-1.100 | ND | 1.80×107-5.00×107 | [50] |
舟山海域 Zhoushan sea area | 1-3[c] | ND | 0.000-0.900 | ND | 5.40×106-2.10×107 | [50] |
三峡小江 The Three Gorges Xiao river | 3-7[c] | 1-4[c] | 0.080-0.950 | 0.000-0.970 | 4.70×102-5.30×104 | [51] |
广东南岭 Guangzhou Nanling | ND | 1-6[c] | 0.000-0.900 | 0.000-1.290 | 1.69×105-5.07×106 | [52] |
摆龙湖 Bailong lake | ND | 19[c] | ND | 2.400 | 2.29×105 | [53] |
普者黑湖 Puzhehei lake | ND | 2[c] | ND | 0.100 | ND | [53] |
长桥海 Changqiao lake | ND | 2[c] | ND | 0.110 | ND | [53] |
三角海水库 Sanjiaohai reservoir | ND | 4[c] | ND | 1.170 | ND | [53] |
清水海 Qingshuihai lake | ND | 9[c] | ND | 1.100 | ND | [53] |
剑湖 Jian lake | ND | 2[c] | ND | 0.460 | ND | [53] |
海西海水库 Haixihai reservoir | ND | 1[c] | ND | 0.000 | ND | [53] |
塔里木河 Tarim river | ND | 2[d] | ND | 0.690 | ND | [25] |
博斯腾湖 Bosten lake | ND | 2[d] | ND | 0.480 | ND | [25] |
长白山天池 Tianchi lake | ND | 9[d] | ND | 1.810 | ND | [25] |
吐鲁番河 Turpan river | ND | 3[d] | ND | 0.850 | ND | [25] |
黄河(兰州市) Yellow River (Lanzhou) | ND | 1[d] | ND | 0.000 | ND | [25] |
乌梁素海 Ulansuhai lake | ND | 4[d] | ND | 0.990 | ND | [25] |
商丘水库 Shangqiu reservoir | ND | 7[d] | ND | 1.690 | ND | [25] |
圆明园湖 Old summer palace lake | ND | 3[d] | ND | 0.980 | ND | [25] |
多伦湖 Duolun lake | ND | 6[d] | ND | 1.390 | ND | [25] |
北运河 North canal | ND | 2[d] | ND | 0.690 | ND | [25] |
松花江 Songhua river | ND | 7[d] | ND | 1.670 | ND | [25] |
盘锦红海滩 Panjin red beach | ND | 4[d] | ND | 1.120 | ND | [25] |
盘锦沼泽 Panjin swamp | ND | 1[d] | ND | 0.000 | ND | [25] |
白洋淀 Baiyangdian lake | ND | 1[d] | ND | 0.000 | ND | [25] |
巢湖 Chao lake | ND | 6[d] | ND | 1.790 | ND | [25] |
嘉兴湿地 Jiaxing wetland | ND | 8-9[d] | ND | 2.020-2.030 | ND | [25] |
东湖 Dong lake | ND | 3[d] | ND | 0.8000 | ND | [25] |
苕溪 Tiao river | ND | 3[d] | ND | 1.000 | ND | [25] |
鄱阳湖 Poyang lake | ND | 2[d] | ND | 0.600 | ND | [25] |
洞庭湖 Dongting lake | ND | 2[d] | ND | 0.690 | ND | [25] |
珠江(广州市) Pearl river (Guangzhou) | ND | 2-6[d] | ND | 0.620-1.190 | ND | [25] |
沙河 Sha river | ND | 5[d] | ND | 1.370 | ND | [25] |
下渚湖 Xiazhu lake | 0-4[c] | 0-1[a] | 0.000-1.430 | 0.000 | 1.80×106-5.10×107 | [54] |
西溪湿地 Xixi wetland | 2-5[c] | ND | 0.620-1.410 | ND | 1.60×106-1.30×107 | [55] |
钱塘江 Qiantang river | 4[c] | 3[a] | 0.680 | 0.560 | 1.23×106 | [56] |
富春江 Fuchun river | 4-7[c] | 1-9[a] | 0.680-1.550 | 0.000-1.980 | ND | [56] |
兰江 Lan river | 3-4[c] | 3-4[a] | 0.850-1.290 | 0.440-0.710 | 1.03×107 | [56] |
新安江 Xin’an river | 5[c] | 4[a] | 1.400 | 0.670 | ND | [56] |
椒江河口 Jiao river estuary | 1-3[c] | 1-8[a] | 0.000-1.000 | 0.000-1.890 | 5.80×105-8.35×107[e] | [57] |
舟山海岛 Zhoushan island | 2-3[c] | ND | 0.300-0.900 | ND | 8.70×106-5.20×107[e] | [58] |
杭州西湖 Hangzhou west lake | 2[c] | 5[b] | ND | ND | 2.15×105[e] | [59] |
注:[a]、[b]、[c]和[d]分别代表在93%、95%、97%和98%相似性水平下对基因进行OTU聚类;丰度单位默认为copies/g湿重;[e]表示此处的丰度单位为copies/g干重;ND表示未获得数据. Note:[a], [b], [c] and [d] respectively represent OTU clustering of genes at 93%, 95%, 97% and 98% similarity levels; The default abundance unit is copies/g (wet weight); [e] represent the abundance unit of this item is copies/g (dry weight); ND represent as no data. |
亚硝态氮作为N-DAMO过程的电子受体,在自然生境中多由硝态氮通过硝化作用还原而来,近期东江底泥的研究发现,底泥中丰富的氨氧化古菌及细菌使氨氮迅速向亚硝态氮转化[63],提升底泥中亚硝态氮含量,增加了M. oxyfera丰度[45],因此不同形态氮均有可能对其产生影响。多项研究表明氨氮和亚硝氮浓度的提升有利于此菌丰度的增加[9, 32, 44-45],总氮、硝态氮浓度的升高使此菌在OTU水平上的物种多样性增加[54],N-DAMO速率也随着亚硝态氮和硝态氮浓度增高而增大[44]。Shen等[46]发现氨氮、硝态氮和pH 3个环境因子协同影响了此菌群落的空间分布。但硝化功能菌与M. oxyfera间的协同或竞争关系还有待进一步的研究。
4.4 碳源对M. oxyfera的影响甲烷是亚硝酸盐型厌氧甲烷氧化细菌唯一的碳源[21],M. oxyfera通过好氧甲烷氧化途径氧化甲烷为二氧化碳并获得能量[28]。大量的研究发现高浓度有机碳有助于提高此菌丰度和N-DAMO速率[32, 55-56],但有研究表明在高浓度甲烷引发该细菌丰度增加的同时,往往伴随着M. oxyfera基因多样性的降低[32]。这也表明充足的碳源会加剧竞争,导致群落结构演替,但针对M. oxyfera的多环境因子联合相关性分析仍然较少,且产甲烷古菌、厌氧甲烷氧化古菌、好氧甲烷氧化细菌等微生物与此菌的种间关系还有待于更深入的研究。
4.5 pH对M. oxyfera的影响生理研究表明M. oxyfera最适pH为7.60[27]。对米埔湿地的研究发现,在沉积物pH背景值(5.98-6.47)低于7.60时,此菌丰度随着pH的升高而增大[44]。当自然生境沉积物中pH大于7.60时,N-DAMO反应速率和此菌多样性均呈现出负相关[32],Zhu等[25]也研究认为pH是影响此菌多样性的重要因素。因而适宜的pH有利于M. oxyfera的丰度增加、多样性表达和N-DAMO速率提高。
4.6 生境中氧气对M. oxyfera的影响亚硝酸盐型厌氧甲烷氧化细菌是一种对生境中氧气含量极为敏感的厌氧菌,外部生境中氧气浓度增加会抑制M. oxyfera的内产氧机制,进而对甲烷和亚硝酸盐转化率产生明显影响[18]。Hu等[3]研究发现低氧气含量的深层土壤中M. oxyfera丰度较高于表层土壤,而此菌在OTU水平上各项多样性指数也存在氧气含量较低的深层样点要高于表层和浅层样点的现象[8]。但关于此功能菌在应对环境中氧气含量变化时菌种及群落应激反应的研究仍然较少,有待进一步深入探究。
5 结论与展望亚硝酸盐型厌氧甲烷氧化过程广泛存在于自然生境中,在作为温室气体甲烷的汇的同时消减了日益严重的氮污染[1-3]。此过程中重要的功能微生物M. oxyfera的研究也逐渐深入,当前研究多基于N-DAMO过程甲烷氧化途径中pmoA功能基因展开,但关于独特的亚硝酸盐还原途径中将NO直接转化为N2和O2的NO歧化酶(Nod)的研究较少,在分子微生物学领域已有对nod功能基因进行定量及系统发育树分析的研究[29]。同时关于Nod酶的空间结构、生化反应机理等方面还有待于更深入的探究。
使用高通量和宏基因组测序技术探究不可纯培养的N-DAMO过程功能微生物M. oxyfera群落结构、丰度及生态学价值成为近年来的研究热点。通过分析宏观环境因子对M. oxyfera的影响中发现,较高的年均气温有利于此菌在OTU水平上物种多样性的提升,同时较高的年均降水和气温均有利于此菌的丰度增加。值得注意的是,在低温(0-5 ℃)生境中M. oxyfera存在多样性表达激增的现象,而其中的具体应激机理还有待于进一步的泛基因组学探析。
在三大自然区中,季风区是此菌丰度最高、多样性表达较为广谱的区域。在高寒区和干旱、半干旱区中对于N-DAMO过程的研究仍然较少,仅有巴丹吉林沙漠湖泊[36]、青藏高原[39]、锡林郭勒湿地[42]和塔里木河[25]等几个自然生境的研究报告,丰富这两大自然区的研究空白,将对分析亚硝酸盐型厌氧甲烷氧化细菌在我国自然生境中的生态学价值及现状提供帮助。
碳源、氮源、pH和氧气浓度都对M. oxyfera的群落存在影响,多环境因子协同作用也成为了关注度较高的研究方向。硝化细菌、厌氧氨氧化细菌、厌氧产甲烷古菌等与此细菌或协同或竞争的种间关系研究日益兴起,而更深入地研究碳氮循环中多种功能微生物种间关系,将有助于多维立体地分析自然生境中M. oxyfera参与各个营养循环的生态学意义。
当今研究N-DAMO过程的重点除了计算和控制水稻田和湿地等自然生态环境中甲烷排放潜力外,人类活动所导致的各种形态氮、碳源以及抗生素等物质,通过径流输入湿地等生态系统中对厌氧甲烷氧化过程所产生的影响也应当被重视。同时随着各种人类活动的进行,原本自然状态下湿地生态系统中的水量、盐量、热量平衡被打破,而由此引发的M. oxyfera群落应激反应及其机理还有待更深入的研究。同时有望借助此菌建立微生物标尺,应用于评价环境污染程度、判断湿地富营养化治理成效以及精准农业选址等众多领域。
[1] |
Ettwig KF, Zhu BL, Speth D, et al. Archaea catalyze iron-dependent anaerobic oxidation of methane[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(45): 12792-12796. DOI:10.1073/pnas.1609534113 |
[2] |
Raghoebarsing AA, Pol AA, van de Pas-Schoonen KT, et al. A microbial consortium couples anaerobic methane oxidation to denitrification[J]. Nature, 2006, 440(7086): 918-921. DOI:10.1038/nature04617 |
[3] |
Hu BL, Shen LD, Lian X, et al. Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(12): 4495-4500. DOI:10.1073/pnas.1318393111 |
[4] |
He ZF, Wang JQ, Hu JJ, et al. Regulation of coastal methane sinks by a structured gradient of microbial methane oxidizers[J]. Environmental Pollution, 2019, 244: 228-237. DOI:10.1016/j.envpol.2018.10.057 |
[5] |
Ettwig KF, Butler MK, Le Paslier D, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria[J]. Nature, 2010, 464(7288): 543-548. DOI:10.1038/nature08883 |
[6] |
Li YX. Nitrogen cycling with the distribution and activity of novel processes microorganisms in upland soils[D]. Qingdao: Master's Thesis of Qingdao University of Technology, 2016 (in Chinese) 李怡潇.旱地土壤氮循环过程及新型氮循环微生物的分布与活性[D].青岛: 青岛理工大学硕士学位论文, 2016 |
[7] |
Zhou L, Li YX, Zhuang LJ, et al. Vertical distribution characteristics and activity analysis of nitrite-dependent anaerobic methane oxidation in an agricultural upland soil core[J]. Acta Scientiae Circumstantiae, 2017, 37(2): 703-711. (in Chinese) 周利, 李怡潇, 庄林杰, 等. 旱地土壤反硝化厌氧甲烷氧化菌的垂向分布特性与活性分析[J]. 环境科学学报, 2017, 37(2): 703-711. |
[8] |
Yang MX, Guo QW, Tong TL, et al. Vegetation type and layer depth influence nitrite-dependent methane-oxidizing bacteria in constructed wetland[J]. Archives of Microbiology, 2017, 199(3): 505-511. DOI:10.1007/s00203-016-1328-z |
[9] |
Xu YN, Tong TL, Chen JF, et al. Nitrite-dependent methane-oxidizing bacteria seasonally and spatially shift in a constructed wetland used for treating river water[J]. Ecological Engineering, 2018, 110: 48-53. DOI:10.1016/j.ecoleng.2017.10.005 |
[10] |
Wu LH, Wang XY, Li JY, et al. Tag-encoded pyrosequencing analysis of bacterial communities in the sediments of a eutrophic lake on the Inner Mongolian plateau[J]. Journal of Biobased Materials and Bioenergy, 2017, 11(4): 271-277. DOI:10.1166/jbmb.2017.1669 |
[11] |
Beal EJ, House CH, Orphan VJ. Manganese- and iron-dependent marine methane oxidation[J]. Science, 2009, 325(5937): 184-187. DOI:10.1126/science.1169984 |
[12] |
Strous M, Jetten MSM. Anaerobic oxidation of methane and ammonium[J]. Annual Review of Microbiology, 2004, 58: 99-117. DOI:10.1146/annurev.micro.58.030603.123605 |
[13] |
Hinrichs KU, Boetius A. The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry[A]//Wefer G, Billett D, Hebbeln D, et al. Ocean Margin Systems[M]. Berlin: Springer, 2002: 457-477
|
[14] |
He ZF, Zhang QY, Feng YD, et al. Microbiological and environmental significance of metal-dependent anaerobic oxidation of methane[J]. Science of the Total Environment, 2018, 610(610-611): 759-768. |
[15] |
Luesken FA, van Alen TA, van der Biezen E, et al. Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge[J]. Applied Microbiology and Biotechnology, 2011, 92(4): 845-854. DOI:10.1007/s00253-011-3361-9 |
[16] |
Wu ML, van Alen TA, van Donselaar EG, et al. Co-localization of particulate methane monooxygenase and cd1 nitrite reductase in the denitrifying methanotroph 'Candidatus Methylomirabilis oxyfera'[J]. FEMS Microbiology Letters, 2012, 334(1): 49-56. DOI:10.1111/j.1574-6968.2012.02615.x |
[17] |
Wu ML, van Teeseling MCF, Willems MJR, et al. Ultrastructure of the denitrifying methanotroph "Candidatus Methylomirabilis oxyfera", a novel polygon-shaped bacterium[J]. Journal of Bacteriology, 2012, 194(2): 284-291. DOI:10.1128/JB.05816-11 |
[18] |
Luesken FA, Wu ML, Op den Camp HJM, et al. Effect of oxygen on the anaerobic methanotroph 'Candidatus Methylomirabilis oxyfera': kinetic and transcriptional analysis[J]. Environmental Microbiology, 2012, 14(4): 1024-1034. DOI:10.1111/j.1462-2920.2011.02682.x |
[19] |
Kool DM, Zhu BL, Rijpstra WIC, et al. Rare branched fatty acids characterize the lipid composition of the intra-aerobic methane oxidizer "Candidatus Methylomirabilis oxyfera"[J]. Applied and Environmental Microbiology, 2012, 78(24): 8650-8656. DOI:10.1128/AEM.02099-12 |
[20] |
Zhu BL, van Dijk G, Fritz C, et al. Anaerobic oxidization of methane in a minerotrophic peatland: enrichment of nitrite-dependent methane-oxidizing bacteria[J]. Applied and Environmental Microbiology, 2012, 78(24): 8657-8665. DOI:10.1128/AEM.02102-12 |
[21] |
Rasigraf O, Kool DM, Jetten MSM, et al. Autotrophic carbon dioxide fixation via the calvin-benson-bassham cycle by the denitrifying methanotroph "Candidatus Methylomirabilis oxyfera"[J]. Applied and Environmental Microbiology, 2014, 80(8): 2451-2460. DOI:10.1128/AEM.04199-13 |
[22] |
Ettwig KF, van Alen T, van de Pas-Schoonen KT, et al. Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum[J]. Applied and Environmental Microbiology, 2009, 75(11): 3656-3662. DOI:10.1128/AEM.00067-09 |
[23] |
He ZF, Cai C, Shen LD, et al. Effect of inoculum sources on the enrichment of nitrite-dependent anaerobic methane-oxidizing bacteria[J]. Applied Microbiology and Biotechnology, 2015, 99(2): 939-946. DOI:10.1007/s00253-014-6033-8 |
[24] |
Kampman C, Hendrickx TLG, Luesken FA, et al. Enrichment of denitrifying methanotrophic bacteria for application after direct low-temperature anaerobic sewage treatment[J]. Journal of Hazardous Materials, 2012, 227-228: 164-171. DOI:10.1016/j.jhazmat.2012.05.032 |
[25] |
Zhu GB, Zhou LL, Wang Y, et al. Biogeographical distribution of denitrifying anaerobic methane oxidizing bacteria in Chinese wetland ecosystems[J]. Environmental Microbiology Reports, 2015, 7(1): 128-138. DOI:10.1111/1758-2229.12214 |
[26] |
He ZF, Cai C, Geng S, et al. Modelling a nitrite-dependent anaerobic methane oxidation process: parameters identification and model evaluation[J]. Bioresource Technology, 2013, 147: 315-320. DOI:10.1016/j.biortech.2013.08.001 |
[27] |
He ZF, Geng S, Shen LD, et al. The short- and long-term effects of environmental conditions on anaerobic methane oxidation coupled to nitrite reduction[J]. Water Research, 2015, 68: 554-562. DOI:10.1016/j.watres.2014.09.055 |
[28] |
Wu ML, Ettwig KF, Jetten MSM, et al. A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus 'Methylomirabilis oxyfera'[J]. Biochemical Society Transactions, 2011, 39(1): 243-248. DOI:10.1042/BST0390243 |
[29] |
Zhang YF, Ma AZ, Liu WZ, et al. The occurrence of putative nitric oxide dismutase (Nod) in an alpine wetland with a new dominant subcluster and the potential ability for a methane sink[J]. Archaea, 2018, 2018: 6201541. |
[30] |
Dahllöf I, Baillie H, Kjelleberg S. rpoB-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity[J]. Applied and Environmental Microbiology, 2000, 66(8): 3376-3380. DOI:10.1128/AEM.66.8.3376-3380.2000 |
[31] |
Zhu BL, Bradford L, Huang SC, et al. Unexpected diversity and high abundance of putative nitric oxide dismutase (Nod) genes in contaminated aquifers and wastewater treatment systems[J]. Applied and Environmental Microbiology, 2017, 83(4): 2750-2716. |
[32] |
Zhang MP, Luo Y, Lin LA, et al. Molecular and stable isotopic evidence for the occurrence of nitrite-dependent anaerobic methane-oxidizing bacteria in the mangrove sediment of Zhangjiang Estuary, China[J]. Applied Microbiology and Biotechnology, 2018, 102(5): 2441-2454. DOI:10.1007/s00253-017-8718-2 |
[33] |
Han P, Gu JD. A newly designed degenerate PCR primer based on pmoA gene for detection of nitrite-dependent anaerobic methane-oxidizing bacteria from different ecological niches[J]. Applied Microbiology and Biotechnology, 2013, 97(23): 10155-10162. DOI:10.1007/s00253-013-5260-8 |
[34] |
He ZF, Wang JQ, Hu JJ, et al. Improved PCR primers to amplify 16S rRNA genes from NC10 bacteria[J]. Applied Microbiology and Biotechnology, 2016, 100(11): 5099-5108. DOI:10.1007/s00253-016-7477-9 |
[35] |
Zhu GB, Wang MZ, Li YX, et al. Denitrifying anaerobic methane oxidizing in global upland soil: sporadic and non-continuous distribution with low influence[J]. Soil Biology and Biochemistry, 2018, 119: 90-100. DOI:10.1016/j.soilbio.2018.01.011 |
[36] |
Zhang XW, Liu K, Li P, et al. Molecular existence and diversity of nitrite-dependent anaerobic methane oxidizing (n-Damo) bacteria in the lakes of Badain of the Gobi Desert[J]. Geomicrobiology Journal, 2019, 36(6): 522-532. DOI:10.1080/01490451.2019.1578441 |
[37] |
Chen SL, Chen JF, Chang S, et al. Aerobic and anaerobic methanotrophic communities in urban landscape wetland[J]. Applied Microbiology and Biotechnology, 2018, 102(1): 433-445. |
[38] |
Zhang YD, Song YH, Peng JF, et al. Analysis of the temporal and spatial distribution of the diversity of the denitrifying anaerobic methane-oxidizing bacterial community in the sediments of the hunhe river and its relationship with environmental factors[J]. Environmental Science, 2018, 39(8): 3670-3676. (in Chinese) 张亚迪, 宋永会, 彭剑峰, 等. 浑河底泥反硝化厌氧甲烷氧化菌群落多样性的时空分布特征及其与环境因子关系分析[J]. 环境科学, 2018, 39(8): 3670-3676. |
[39] |
Li AR. Nitrite-dependent anaerobic methane oxidizing bacteria in Tibetan Plateau[D]. Lanzhou: Master's Thesis of Lanzhou University, 2018 (in Chinese) 李傲瑞.青藏高原亚硝酸盐型厌氧甲烷氧化微生物研究[D].兰州: 兰州大学硕士学位论文, 2018 |
[40] |
Liu Y, Chen YJ, Wang XY, et al. Influences of anthropogenic activities on the community structure of N-DAMO bacteria in the North Canal[J]. Environmental Science, 2018, 39(8): 3677-3688. (in Chinese) 刘洋, 陈永娟, 王晓燕, 等. 人类活动对河流沉积物中反硝化厌氧甲烷氧化菌群落特征的影响[J]. 环境科学, 2018, 39(8): 3677-3688. |
[41] |
Ye F, Wu SJ, Jiang Y, et al. Influences of anthropogenic disturbance on nitrite-dependent anaerobic methane-oxidizing bacterial community in water level fluctuation zone of the Three Gorges Reservoir[J]. Acta Scientiae Circumstantiae, 2018, 38(8): 3266-3277. (in Chinese) 叶飞, 吴胜军, 姜毅, 等. 人类活动对三峡消落带土壤亚硝酸盐型甲烷厌氧氧化菌群落的影响[J]. 环境科学学报, 2018, 38(8): 3266-3277. |
[42] |
Zhang SH. Spatial distribution characteristics of denitrifying anaerobic methane oxidizing dacteria in Xilin River wetland[D]. Hohhot: Master's Thesis of Inner Mongolia University, 2018 (in Chinese) 张少华.锡林河湿地反硝化型厌氧甲烷氧化菌群的空间分布特征[D].呼和浩特: 内蒙古大学硕士学位论文, 2018 |
[43] |
Wang JQ, Shen LD, He ZF, et al. Spatial and temporal distribution of nitrite-dependent anaerobic methane-oxidizing bacteria in an intertidal zone of the East China Sea[J]. Applied Microbiology and Biotechnology, 2017, 101(21): 8007-8014. DOI:10.1007/s00253-017-8521-0 |
[44] |
Chen J, Gu JD. Faunal burrows alter the diversity, abundance, and structure of AOA, AOB, Anammox and N-DAMO communities in coastal mangrove sediments[J]. Microbial Ecology, 2017, 74(1): 140-156. DOI:10.1007/s00248-017-0939-5 |
[45] |
Long Y, Jiang XL, Guo QW, et al. Sediment nitrite-dependent methane-oxidizing microorganisms temporally and spatially shift in the Dongjiang River[J]. Applied Microbiology and Biotechnology, 2017, 101(1): 401-410. DOI:10.1007/s00253-016-7888-7 |
[46] |
Shen LD, Wu HS, Liu X, et al. Cooccurrence and potential role of nitrite- and nitrate-dependent methanotrophs in freshwater marsh sediments[J]. Water Research, 2017, 123: 162-172. DOI:10.1016/j.watres.2017.06.075 |
[47] |
Long Y, Liu CB, Lin HL, et al. Vertical and horizontal distribution of sediment nitrite-dependent methane-oxidizing organisms in a mesotrophic freshwater reservoir[J]. Canadian Journal of Microbiology, 2017, 63(6): 525-534. DOI:10.1139/cjm-2016-0585 |
[48] |
Cai ZY. Research on anaerobic methane oxidation dominated by archaea in intertidal ecosystem[D]. Hangzhou: Master's Thesis of Zhejiang University, 2017 (in Chinese) 蔡朝阳.潮间带古菌介导的甲烷厌氧氧化过程研究[D].杭州: 浙江大学硕士学位论文, 2017 |
[49] |
Li XF. Anaerobic methane oxidation and associated influencing mechanisms in the sediment of Yangtze Estuary[D]. Shanghai: Doctoral Dissertation of East China Normal University, 2017 (in Chinese) 李小飞.长江口沉积物甲烷厌氧氧化过程及其影响机理[D].上海: 华东师范大学博士学位论文, 2017 |
[50] |
Shen LD, Hu BL, Liu S, et al. Anaerobic methane oxidation coupled to nitrite reduction can be a potential methane sink in coastal environments[J]. Applied Microbiology and Biotechnology, 2016, 100(16): 7171-7180. DOI:10.1007/s00253-016-7627-0 |
[51] |
Wang Y, Huang P, Ye F, et al. Nitrite-dependent anaerobic methane oxidizing bacteria along the water level fluctuation zone of the Three Gorges Reservoir[J]. Applied Microbiology and Biotechnology, 2015, 100(4): 1977-1986. |
[52] |
Meng H, Wang YF, Chan HW, et al. Co-occurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in subtropical acidic forest soils[J]. Applied Microbiology and Biotechnology, 2016, 100(17): 7727-7739. DOI:10.1007/s00253-016-7585-6 |
[53] |
Liu Y, Zhang JX, Zhao L, et al. Aerobic and nitrite-dependent methane-oxidizing microorganisms in sediments of freshwater lakes on the Yunnan Plateau[J]. Applied Microbiology and Biotechnology, 2015, 99(5): 2371-2381. DOI:10.1007/s00253-014-6141-5 |
[54] |
Shen LD, Huang Q, He ZF, et al. Vertical distribution of nitrite-dependent anaerobic methane-oxidising bacteria in natural freshwater wetland soils[J]. Applied Microbiology and Biotechnology, 2015, 99(1): 349-357. |
[55] |
Shen LD, Liu S, He ZF, et al. Depth-specific distribution and importance of nitrite-dependent anaerobic ammonium and methane-oxidising bacteria in an urban wetland[J]. Soil Biology and Biochemistry, 2015, 83: 43-51. DOI:10.1016/j.soilbio.2015.01.010 |
[56] |
Shen LD, Liu S, Zhu Q, et al. Distribution and diversity of nitrite-dependent anaerobic methane-oxidising bacteria in the sediments of the Qiantang River[J]. Microbial Ecology, 2014, 67(2): 341-349. DOI:10.1007/s00248-013-0330-0 |
[57] |
Shen LD, Zhu Q, Liu S, et al. Molecular evidence for nitrite-dependent anaerobic methane-oxidising bacteria in the Jiaojiang Estuary of the East Sea (China)[J]. Applied Microbiology and Biotechnology, 2014, 98(11): 5029-5038. DOI:10.1007/s00253-014-5556-3 |
[58] |
Shen LD. Microbial ecology of nitrite-dependent anaerobic ammonia and methane oxidising bacteria in wetlands[D]. Hangzhou: Doctoral Dissertation of Zhejiang University, 2014 (in Chinese) 沈李东.湿地亚硝酸盐型厌氧氨氧化和厌氧甲烷氧化微生物生态学研究[D].杭州: 浙江大学博士学位论文, 2014 |
[59] |
Zhu Q, Shen LD, Hu BL, et al. Molecular detection of denitrifying anaerobic methane oxidizing bacteria in the sediment of West Lake, Hangzhou[J]. Acta Scientiae Circumstantiae, 2013, 33(5): 1321-1325. (in Chinese) 朱群, 沈李东, 胡宝兰, 等. 西湖底泥中的反硝化型甲烷厌氧氧化菌的分子生物学检测[J]. 环境科学学报, 2013, 33(5): 1321-1325. |
[60] |
Bahram M, Hildebrand F, Forslund SK, et al. Structure and function of the global topsoil microbiome[J]. Nature, 2018, 560(7717): 233-237. DOI:10.1038/s41586-018-0386-6 |
[61] |
Murniati E, Geissler S, Lorke A. Short-term and seasonal variability of oxygen fluxes at the sediment-water interface in a riverine lake[J]. Aquatic Sciences, 2014, 77(2): 183-196. |
[62] |
Kalkhoff SJ, Hubbard LE, Tomer MD, et al. Effect of variable annual precipitation and nutrient input on nitrogen and phosphorus transport from two Midwestern agricultural watersheds[J]. Science of the Total Environment, 2016, 559: 53-62. DOI:10.1016/j.scitotenv.2016.03.127 |
[63] |
Sun W, Xia CY, Xu MY, et al. Distribution and abundance of archaeal and bacterial ammonia oxidizers in the sediments of the Dongjiang River, a drinking water supply for Hong Kong[J]. Microbes and Environments, 2013, 28(4): 457-465. DOI:10.1264/jsme2.ME13066 |