扩展功能
文章信息
- 张德锋, 高艳侠, 王亚军, 刘春, 石存斌
- ZHANG De-Feng, GAO Yan-Xia, WANG Ya-Jun, LIU Chun, SHI Cun-Bin
- 贝莱斯芽孢杆菌的分类、拮抗功能及其应用研究进展
- Advances in taxonomy, antagonistic function and application of Bacillus velezensis
- 微生物学通报, 2020, 47(11): 3634-3649
- Microbiology China, 2020, 47(11): 3634-3649
- DOI: 10.13344/j.microbiol.china.190947
-
文章历史
- 收稿日期: 2019-11-13
- 接受日期: 2020-03-09
- 网络首发日期: 2020-04-09
2. 中国水产科学研究院珠江水产研究所广东省水产动物免疫技术重点实验室 广东 广州 510380
2. Key Laboratory of Aquatic Animal Immune Technology, Guangdong Province; Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China
贝莱斯芽孢杆菌(Bacillus velezensis)属于芽孢杆菌属(Bacillus)的一个新种,是革兰氏阳性好氧细菌,菌体成杆状,大小为0.5×(1.5−3.5) μm,内生孢子,广泛分布于自然界的水体、土壤、空气、植物根系、植株表面和动物肠道等[1-2]。贝莱斯芽孢杆菌最早是Ruiz-García等从位于西班牙马拉加省(Málaga)拖雷德尔马尔(Torredelmar)地区的一条名为贝莱斯河流(Vélez)的河口中分离的,因此被命名为贝莱斯芽孢杆菌,分离的两株菌分别编号为CR-14b和CR-502T[3]。近年来,国内外有关贝莱斯芽孢杆菌的报道越来越多,研究主要集中在促进动植物生长、拮抗病原菌、诱导系统抗性、抑菌物质及其基因簇鉴定、拮抗作用机制等方面[4-7],该菌在生物防治、药物研发、食品发酵和工业应用等方面具有重要作用。考虑到近年来贝莱斯芽孢杆菌作为芽孢杆菌的一个新种被广泛关注,而且该菌在抑制病原菌和生物防治方面具有显著的优点。因此,本文对贝莱斯芽孢杆菌的分类地位、抑菌物质及其合成相关基因、拮抗作用机制以及应用研究等方面进行综述,为贝莱斯芽孢杆菌的深入研究提供参考。
1 贝莱斯芽孢杆菌的分类地位贝莱斯芽孢杆菌的种分类地位的确定比枯草芽孢杆菌(Bacillus subtilis)、解淀粉芽孢杆菌(Bacillus amyloliquefaciens)和苏芸金芽孢杆菌(Bacillus thuringiensis)等芽孢杆菌晚,贝莱斯芽孢杆菌最早在1999年被分离到,直到2005年被首次报道和命名[3]。贝莱斯芽孢杆菌的生理生化特性鉴定结果[3, 8]显示:该菌能够发酵七叶苷、苦杏仁苷、L-阿拉伯糖、熊果苷、纤维二糖、D-果糖、甘油、葡萄糖、糖原、肌醇、乳糖、麦芽糖、甘露醇、D-甘露糖、甲基α-D-糖苷、D-核糖、D-棉子糖、水杨酸、山梨酸、蔗糖、海藻糖和D-木糖产酸;V.P试验(Voges-Proskauer test)、吲哚试验、硝酸盐还原等为阳性;能够水解淀粉和酪蛋白。贝莱斯芽孢杆菌CR-14b和CR-502T菌株不能发酵D-松二糖,也不能水解DNA、吐温20和吐温80,但是能够产生O-邻硝基苯基β-D-吡喃半乳糖(O-nitrophenyl β-D-galactopyranoside,ONPG)[3]。Ruiz-García等[3]发现贝莱斯芽孢杆菌与其相近种在主要生理生化特征上的区别是该菌能够利用糖原、乳糖、甲基α-D-糖苷和D-棉子糖产酸,不能利用D-松二糖产酸;该菌不能水解DNA、吐温20和吐温80,精氨酸双水解酶为阴性,但是能够产生ONPG。在胰蛋白胨大豆琼脂(tryptic soy agar,TSA)培养基上,贝莱斯芽孢杆菌能够形成乳白色、粗糙、边缘不规则的菌落;在TSB液体培养基中,液体表面会形成一层薄膜,液体内混浊均匀[1]。
经典的分类学方法如形态和生理特征、细胞壁成分、16S rRNA基因序列、(G+C)mol%含量和脂肪酸甲酯(fatty acid methyl ester,FAME)等难以有效区分枯草芽孢杆菌复合群的物种(包括贝莱斯芽孢杆菌)[9]。贝莱斯芽孢杆菌与其亲缘关系相近的物种通过表型难以区分,随着分子生物学技术的快速发展,保守基因或基因组序列进化分析被广泛用于贝莱斯芽孢杆菌的物种鉴定。在分子水平上,基于16S rRNA基因序列进化分析结果显示,贝莱斯芽孢杆菌CR-14b和CR-502T菌株与枯草芽孢杆菌枯草亚种(Bacillus subtilis subsp. subtilis)、解淀粉芽孢杆菌和死亡谷芽孢杆菌(Bacillus vallismortis)的亲缘关系最近,序列相似性高达99%,高于物种划分推荐的阈值> 98.65%[10]。因此,仅仅通过16S rRNA基因序列分析不能有效区分贝莱斯芽孢杆菌与其相近种。近年来,更多的研究者通过保守基因gyrA、gyrB和rpoB等构建系统发育树来进一步确定贝莱斯芽孢杆菌的分类地位[11-15]。
随着测序技术的进步和测序费用的降低,越来越多的微生物基因组被公布,通过比较基因组学方法分析物种间的亲缘关系逐渐成为主流。根据微生物基因组分类的描述,具有DDH (DNA-DNA hybridization)相似性(> 70%)、ΔTm (< 5 ℃)、全基因组(G+C)mol%含量差异(< 5%)、16S rRNA基因一致性(> 98%)被定义为同一种细菌[16-17]。基于此,有学者将解淀粉芽孢杆菌植物亚种(Bacillus amyloliquefaciens subsp. plantarum) FZB42T菌株重新归类为贝莱斯芽孢杆菌[17-18]。Dunlap等[18]通过比较基因组学和in silico DNA-DNA杂交的方法对贝莱斯芽孢杆菌及其相近种进行了分类,认为贝莱斯芽孢杆菌不是解淀粉芽孢杆菌最近异模式的异名(a later heterotypic synonym);甲基营养型芽孢杆菌(Bacillus methylotrophicus)、解淀粉芽孢杆菌植物亚种和Bacillus oryzicola是贝莱斯芽孢杆菌的异名。近年来,有学者建议将枯草芽孢杆菌复合群分为4个支系,其中将解淀粉芽孢杆菌、植物相关的西姆芽孢杆菌(Bacillus siamensis)和贝莱斯芽孢杆菌(包含Bacillus methylotrophicus、B. velezensis和B. amyloliquefaciens subsp. plantarum)等细菌归类第二支系(clade Ⅱ),并建议将这些芽孢杆菌归类为高于种分类水平但是低于枯草芽孢杆菌复合群分类单元的“Operational group B. amyloliquefaciens”中[9]。随着芽孢杆菌基因组序列的陆续公布、物种分类学技术方法的更新以及物种分类规则的多样化,有些芽孢杆菌的物种分类地位也会相应调整,这些芽孢杆菌种属地位的变化也将更有利于研究者对其区分和理解。
2 主要抑菌物质及其合成相关基因芽孢杆菌在生长与繁殖过程中会产生许多具有抑菌活性的代谢产物,例如细菌素(bacteriocins)、伊枯草菌素(iturin)、表面活性素(surfactin)、二磷酸硫胺素、几丁质酶、纤维素酶、碱性蛋白酶、β-甘露聚糖酶和氨肽酶等[19]。芽孢杆菌产生的多种活性肽对常见病原菌具有良好的抑制作用,是一种潜在的传统抗生素替代品。贝莱斯芽孢杆菌通过合成次级代谢产物实现对病原菌的抑制作用,其中主要包括细菌素、抑菌蛋白、脂肽类物质和聚酮化合物等。贝莱斯芽孢杆菌产生的细菌素类物质主要有羊毛硫抗生素(lantibiotics),因其含有如羊毛硫氨酸、甲基羊毛硫氨酸、脱氢丙氨酸等特殊的氨基酸而得名[20];抑菌蛋白主要有蛋白酶、几丁质酶和β-葡聚糖酶等;脂肽类物质主要有表面活性素、伊枯草菌素、泛革素(fengycin)、杆菌霉素等;聚酮类化合物主要有Macrolactin、Bacillaene、Difficidin等。贝莱斯芽孢杆菌产生的抗菌肽类物质根据合成途径可以分为核糖体合成肽和非核糖体合成肽。芽孢杆菌核糖体合成的一类具有抑菌活性的多肽或前体多肽通常被称为细菌素,一般包括12−50个氨基酸残基;根据核糖体合成之后是否经过翻译后修饰,将细菌素分为两类:经胞外修饰的细菌素Class Ⅰ和未经修饰的细菌素Class Ⅱ[20-21]。
非核糖体合成肽是指通过非核糖体肽合成酶(non-ribosomal peptide synthetase,NRPS)合成的,多发生于菌体生长停止之后,通过NRPS识别特定的氨基酸,经过修饰如环化、酰基化、杂环化、甲基化和糖基化等过程,进而形成具有生物活性的分子肽[22]。非核糖体合成肽根据其结构的差异又可分为表面活性肽、伊枯草菌素和泛革素等三大家族,以及近年来发现的Maltacines复合物、亲水性抗菌肽(bacilysin)、根霉素(rhizocticins)和Amicoumacins等[20, 23-24]。表面活性素、伊枯草菌素和泛革素都属于脂肽类抗生素[25],一般由1个疏水脂肪烃链与由7−10个氨基酸组成的以酰胺键或内酯键连接构成的环肽,脂肪链的碳原子个数、氨基酸种类以及脂肪链与肽链连接方式的不同可形成不同的脂肽类型[22]。其中,伊枯草菌素家族包括伊枯草菌素A、抗霉枯草菌素(mycosubtilin)、Bacilopeptins和杆菌霉素(bacillomycin) L、D、F[26]。
贝莱斯芽孢杆菌抗菌肽类物质的合成通常由多基因控制(表 1)。Surfactin合成相关的基因簇是srfABCD,包含7个模块,每个模块负责一种氨基酸的识别和缩合;基因簇srfAB分别含有3个模块,srfC含有1个模块,srfC基因的末端连接1个Ⅱ型硫酯酶基因srfD,其与Surfactin的环化和释放有关[25]。此外,Surfactin的合成受到磷酸泛酰巯基乙胺基转移酶编码基因sfp的控制,枯草芽孢杆菌168菌株的sfp基因发生突变,则导致该菌株不能产生表面活性素[32]。Fengycin是一种环脂肽类化合物,其合成酶的基因fenA、fenB、fenC、fenD和fenE共同构成fen操纵子[23],它们分别编码5个单体酶(FenA、B、C、D、E),每个单体酶一般含1−3个氨基酸激活模块,每个模块具有识别特定氨基酸和形成相应肽键的功能[22]。Fengycin的合成从单体酶FenC开始,负责活化并组装第1位和第2位氨基酸;然后经过FenD、FenE和FenA分别负责活化第3−4、5−6和7−9位氨基酸;最后是单体酶FenB负责组装最后一位氨基酸,并且具有释放肽链的功能[22]。伊枯草菌素是通过聚酮合酶(polyketide synthase,PKS)-NRPS杂合体系合成,编码伊枯草菌素合成酶的基因ituD、ituA、ituB和ituC共同构成itu操纵子[33]。ituA编码的蛋白与氨基脂肪酸的形成有关,负责组装第1位氨基酸;ituB编码具有4个氨基酸腺苷酸化结构域的肽合成酶,负责组装第2−5位氨基酸;ituC编码含有2个腺苷酸化结构域、1个差向异构酶结构域和硫酯酶结构域的肽合成酶,有助于肽的环化,并且负责组装第6和第7位氨基酸;ituD编码丙二酰辅酶A转酰酶,可调控伊枯草菌素的产量,与脂肪酸合成有关[22]。杆菌霉素Bacillomycin D基因簇为bmyCBAD和xynD,全长约39.4 kb (表 1) [9]。Plantazolicin的生物合成是由12个基因组成的基因簇决定的,其基因簇大小约10 kb [23]。Amylocyclicin是一种高度疏水的环肽,由6个基因组成的基因簇控制(约4.2 kb)[23]。芽孢杆菌的溶杆菌素Bacilysin是一种非核糖体合成的由N末端L-丙氨酸残基和C末端L-不典型的氨基酸残基组成的二肽,其合成基因簇为bacABCDEFG,其中bacA编码预苯酸脱羧酶、bacB编码异构/鸟苷酰基转移酶、bacC编码蛋白属于氧化还原酶/还原酶家族、bacD编码的是一种连接酶、bacE编码的是大环内酯输出蛋白/透性酶、bacF编码转氨酶、bacG编码的蛋白行使催化功能[34]。综上,贝莱斯芽孢杆菌抗菌肽类物质的合成是由多基因控制的,这些基因通常是成簇出现在基因组上。随着新的抗菌肽类物质不断发现,也将会有新的拮抗基因(簇)被鉴定,抑菌物质的合成途径也会被进一步阐释。
代谢产物 metabolite |
化学性质 Chemical properties |
基因或基因簇 Genes and gene clusters |
大小 Size (kb) |
拮抗对象 Control effects |
参考文献 References |
Surfactin | 脂肽类Lipopeptides | srfABCD, tpaat | 27.40 | 真菌、细菌Fungi, bacteria | [9, 23] |
Fengycin | 脂肽类Lipopeptides | dacC, fenABCDE, yngL | 39.50 | 真菌Fungi | [9, 23] |
Bacillomycin-D | 脂肽类Lipopeptides | bmyCBAD, xynD | 39.40 | 真菌Fungi | [9, 27] |
Bacillibactin | 铁载体Siderophore | dhbABCDEF | 12.80 | 真菌,细菌Fungi, bacteria | [28] |
Difficidin | 聚酮类Polyketides | dfnAYXBCDEFGHIJKLM | 71.10 | 细菌Bacteria | [23] |
Bacillaene | 聚酮类Polyketides | baeBCDE, mutL, baeGHIJLMNRS | 73.50 | 细菌Bacteria | [9] |
Macrolactin | 聚酮类Polyketides | mlnABCDEFGHI, pdhA, ykyA | 55.00 | 细菌Bacteria | [9] |
Bacilysin | 二肽Dipeptide | bacABCDEFGH | 6.70 | 细菌、真菌、蓝细菌 Bacteria, fungi, cyanobacteria |
[23, 29] |
Plantazolicin | LAPs | pznFKGHIAJC DBEL | 9.96 | 细菌、线虫Bacteria, nematodes | [23, 30] |
Amylocyclicin | 环肽类Cyclic peptides | acnBACDEF | 4.20 | 细菌Bacteria | [28] |
Rhizocticina | 磷酸寡肽抗生素 Phosphono-oligopeptide antibiotics |
rhiABCDEFGHIJKLM | 77.70 | 真菌Fungi | [24, 31] |
注:LAPs:Linear azol(in)e-containing peptides;a:Rhizocticin,磷酸寡肽抗生素(phosphono-oligopeptide antibiotics),参考枯草芽孢杆菌[24, 31]. Note: LAPs: Linear azol(in)e-containing peptides; a: Rhizocticin, phosphono-oligopeptide antibiotics, reference to B. subtilis[24, 31]. |
拮抗芽孢杆菌产生的抗菌肽类物质能够造成细胞膜的损伤,破坏细菌细胞壁,导致细胞内容物外泄而杀灭细菌。例如:表面活性素能够溶解和破坏细胞膜进而发挥抗菌活性[35];伊枯草菌素能够引起细胞膜损伤,改变细胞的通透性,使细胞内物质外泄,进而达到抑菌目的[36];泛革素能够降低真菌细胞膜表面的张力,形成微孔,促使K+和其他离子的渗漏,通过干扰和破坏细胞膜造成细胞死亡,对真菌具有较强的抗菌活性[32, 37];Difficidin是多烯类抗生素,可抑制细菌的蛋白质合成,破坏细胞膜的功能,具有广泛的抗细菌活性[34]。
贝莱斯芽孢杆菌主要通过分泌脂肽类抗生素、聚酮类化合物和抗菌蛋白等产生抑菌作用[38]。Chowdhury等[39]研究表明FZB42菌株(现已归属贝莱斯芽孢杆菌,下同)在与莴苣(lettuce)根系相互作用过程中能够产生Surfactin、Fengycin和Bacillomycin D,并认为其代谢产物脂肽类和聚酮类物质不仅直接抑制立枯丝核菌(Rhizoctonia solani),还能够介导莴苣的防御性反应;而且FZB42菌株产生的Surfactin和非核糖体合成的次级代谢产物能够显著提高莴苣防御素基因FDF1.2的表达量,尤其是在莴苣遇到病原菌侵染时。FZB42菌株产生的杆菌霉素Bacillomycin D对真菌具有显著的抑制作用,能够改变菌丝体和分生孢子细胞壁以及细胞质膜的形态[23]。刘雪娇等[40]发现贝莱斯芽孢杆菌3A3-15能够产生表面活性素(C14−C15 surfactin A)等抑菌物质,该菌产生的次生代谢产物能够造成尖孢镰刀菌的菌丝膨大、弯曲、缠绕、螺旋、节间缩短甚至菌丝断裂等,具有明显的致畸作用,而且对孢子萌发的抑制率高达93.2%。贝莱斯芽孢杆菌V4菌株能够产生伊枯草菌素、Macrolactin和Difficidin等抗菌物质,而且该菌株分泌的抑菌物质能够破坏杀鲑气单胞菌(Aeromonas salmonicida)细胞膜的完整性,与细胞表面相互作用,细胞膜形成穿孔,造成细胞内容物流失[5]。贝莱斯芽孢杆菌Y6产生的脂肽类物质(75 μg/mL)能够抑制大约60%的真菌孢子萌发,其中伊枯草菌素对真菌孢子萌发表现出较强的抑制作用,泛革素表现出较弱的抗真菌活性,表面活性素则没有明显的抑制真菌活性[6]。贝莱斯芽孢杆菌AP193菌株能够产生聚酮类化合物Difficidin,其表达相关基因dfnD缺失后,缺失株ΔdfnD对病原菌(Pseudomonas syringe、Rhizobium radiobacter和Xanthomonas axonopodis等)的抑菌活性丧失,而且缺失株ΔdfnD对番茄细菌性斑点病没有防控效果,认为Difficidin是贝莱斯芽孢杆菌AP193抑菌和生防作用中关键的次级代谢产物[41-42]。
贝莱斯芽孢杆菌能够产生拮抗蛋白类的抗菌物质,如能够降解细胞壁的几丁质酶和葡聚糖酶等。从番茄树冠中分离的贝莱斯芽孢杆菌C2菌株能够产生蛋白酶、几丁质酶和β-葡聚糖酶,这些酶能够降解真菌细胞壁中的蛋白质、几丁质和β-葡聚糖,进而起到抑菌作用[43]。从黑胡椒根际中分离的贝莱斯芽孢杆菌RB.DS29产生的抗菌物质具有蛋白酶、几丁质酶和β-葡聚糖酶活性,能够破坏疫霉菌(Phytophthora)等真菌的细胞壁,对真菌病原具有良好的拮抗作用[44]。
贝莱斯芽孢杆菌能够诱导植物产生系统抗性,提高植物抗病力,还能够产生吲哚-3-乙酸(indole-3-acetic acid,IAA),促进植物生长。诱导植物抗性是芽孢杆菌生防作用的重要机制之一。诱导植物抗性是通过非致病菌株、弱毒菌株、蛋白质或糖蛋白、胞外多糖和脂多糖等因子激活植物体内苯丙氨酸解氨酶、过氧化物酶、超氧化物歧化酶、几丁质酶和多酚氧化酶等防御酶,进而促使植物产生诱导系统抗性(induce systemic resistance,ISR),增强植物的抗病能力,抵御病原菌的入侵[45-46]。例如,芽孢杆菌FZB24®产生一种信号蛋白诱导植物抗性蛋白的合成,增加植物的抗性,还可以通过分泌丝氨酸专性肽内切酶直接诱导植物抗性[47]。植物根际促生菌(plant growth promoting rhizobacteria,PGPR)可以通过JA/ET信号通路诱导植物ISR,通过活性氧暴发、细胞壁的强化、防御相关酶的累积以及抗菌物质的产生等诱导植物细胞的防御反应[23]。此外,现已归属于贝莱斯芽孢杆菌的FZB42菌株产生的表面活性素和其他非核糖体合成的次级代谢产物可增强植物根系的防御性反应[39]。
由于物种确定的时间较短,贝莱斯芽孢杆菌的抑菌物质分离纯化的相关研究较少,目前主要是通过分析基因组中是否携带脂肽类、聚酮类等已知抗菌物质相关基因(簇)以及蛋白酶、IAA等合成相关基因,并以此推测贝莱斯芽孢杆菌的抑菌作用及其生防作用潜力。在拮抗作用机制研究方面,由于贝莱斯芽孢杆菌通常分泌多种抑菌物质,具体到特定抑菌物质的生防作用,目前的研究尚不够深入,建议构建相关突变体深入分析抑菌物质的生防效果。因此,今后应加强贝莱斯芽孢杆菌抑菌物质的分离纯化及其抑菌作用机制研究,为进一步揭示其拮抗作用机理提供依据。
4 贝莱斯芽孢杆菌的应用 4.1 在工业上的应用潜力蛋白酶是一种重要的生物酶,能够有效水解蛋白质,具有催化条件温和、效率高、产生一些功能肽等优点,广泛应用于食品、皮革、动物饲料、医药、环保和化工等行业[17]。纤维素酶也是一种重要的工业酶。蛋白酶和纤维素酶在工业酶中占有很大的比例。研究发现,贝莱斯芽孢杆菌含有丰富的蛋白酶和纤维素酶,如从杜仲树皮中分离的贝莱斯芽孢杆菌157菌株富含内切纤维素酶、木聚糖酶、木质素酶和果胶酶等酶类,其中内切纤维素酶的产量最高,在饲料添加剂、洗涤剂和造纸领域具有良好的应用前景[48]。从巴西阿蒙盆地鱼类肠道中分离的初步鉴定为贝莱斯芽孢杆菌的P11菌株具有显著的角蛋白溶解活性、蛋白酶水解活性和纤维素酶活性,该菌在工业生产上具有巨大的应用潜力[49-50]。此外,甲基营养型芽孢杆菌(现已归属于贝莱斯芽孢杆菌,下同) F35产生的抗菌肽对罗非鱼片具有保鲜防腐效果,可使罗非鱼肉冷藏保质期延长4 d以上[51]。甲基营养型芽孢杆菌FBKL1.0190分离自酱香型大曲中,因其产生高活性的中性蛋白酶、糖化酶、纤维素酶和脂肪酶等,对提高酱香型大曲的品质具有广阔的应用前景[52]。贝莱斯芽孢杆菌SW5菌株能够缩短鱼露的发酵时间,增加风味物质的种类,可用于海洋蛋白质源的发酵和深加工[53]。
4.2 在动植物病害防控中的应用近年来,由于抗生素、消毒剂等化学药物的长期使用,甚至是滥用导致耐药菌的出现,严重威胁着人类的健康。在农业生产中,化学农药的滥用使得动植物病原菌对药物产生了耐药性,导致病害防治难度增加,同时农药残留也污染土壤、水体,破坏微生态平衡。拮抗益生菌如贝莱斯芽孢杆菌因其具有抑制病原菌、提高宿主免疫力、促进动植物生长等功能,广泛应用于农作物、畜禽、水产养殖动物的疫病防控。贝莱斯芽孢杆菌的来源非常丰富,如海水、底泥、土壤、植物根际和叶片、树枝、水稻、小麦、玉米、蔬菜、昆虫肠道、鱼类肠道、动物粪便等(表 2)。由于贝莱斯芽孢杆菌在不同生境中广泛存在,为筛选不同生境中的优良菌株提供了良好的条件,这也说明贝莱斯芽孢杆菌具有广阔的应用前景。
类型 Type |
菌株编号 No. of strains |
来源 Sources |
功能/特性 Functions/Characteristics |
参考文献 References |
植物和根际 Plant and rhizosphere |
E69 | 水稻叶片 Rice leaves |
Colonization in rice stem epidermis, parenchyma and vascular bundles; inhibiting the Rhizoctonia solani, Fusarium spp., Botrytis cinerea, Colletotrichum gloeospoioides, Alternaria alternate, F. oxysporum; effectively biological control against rice blast and other fungal diseases | [54] |
JS25R | 小麦麦穗 Wheat spikelets |
Inhibiting Fusarium graminearum; producing volatile compounds; effectively reduce the disease incidence and disease index | [55] | |
NRRLB-23189 | 玉米 Pre-harvest maize |
Antagonizing Penicillium roqueforti, inhibiting the conidiospore germination; reducing the numbers of P. roqueforti in vivo in silage | [56] | |
157 | 杜仲树皮 Bark of Eucommia ulmoides |
Possessing various lignocellulolytic activities, e.g. cellulase, xylanase, α-amylase and pectinase; inhibiting B. cinerea, F. oxysporum, Aeromonas hydrophila and Aeromonas veronii; containing a total of 8 candidate gene clusters related to antimicrobial substances | [48, 57] | |
ZSY-1 | 中国梓树叶片 Chinese catalpa leaf |
Volatile compounds from ZSY-1 strain showed antifungal activities against Alternaria solani, B. cinerea, Valsa mali, Monilinia fructicola, F. oxysporum and Colletotrichum lindemuthianum | [12] | |
HYEB5-6 | 大叶黄杨树枝 Branch of the Euonymus japonicus Thunb |
Exhibiting antifungal activities against Alternaria sp., Cytospora chrysosperma, C. gloeosporioides, C. higginsianum, Fusarium solani, F. aesculi, Magnaporthe oryzae and Rhizoctonia sp.; producing biofilm; possessing glucan-lytic and proteolytic activities but no chitin-lytic activity; effectively biological control against anthracnose caused by C. gloeosporioides | [58] | |
SZMC6161J | 番茄根际 Rhizosphere of tomato |
Inhibiting phytopathogenic filamentous fungi; producing fengycin; the copper, nickel, zinc and cadmium inhibited the growth of SZMC6161J strain; high concentrations of sulfonylurea herbicides inhibited the growth of SZMC6161J strain | [59-60] | |
G341 | 高丽参根部 Root Korean ginseng |
Antagonizing plant pathogens; producing active compounds: bacillomycin D, fengycin and (oxy) difficidin; containing four gene clusters related to lipopeptides | [61] | |
PEB-99 | 辣椒根际 Root of pepper |
Inhibiting Ralstonia solanacearum, Phytophthora capsici, Colletotrichum capsici, Sclerotium rolfsii and F. oxysporum; producing siderophores and IAA | [62] | |
8-4 | 马铃薯块茎 Potato tuber |
Inhibiting Streptomyces galilaeus; effectively biocontrol of potato scab; increasing the yield of potato | [63] | |
RB.DS29 | 黑胡椒根际 Rhizospherer of black pepper |
Producing chitinase, β-glucanase and protease; antagonizing Phytophthora; strongly biological control against wilt disease caused by Phytophthora fungi | [44] | |
水体和底泥 Water and sediment |
DH82 | 太平洋雅浦海沟的海水 Sea water of Western Pacific Yap trench |
Inhibiting Edwardsiella tarda; antimicrobial substances resistant to protease K, pepsin and trypsin; the antimicrobial activities could be enhanced by K+ and Na+, whereas inhibited by Mg2+, Ca2+ and Fe3+ | [8] |
V4 | 循环水养殖系统 Recirculation aquaculture systems |
Producing iturin, macrolactin and difficidin; inhibiting Aeromonas salmonicida; the antimicrobial substances exhibited high thermal stability and broad pH tolerance, and resistant to enzyme digestion | [5] | |
9912D | 渤海辽东湾的沉积物 Sediment sample from Liaodong Bay of Bohai Sea |
High spore yield; antagonizing phytopathogenic fungi; containing six potential new lantibiotics, four gene clusters encode nonribosomal peptides, and three gene clusters encode type I polyketides of AT-less type, etc | [64] | |
TCS001 | 中国渤海海泥 Marine mud from Bohai Sea |
Inhibiting B. cinerea, Ascochyta citrullina, Sclerotinia sclerotiorum, F. oxysporum and Pseudocercosporas musae; inhibiting mycelial growth and spore germination of B. cinerea; causing the expansion and deformation of the spore | [65] | |
DY-6 | 刺参池塘底泥 Sediment from ponds of sea cucumber |
Antagonizing Pseudoalteromonas nigrifaciens, Vibrio splendidus, V. parahaemolyticus and V. alginolyticus; reducing the occurrence of sea cucumber disease | [66] | |
土壤 Soil |
S6 | 种植番茄的园艺大棚土壤 Soil from horticultural greenhouse of tomato |
Antagonizing A. solani and B. cinerea; the 20.1 kD protein of S6 strain exhibited high thermal stability and broad pH tolerance, and resistant to UV | [45] |
Y6和F7 | 番茄根际土壤 Rhizosphere soil from tomato |
Producing iturin, fengycin and surfactin; iturin is the primary contributor against F. oxysporum; iturin and fengycin are related to cell motility and biofilm formation | [6] | |
GH1-13 | 水稻田土壤 Rice paddy soil |
Producing IAA; promoting plant growth; antagonizing bacteria and fungi; containing gene clusters encode non-ribosomal peptides, polyketides and bacteriocin | [67] | |
NJAU-Z9 | 辣椒根际土壤 Pepper rhizosphere soil |
Producing IAA and NH3; inhibiting F. oxysporum and R. solanacearum; promoting plant growth | [68] | |
A2 | 土壤 Soil |
Degrading zearalenone; used as feed additive to protect animals from zearalenone poisoning | [69] | |
DY3108 | 土壤 Soil |
Showing aflatoxin B1 (AFB1) degradation activity; the supernatant exhibited resistant to heat and proteinase K, whereas sensitive to sodium dodecyl sulfate treatment; inhibiting the mycelial growth of Aspergillus flavus and A. parasiticus; the AFB1 degradative activity of the cell-free extracts from DY3108 strain was enhanced by Cu2+ and Fe3+, whereas it was inhibited by Zn2+ | [70] | |
AR1 | 海滩土壤 Beach area soil |
Inhibiting Glomerella cingulate; combination of the supernatant with neem oil and sulfur solution could improve the biocontrol effect | [71] | |
L-1 | 梨园根际土壤 Rhizosphere soil of pear orchard |
Inhibiting Botryosphaeria berengeriana and six other pathogens; colonization in pear wounds; biological control of pear ring rot; containing several genes related to secondary antibiotics | [72-73] | |
LS69 | 稻田 Rice field |
Inhibiting Pectobacterium carotovorum, Erwinia amylovory, Listeria monocytogenes, Staphylococcus aureus and Clostridium perfringens; promoting plant growth and inducing plant immunity | [11] | |
S3-1 | 黄瓜根际土壤 Rhizosphere soil of cucumber |
Inhibiting plant pathogens; promoting plant growth; colonization in rhizosphere soils; producing 13 kinds of lipopeptide antibiotics | [74] | |
BAC03 | 马铃薯种植地的土壤 Soil of potato field |
Antagonizing Streptomyces spp.; producing IAA, ammonia, acetoin and 2, 3-butanediol; exhibiting 1-aminocyclopropane-1-carboxylate deaminase activity; biocontrol of potato common scab; promoting plant growth | [75-76] | |
BU396 | 马铃薯疮痂病的病害土壤 Soil with potato scab disease |
Antagonizing Streptomyces scabies and other plant and animal pathogens; antimicrobial substance showed stability with thermal, protease, metal ions and wide pH value; reducing the incidence of potato scab | [77] | |
DL-59 | 白菜地土壤 Cabbage soil |
Antagonizing Alternaria brassicae; DL-59 strain exhibited good biocontrol effect on cabbage black spot disease caused by A. brassicae | [78] | |
肠道和粪便 Intestinal tract and feces |
CN026 | 鸡粪 Chicken feces |
Inhibiting Escherichia coli, Salmonella enterica, Campylobacter jejuni, Listeria spp. and Bacillus spp.; containing six gene clusters: three polyketide synthases and three nonribosomal peptide synthases | [14] |
LM2303 | 野牦牛粪便 Dung of wild yak |
Producing antimicrobial substances; exhibiting a broad spectrum antifungal activity; reducing the incidence and severity of FHB (Fusarium head blight) in wheat; harboring 4 gene clusters related to antifungal metabolites biosynthesis; increasing seed germination rate, shoot length and chlorophyll content of wheat seedling | [7, 79] | |
JW | 鲤鱼肠道 Gut of common carp |
Antagonizing fish pathogens including A. hydrophila, A. salmonicida, Lactococcus garvieae, Streptococcus agalactiae and Vibrio parahemolyticus; enhancing the immunity and resistance of carp to A. hydrophila; containing gene clusters related to bacteriocins, polyketide synthetase and NRPS | [13] | |
LF01 | 罗非鱼肠道 Gut of tilapia |
Inhibiting S. agalactiae, Streptococcus iniae, A. hydrophila, E. tarda, Edwardsiella ictaluri, Aeromonas schubertii and Vibrio harveyi; antimicrobial substance showed stability with thermal, protease, UV and wide pH value; enhancing the immunity and resistance of tilapia to S. agalactiae | [80-81] | |
K2 | 石斑鱼肠道 Intestinal tract of grouper |
Inhibiting V. harveyi, Vibrio alginolyticus, A. hydrophila, A. veronii, and Aeromonas caviae; enhancing the resistance of grouper to V. harveyi | [82] | |
ZY-1-1 | 金龟子幼虫肠道 Larval gut of the scarab beetle |
High xylanase and moderate cellulase activity; harboring 24 genes involved in degradation of lignocellulose and other polysaccharides | [83] |
在植物病害防控方面,贝莱斯芽孢杆菌的生防作用表现尤为突出(表 2)。贝莱斯芽孢杆菌能够有效预防由子囊菌引起的植物真菌性病害,例如,从种植番茄的园艺大棚土壤中分离到对番茄早疫病原菌(Alternaria solani)和灰霉病原菌(Botrytis cinerea Pers.)等有拮抗作用的贝莱斯芽孢杆菌S6,该菌的发酵液具有广谱抑菌作用,发酵液原液和100倍稀释液对番茄早疫病的田间防治效果分别为80.83%和64.88%[45]。Sun等[72-73]从梨园根际土壤中分离到一株对贝伦格葡萄座腔菌和粉红单端孢菌等梨轮纹病菌具有抑制作用的拮抗贝莱斯芽孢杆菌L-1株,该菌不仅能够在梨的伤口定殖,在皇冠梨接种该菌后第11天,对梨轮纹病的抑制率达到了76.55%,而且该菌能够诱导梨的过氧化氢酶、过氧化物酶活性,延缓丙二醛的积累,并且对梨的品质没有影响,是一种对梨轮纹病非常具有应用前景的生物防治剂。沙月霞等[54]从水稻叶片中分离到一株对多种植物病原菌具有拮抗作用的贝莱斯芽孢杆菌E69,该菌能够定殖在水稻茎部表皮、薄壁组织和维管束,而且对水稻叶瘟病的田间预防效果高达85.97%。曾欣等[84]从温郁金(Curcuma wenyujin)根茎中分离到一株具有拮抗活性的内生细菌贝莱斯芽孢杆菌B-11,该菌能够产生蛋白酶、β-葡聚糖酶和嗜铁素,同时产生伊枯草素、泛革素和表面活性素等3种脂肽类抗生素,生防实验结果显示该菌的发酵液对铁皮石斛炭疽病的防治效率可达64%。迟惠荣等[4]从多花黄精的根部分离出对尖孢镰刀菌(Fusarium oxysporum)具有拮抗作用的贝莱斯芽孢杆菌ZJU-3,该菌不仅能够产生表面活性素、泛革素和伊枯草菌素等脂肽类化合物,而且可产生吲哚乙酸、激动素、玉米素和赤霉素等植物激素,该菌通过灌根对多花黄精具有显著的促生长作用。
此外,贝莱斯芽孢杆菌对由疫霉菌和细菌引起的植物病害也有良好的生防作用。例如,Trinh等[44]从黑胡椒根际中分离对疫霉菌具有拮抗活性的贝莱斯芽孢杆菌(RB.DS29株),该菌不仅能够促进植物生长,在温室条件下RB.DS29菌株浸泡黑胡椒幼苗后能够降低黑胡椒的发病率和死亡率。Cui等[63]从马铃薯块茎中分离到一株对引起马铃薯疮痂病的病原链霉菌(Streptomyces galilaeus)具有较强抑菌活性的贝莱斯芽孢杆菌8-4株,田间试验结果显示该菌不仅能够有效控制马铃薯疮痂病的发病率,还能够显著提高马铃薯的产量。
已有研究表明贝莱斯芽孢杆菌对植物病原菌具有良好的拮抗作用,实验室或者田间试验结果显示该菌对植物具有良好的生防效果,例如促进植物生长、诱导植物系统抗性以及降低植物病害的发生等[54, 63]。贝莱斯芽孢杆菌FZB42已经被商业化应用,作为生物肥料和生物防治剂在农业领域被广泛使用[85-86]。然而,目前绝大多数已分离的贝莱斯芽孢杆菌尚未规模化、商业化应用,因此,这些菌株在实际应用中的生防效果尚需进一步验证。截止2019年12月底,在中国农药信息网(http://www.chinapesticide.org.cn/hysj/index.jhtml)上可查询到的农药登记数据中,登记的甲基营养型芽孢杆菌(现已被归类为贝莱斯芽孢杆菌)有4条记录,尚无贝莱斯芽孢杆菌的记录,其中甲基营养型芽孢杆菌LW-6 (登记证号:PD20181621)主要防治对象为柑橘树溃疡病、黄瓜细菌性角斑病和水稻细菌性条纹病,施用方法为喷雾。甲基营养型芽孢杆菌9912 (登记证号:PD20181602)主要防治对象为黄瓜灰霉病,施用方法为喷雾。在应用过程中,贝莱斯芽孢杆菌的菌株特性、作用对象以及使用剂型、方式、周期都将影响到其应用效果。因此,不仅要加强贝莱斯芽孢杆菌抑菌产物的解析、抑菌机制和生防作用机制的研究,还要注重其生产工艺、产品剂型、使用方法和防治效果的研究。
4.2.2 在动物病害防控中的研究与应用在动物病害防控方面,虽然贝莱斯芽孢杆菌的相关研究较少(表 2),但是依然表现出优良的生防效果。在陆生动物病害防控方面,Nannan等[14]从鸡粪中分离到一株贝莱斯芽孢杆菌CN026,该菌对大肠杆菌、肠炎沙门氏菌、空肠弯曲杆菌和李斯特菌等食源性病原菌具有拮抗作用,而且CN026菌株的基因组中含有多种抑菌物质的相关基因簇,这暗示该菌对预防鸡的食源性病原菌具有较好的应用潜力。在水生动物病害防控方面,Yi等[13]从鲤鱼肠道中分离到一株拮抗嗜水气单胞菌、无乳链球菌和副溶血弧菌等水产常见病原菌的贝莱斯芽孢杆菌JW,该菌株饲喂鲫鱼后,可增强鲫鱼的体液免疫,提高鲫鱼对嗜水气单胞菌的抗病力。高艳侠等[80]从罗非鱼肠道中分离到一株拮抗多种水产动物病原菌的贝莱斯芽孢杆菌LF01,该菌产生的抑菌物质具有耐热、耐酸碱、耐蛋白酶消化以及耐低温储藏等特性,而且对罗非鱼、乌鳢和斑马鱼具有良好的生物安全性。在实验室条件下,饲喂该菌后能够显著提高罗非鱼的非特异性免疫,降低罗非鱼肠道中爱德华氏菌属和假单胞菌属等潜在病原菌的丰度,增强罗非鱼对无乳链球菌的抗病力[81]。王金燕等[66]从刺参养殖池塘的底泥中分离到一株贝莱斯芽孢杆菌DY-6,该菌对假交替单胞菌和多种弧菌等病原菌均有良好的抑制作用,而且对刺参具有良好的生物安全性,通过浸浴和投喂均可以降低刺参的发病率。王纯[87]研究发现贝莱斯芽孢杆菌V4菌株具有拮抗病原菌的能力,饲喂虹鳟后可提高虹鳟存活率、增强机体免疫应答和抗氧化应激,而且V4菌株对虹鳟肠道微生物菌群结构无显著影响。Li等[82]从石斑鱼肠道中分离出一株贝莱斯芽孢杆菌K2,该菌能够拮抗多种水产常见病原菌,饲喂该菌后能够诱导石斑鱼某些免疫基因表达量的上调,增强石斑鱼对哈维氏弧菌的抗病力。Thurlow等[42]发现饲料中添加贝莱斯芽孢杆菌AP193菌株饲喂斑点叉尾鮰后,具有改善池塘水质和促进生长的效果,同时能够提高鱼体对鮰爱德华氏菌的抗病力,但是尚未达到统计学显著性水平。
目前,贝莱斯芽孢杆菌在动物病害防控中的应用大多是在特定实验条件下进行,这可能是因为动物能够相对自由活动,考虑到贝莱斯芽孢杆菌应用过程中的生物安全性,研究者通常没有进行大规模示范与应用,当然这也与缺少商业化的菌株有关。贝莱斯芽孢杆菌在动物病害防控方面的研究尚局限于分离特定生境中的优良微生物资源、分析优良菌株的生物学特性及其应用潜力,到大规模的应用还需深入研究和系统评价。
5 总结与展望贝莱斯芽孢杆菌作为生防细菌是近年来的研究热点,尤其是当其分类地位被确定以后。2016年以来,贝莱斯芽孢杆菌引起了研究者的广泛关注,发表的相关研究论文、专利呈现快速增长态势[38],其中相关研究主要集中在植物促生长和病害防控、食品发酵和加工应用、环境保护、动物饲料、水产养殖以及基因组测序和功能基因分析等方面。贝莱斯芽孢杆菌作为生防制剂具有广阔的应用前景:(1)主要用于植物根际和叶面的共生菌,促进植物生长,抑制病原菌的侵染,诱导植物系统抗性;(2)用于降低养殖动物肠道和生境中的病原菌丰度,降低发病率,减少化学药物使用量;(3)用于新型药物的开发与利用,筛选新型生物抗菌剂替代传统化学药物;(4)用于制备蛋白酶、糖化酶、纤维素酶等酶制剂,提高工业生产效率等。
5.1 存在问题和解决对策目前,贝莱斯芽孢杆菌因其优良的生防作用在农业病虫害防控方面引起了广泛关注,但是国内外关于贝莱斯芽孢杆菌的研究主要集中在菌株的分离鉴定、抑菌活性分析以及初步应用示范等阶段,在研究及其应用方面存在一些问题,主要体现在以下几个方面:
(1) 优良种质资源筛选。贝莱斯芽孢杆菌作为拮抗菌株已被大量分离和鉴定,但是仍然不能满足当前人们对动植物生防制剂的需求。目前,农作物领域中贝莱芽孢杆菌的种质资源相对丰富,急需丰富动物源贝莱斯芽孢杆菌的种质资源库(表 2)。在实际应用过程中,贝莱斯芽孢杆菌易受到宿主、气候、土壤、水质等多种因素的影响,干扰菌株的生长繁殖进而影响其生防效果。而且,由于抗生素、杀虫剂、消毒剂等药物的使用,土壤、水体、底泥和宿主中存在化学药物的残留和累积,会降低贝莱斯芽孢杆菌的作用效果,也会造成菌株产生耐药性风险。此外,由于一些贝莱斯芽孢杆菌对高浓度的重金属较为敏感[60],水体、土壤、肥料、饲料中的重金属污染也会削弱贝莱斯芽孢杆菌在病害防控中的应用效果。因此,筛选适应特定生境的优良菌株尤为必要。
(2) 生防作用机制研究。贝莱斯芽孢杆菌产生的具有抑菌活性的次级代谢产物种类丰富、稳定性好、抗菌谱广。然而,贝莱斯芽孢杆菌在与宿主相互作用时分泌的抑菌物质有哪些,这些抑菌物质激发宿主的主要免疫应答是什么等机制尚不清楚。建议通过分子遗传操作构建突变株,定向研究某一种或某一类抑菌物质对宿主的生防作用,再利用多组学分析贝莱斯芽孢杆菌与宿主相互作用时的应答机制。
(3) 贝莱斯芽孢杆菌的定殖能力。定殖能力是益生菌筛选的重要指标之一,拮抗益生菌能够在动物肠道和植物的根际、茎、叶片中定殖,可形成种群优势,有效减少益生菌的使用剂量和使用频率。一些植物内生贝莱斯芽孢杆菌因其具有良好的定殖能力[54, 72-73],可提高菌株的生防效果。然而,贝莱斯芽孢杆菌定殖机理的研究报道较少,因此应加强这方面的相关研究,如:构建荧光标记菌株,通过荧光示踪方法分析贝莱斯芽孢杆菌在植物根、叶围等部位以及动物肠道中的定殖能力;挖掘与定殖相关基因(簇),通过分子遗传改良技术增强菌株的定殖能力[88],提高其应用价值。
(4) 贝莱斯芽孢杆菌的生物安全性。虽然贝莱斯芽孢杆菌作为拮抗益生菌具有巨大的应用潜力,但是其生物安全评价相关的研究较少,应加强其生物安全评估,例如贝莱斯芽孢杆菌本身对应用对象的致病性、次级代谢产物对作用对象的安全性以及使用贝莱斯芽孢杆菌后对生态环境的影响等,这也是今后贝莱斯芽孢杆菌走向商业化应用的必经之路。
(5) 贝莱斯芽孢杆菌的规模化或商业化应用。虽然贝莱斯芽孢杆菌在生物防治、药物研发、食品发酵和工业酶制剂等领域具有良好的应用前景,但是尚未进行规模化或商业化应用。因此,应更加注重优良菌株的筛选和改良、生产工艺的优化及生防作用的生产性试验,让贝莱斯芽孢杆菌尽快走向产业化、商业化。
5.2 展望随着人们对食品安全的重视和环保意识的提高,迫切需要符合现代社会发展需要的生物农药。贝莱斯芽孢杆菌因其无残留、无致病性、环境友好而且能够提高动植物生长性能和抗病力,日益受到学者们的青睐。我们认为在今后的研究中,应注重挖掘贝莱斯芽孢杆菌的功能基因(簇),并通过基因组学、转录组学、蛋白质组学以及代谢组学等大数据解析功能基因的调控网络,深入研究贝莱斯芽孢杆菌与宿主的相互作用机制,加强贝莱斯芽孢杆菌生物活性物质的分离纯化和开发利用,重视贝莱斯芽孢杆菌的生物安全性评估研究等。贝莱斯芽孢杆菌对农业的可持续发展具有重要意义,其产生的抑菌物质具有良好的开发应用前景,相信贝莱斯芽孢杆菌在农业、医药、食品和环境等领域将很快发挥重要作用。
[1] |
Cai GL, Zhang F, Ouyang YX, et al. Research progress on Bacillus velezensis[J]. Northern Horticulture, 2018(12): 162-167. (in Chinese) 蔡高磊, 张凡, 欧阳友香, 等. 贝莱斯芽孢杆菌(Bacillus velezensis)研究进展[J]. 北方园艺, 2018(12): 162-167. |
[2] |
Lim SBY, Junqueira ACM, Uchida A, et al. Genome sequence of Bacillus velezensis SGAir0473, isolated from tropical air collected in Singapore[J]. Genome Announcements, 2018, 6(27): e00642-18. DOI:10.1128/genomeA.00642-18 |
[3] |
Ruiz-García C, Béjar V, Martínez-Checa F, et al. Bacillus velezensis sp.nov., a surfactant-producing bacterium isolated from the river Vélez in Málaga, Southern Spain[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(1): 191-195. DOI:10.1099/ijs.0.63310-0 |
[4] |
Chi HR, Zhang YH, Zeng X, et al. Isolation and identification of antagonistic endophytic Bacillus velezensis from Polygonatum cyrtonema Hua and analysis of its antimicrobial and growth-promoting activity[J]. Plant Protection, 2019, 45(4): 122-131. (in Chinese) 迟惠荣, 张亚惠, 曾欣, 等. 多花黄精内生贝莱斯芽胞杆菌的分离鉴定及其抗菌与促生作用分析[J]. 植物保护, 2019, 45(4): 122-131. |
[5] |
Gao XY, Liu Y, Miao LL, et al. Characterization and mechanism of anti-Aeromonas salmonicida activity of a marine probiotic strain, Bacillus velezensis V4[J]. Applied Microbiology and Biotechnology, 2017, 101(9): 3759-3768. DOI:10.1007/s00253-017-8095-x |
[6] |
Cao Y, Pi HL, Chandrangsu P, et al. Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum[J]. Scientific Reports, 2018, 8(1): 4360. DOI:10.1038/s41598-018-22782-z |
[7] |
Chen L, Heng JY, Qin SY, et al. A comprehensive understanding of the biocontrol potential of Bacillus velezensis LM2303 against Fusarium head blight[J]. PLoS One, 2018, 13(6): e0198560. DOI:10.1371/journal.pone.0198560 |
[8] |
Wang QH, Sun XH, Tang X, et al. Screening and identification of Bacillus velezensis strain DH82 and the characterization of the crude antimicrobial protein[J]. Marine Science Bulletin, 2019, 38(1): 63-69. (in Chinese) 王青华, 孙晓晖, 唐旭, 等. 深海贝莱斯芽孢杆菌DH82的筛选、鉴定及其抗菌粗蛋白性质分析[J]. 海洋通报, 2019, 38(1): 63-69. |
[9] |
Fan B, Blom J, Klenk HP, et al. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an "operational group B.amyloliquefaciens" within the B.subtilis species complex[J]. Frontiers in Microbiology, 2017, 8: 22. |
[10] |
Kim M, Oh HS, Park SC, et al. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes[J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(2): 346-351. |
[11] |
Liu GQ, Kong YY, Fan YJ, et al. Whole-genome sequencing of Bacillus velezensis LS69, a strain with a broad inhibitory spectrum against pathogenic bacteria[J]. Journal of Biotechnology, 2017, 249: 20-24. DOI:10.1016/j.jbiotec.2017.03.018 |
[12] |
Gao ZF, Zhang BJ, Liu HP, et al. Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea[J]. Biological Control, 2017, 105: 27-39. DOI:10.1016/j.biocontrol.2016.11.007 |
[13] |
Yi YL, Zhang ZH, Zhao F, et al. Probiotic potential of Bacillus velezensis JW:antimicrobial activity against fish pathogenic bacteria and immune enhancement effects on Carassius auratus[J]. Fish & Shellfish Immunology, 2018, 78: 322-330. |
[14] |
Nannan C, Gillis A, Caulier S, et al. Complete genome sequence of Bacillus velezensis CN026 exhibiting antagonistic activity against gram-negative foodborne pathogens[J]. Genome Announcements, 2018, 6(4): e01543-17. DOI:10.1128/genomeA.01543-17 |
[15] |
Lim SM, Yoon MY, Choi GJ, et al. Diffusible and volatile antifungal compounds produced by an antagonistic Bacillus velezensis G341 against various phytopathogenic fungi[J]. The Plant Pathology Journal, 2017, 33(5): 488-498. DOI:10.5423/PPJ.OA.04.2017.0073 |
[16] |
Stackebrandt E, Ebers J. Taxonomic parameters revisited:tarnished gold standards[J]. Microbiology Today, 2006, 33(4): 152-155. |
[17] |
Ye M, Tang XF, Yang R, et al. Characteristics and application of a novel species of Bacillus:Bacillus velezensis[J]. ACS Chemical Biology, 2018, 13(3): 500-505. DOI:10.1021/acschembio.7b00874 |
[18] |
Dunlap CA, Kim SJ, Kwon SW, et al. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp.plantarum and'Bacillus oryzicola'are later heterotypic synonyms of Bacillus velezensis based on phylogenomics[J]. International Journal of Systematic and Evolutionary Microbiology, 2006, 66(3): 1212-1217. |
[19] |
Zhang MY, Yun TY, Zhou DB, et al. Research advances on Bacillus methylotrophicus[J]. Chinese Journal of Tropical Agriculture, 2017, 37(9): 66-71. (in Chinese) 张妙宜, 云天艳, 周登博, 等. 甲基营养型芽胞杆菌的研究进展[J]. 热带农业科学, 2017, 37(9): 66-71. |
[20] |
Gong FY, Hu JP, Zeng YL, et al. Research progress of antimicrobial peptides derived from Bacillus[J]. China Feed, 2018(16): 86-92. (in Chinese) 龚发源, 胡骏鹏, 曾雨雷, 等. 芽孢杆菌源抗菌肽类物质研究进展[J]. 中国饲料, 2018(16): 86-92. DOI:10.15906/j.cnki.cn11-2975/s.20181619 |
[21] |
Wang W, Tao LR, Chi H. Research progress and applications of bacteriocins from Bacillus species[J]. Food and Fermentation Sciences & Technology, 2019, 55(5): 68-74, 87. (in Chinese) 王伟, 陶乐仁, 迟海. 芽孢杆菌细菌素的研究进展及应用[J]. 食品与发酵科技, 2019, 55(5): 68-74, 87. |
[22] |
Jin Q, Xiao M. Novel antimicrobial peptides:surfactin, iturin and fengycin[J]. Journal of Microbes and Infections, 2018, 13(1): 56-64. (in Chinese) 金清, 肖明. 新型抗菌肽--表面活性素、伊枯草菌素和丰原素[J]. 微生物与感染, 2018, 13(1): 56-64. DOI:10.3969/j.issn.1673-6184.2018.01.010 |
[23] |
Rabbee MF, Ali MS, Choi J, et al. Bacillus velezensis:a valuable member of bioactive molecules within plant microbiomes[J]. Molecules, 2019, 24(6): 1046. DOI:10.3390/molecules24061046 |
[24] |
Borisova SA, Circello BT, Zhang JK, et al. Biosynthesis of rhizocticins, antifungal phosphonate oligopeptides produced by Bacillus subtilis ATCC6633[J]. Chemistry & Biology, 2010, 17(1): 28-37. |
[25] |
Zhi Y.Metabolic mechanism of highly-efficient biosynthesis of surfactin and its function[D].Wuxi: Doctoral Dissertation of Jiangnan University, 2017(in Chinese) 郅岩.芽孢杆菌高效合成表面活性素的代谢机制及功能研究[D].无锡: 江南大学博士学位论文, 2017 |
[26] |
Fu W, Gao YX, Zhang XY. Research progress of iturin[J]. Anhui Agricultural Science Bulletin, 2014, 20(24): 23-26. (in Chinese) 付雯, 高永祥, 张晓勇. 伊枯草菌素研究进展[J]. 安徽农学通报, 2014, 20(24): 23-26. |
[27] |
Koumoutsi A, Chen XH, Henne A, et al. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42[J]. Journal of Bacteriology, 2004, 186(4): 1084-1096. DOI:10.1128/JB.186.4.1084-1096.2004 |
[28] |
Berezhnaya AV, Evdokimova OV, Valentovich LN, et al. Molecular genetic and functional analysis of the genome of bacteria Bacillus velezensis BIM B-439D[J]. Applied Biochemistry and Microbiology, 2019, 55(4): 386-396. DOI:10.1134/S0003683819040033 |
[29] |
Wang T, Liu XH, Wu MB, et al. Molecular insights into the antifungal mechanism of bacilysin[J]. Journal of Molecular Modeling, 2018, 24(5): 118. DOI:10.1007/s00894-018-3645-4 |
[30] |
Deane CD, Burkhart BJ, Blair PM, et al. In vitro biosynthesis and substrate tolerance of the plantazolicin family of natural products[J]. ACS Chemical Biology, 2016, 11(8): 2232-2243. DOI:10.1021/acschembio.6b00369 |
[31] |
Ma ZW, Hu JC. Complete genome sequence of a marine-sediment-derived bacterial strain Bacillus velezensis SH-B74, a cyclic lipopeptides producer and a biopesticide[J]. 3 Biotech, 2019, 9(4): 162. DOI:10.1007/s13205-019-1694-8 |
[32] |
Ma J, Li Y, Hu D, et al. Progress on mechanism and applications of Bacillus as a biocontrol microbe[J]. Chinese Journal of Biological Control, 2018, 34(4): 639-648. (in Chinese) 马佳, 李颖, 胡栋, 等. 芽胞杆菌生物防治作用机理与应用研究进展[J]. 中国生物防治学报, 2018, 34(4): 639-648. |
[33] |
Jin Q, Zhang L, Jiang QY, et al. Localization and analysis of synthetic gene clusters of Bacillus velenzensis S3-1 in surfactin, iturin and fengycin[J]. Journal of Shanghai Normal University (Natural Sciences), 2018, 47(4): 451-457. (in Chinese) 金清, 张蕾, 蒋秋悦, 等. Bacillus velenzensis S3-1基因组中表面活性素、伊枯草菌素和丰原素合成基因簇的定位与分析[J]. 上海师范大学学报:自然科学版, 2018, 47(4): 451-457. |
[34] |
Wu LM, Li X, Wu HJ, et al. Research advances on bacilysin from Bacillus[J]. Journal of Nanjing Agricultural University, 2018, 41(5): 778-783. (in Chinese) 吴黎明, 李曦, 伍辉军, 等. 芽胞杆菌抗菌二肽溶杆菌素的研究进展[J]. 南京农业大学学报, 2018, 41(5): 778-783. DOI:10.7685/jnau.201803047 |
[35] |
Heerklotz H, Seelig J. Leakage and lysis of lipid membranes induced by the lipopeptide surfactin[J]. European Biophysics Journal, 2007, 36(4/5): 305-314. |
[36] |
Zhang B, Dong CJ, Shang QM, et al. New insights into membrane-active action in plasma membrane of fungal hyphae by the lipopeptide antibiotic bacillomycin L[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2013, 1828(9): 2230-2237. DOI:10.1016/j.bbamem.2013.05.033 |
[37] |
Deleu M, Paquot M, Nylander T. Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes[J]. Biophysical Journal, 2008, 94(7): 2667-2679. DOI:10.1529/biophysj.107.114090 |
[38] |
Tao YM, Pan HJ, Huang J, et al. Research and application of a novel bio-control microbial factor Bacillus velezensis[J]. China Plant Protection, 2019, 39(9): 26-33. (in Chinese) 陶永梅, 潘洪吉, 黄健, 等. 新型生防微生物因子贝莱斯芽孢杆菌(Bacillus velezensis)的研究与应用[J]. 中国植保导刊, 2019, 39(9): 26-33. |
[39] |
Chowdhury SP, Uhl J, Grosch R, et al. Cyclic lipopeptides of Bacillus amyloliquefaciens subsp.plantarum colonizing the lettuce rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia solani[J]. Molecular Plant-Microbe Interactions, 2015, 28(9): 984-995. DOI:10.1094/MPMI-03-15-0066-R |
[40] |
Liu XJ, Li HY, Li SN, et al. Biocontrol and growth promotion mechanisms of Bacillus velezensis 3A3-15[J]. Journal of Hebei University (Natural Science Edition), 2019, 39(3): 302-310. (in Chinese) 刘雪娇, 李红亚, 李术娜, 等. 贝莱斯芽孢杆菌3A3-15生防和促生机制[J]. 河北大学学报:自然科学版, 2019, 39(3): 302-310. |
[41] |
Hossain MJ, Ran C, Liu K, et al. Deciphering the conserved genetic loci implicated in plant disease control through comparative genomics of Bacillus amyloliquefaciens subsp.plantarum[J]. Frontiers in Plant Science, 2015, 6: 631. |
[42] |
Thurlow CM, Williams MA, Carrias A, et al. Bacillus velezensis AP193 exerts probiotic effects in channel catfish (Ictalurus punctatus) and reduces aquaculture pond eutrophication[J]. Aquaculture, 2019, 503: 347-356. DOI:10.1016/j.aquaculture.2018.11.051 |
[43] |
Dhouib H, Zouari I, Abdallah DB, et al. Potential of a novel endophytic Bacillus velezensis in tomato growth promotion and protection against Verticillium wilt disease[J]. Biological Control, 2019, 139: 104092. DOI:10.1016/j.biocontrol.2019.104092 |
[44] |
Trinh THT, Wang SL, Nguyen VB, et al. A potent antifungal rhizobacteria Bacillus velezensis RB.DS29 isolated from black pepper (Piper nigrum L.)[J]. Research on Chemical Intermediates, 2019, 45(11): 5309-5323. DOI:10.1007/s11164-019-03971-5 |
[45] |
Yang SQ.Identification, optimization of fermentation conditions of Bacillus velezensis strain S6 and its biocontrol effect[D].Changchun: Master's Thesis of Jilin Agricultural University, 2017(in Chinese) 杨胜清.贝莱斯芽孢杆菌S6的鉴定、发酵条件优化及其生防作用研究[D].长春: 吉林农业大学硕士学位论文, 2017 |
[46] |
Ling LJ, Feng L, Lei L, et al. Induction of defense-related enzymes in cucumber roots by Bacillus licheniformis strain TG116[J]. Journal of Northwest Normal University (Natural Science), 2016, 52(1): 100-104. (in Chinese) 令利军, 冯蕾, 雷蕾, 等. 地衣芽孢杆菌TG116诱导黄瓜抗病性相关防御酶系的研究[J]. 西北师范大学学报:自然科学版, 2016, 52(1): 100-104. DOI:10.16783/j.cnki.nwnuz.2016.01.019 |
[47] |
Kilian M, Steiner U, Krebs B, et al. FZB24® Bacillus subtilis-mode of action of a microbial agent enhancing plant vitality[J]. Pflanzenschutz-Nachrichten Bayer, 2000, 1: 72-93. |
[48] |
Chen L, Wu XL, Li LJ, et al. Optimization of enzyme production conditions and analysis of enzymatic properties of a high-yield endocellulolytic enzyme Bacillus velezensis[J]. China Animal Husbandry & Veterinary Medicine, 2019, 46(5): 1353-1361. (in Chinese) 陈龙, 吴兴利, 李立佳, 等. 一株高产内切纤维素酶贝莱斯芽孢杆菌的产酶条件优化及酶学性质分析[J]. 中国畜牧兽医, 2019, 46(5): 1353-1361. DOI:10.16431/j.cnki.1671-7236.2019.05.012 |
[49] |
Giongo JL, Lucas FS, Casarin F, et al. Keratinolytic proteases of Bacillus species isolated from the Amazon basin showing remarkable de-hairing activity[J]. World Journal of Microbiology and Biotechnology, 2007, 23(3): 375-382. DOI:10.1007/s11274-006-9234-1 |
[50] |
Peixoto SB, Cladera-Olivera F, Daroit DJ, et al. Cellulase-producing Bacillus strains isolated from the intestine of Amazon basin fish[J]. Aquaculture Research, 2011, 42(6): 887-891. DOI:10.1111/j.1365-2109.2010.02727.x |
[51] |
Wu YY, Zhang Y, Li LH, et al. Study on fresh-keeping effect of antimicrobial peptides from Bacillus methylotrophilus in tilapia fillet preservation[J]. Science and Technology of Food Industry, 2013, 34(2): 315-318. (in Chinese) 吴燕燕, 张岩, 李来好, 等. 甲基营养型芽孢杆菌抗菌肽对罗非鱼片保鲜效果的研究[J]. 食品工业科技, 2013, 34(2): 315-318. |
[52] |
Hu BD, Qiu SY, Zhou HX, et al. Relationships among physiochemical indices and hydrolyzing enzyme systems and enzymes-produced-ability in Jiangxiang Daqu[J]. Modern Food Science and Technology, 2017, 33(2): 99-106. (in Chinese) 胡宝东, 邱树毅, 周鸿翔, 等. 酱香型大曲的理化指标、水解酶系、微生物产酶的关系研究[J]. 现代食品科技, 2017, 33(2): 99-106. |
[53] |
Yang HN, Ning YC, Wang CY, et al. Effects of inoculated fermentation on characters of anchovy fish sauce by Bacillus velezensis SW5[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(10): 2013-2022. (in Chinese) 杨海宁, 宁豫昌, 王昌毓, 等. 接种贝莱斯芽孢杆菌SW5菌株对发酵鳀鱼鱼露品质的影响[J]. 核农学报, 2019, 33(10): 2013-2022. DOI:10.11869/j.issn.100-8551.2019.10.2013 |
[54] |
Sha YX, Sui ST, Zeng QC, et al. Biocontrol potential of Bacillus velezensis strain E69 against rice blast and other fungal diseases[J]. Scientia Agricultura Sinica, 2019, 52(11): 1908-1917. (in Chinese) 沙月霞, 隋书婷, 曾庆超, 等. 贝莱斯芽孢杆菌E69预防稻瘟病等多种真菌病害的潜力[J]. 中国农业科学, 2019, 52(11): 1908-1917. |
[55] |
Zong Y, Zhao YJ, Liu Y, et al. Study on the inhibitory effect of Bacillus velezensis on Fusarium graminearum[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(2): 310-317. (in Chinese) 宗英, 赵月菊, 刘阳, 等. 一株贝莱斯芽孢杆菌抑制禾谷镰刀菌的研究[J]. 核农学报, 2018, 32(2): 310-317. DOI:10.11869/j.issn.100-8551.2018.02.0310 |
[56] |
Wambacq E, Audenaert K, Höfte M, et al. Bacillus velezensis as antagonist towards Penicillium roqueforti s.l.in silage:in vitro and in vivo evaluation[J]. Journal of Applied Microbiology, 2018, 125(4): 986-996. DOI:10.1111/jam.13944 |
[57] |
Chen L, Gu W, Xu HY, et al. Complete genome sequence of Bacillus velezensis 157 isolated from Eucommia ulmoides with pathogenic bacteria inhibiting and lignocellulolytic enzymes production by SSF[J]. 3 Biotech, 2018, 8: 114. |
[58] |
Huang L, Li QC, Hou Y, et al. Bacillus velezensis strain HYEB5-6 as a potential biocontrol agent against anthracnose on Euonymus japonicus[J]. Biocontrol Science and Technology, 2017, 27(5): 636-653. DOI:10.1080/09583157.2017.1319910 |
[59] |
Vágvölgyi C, Sajben-Nagy E, Bóka B, et al. Isolation and characterization of antagonistic Bacillus strains capable to degrade ethylenethiourea[J]. Current Microbiology, 2013, 66(3): 243-250. DOI:10.1007/s00284-012-0263-8 |
[60] |
Vörös M, Manczinger L, Kredics L, et al. Influence of agro-environmental pollutants on a biocontrol strain of Bacillus velezensis[J]. MicrobiologyOpen, 2019, 8(3): e00660. DOI:10.1002/mbo3.660 |
[61] |
Lee HH, Park J, Lim JY, et al. Complete genome sequence of Bacillus velezensis G341, a strain with a broad inhibitory spectrum against plant pathogens[J]. Journal of Biotechnology, 2015, 211: 97-98. DOI:10.1016/j.jbiotec.2015.07.005 |
[62] |
Cai CP, Huang J, Zeng Y, et al. Isolation and primary identification of an endophytic antagonistic bacteria from pepper[J]. Hunan Agricultural Sciences, 2018(7): 1-4. (in Chinese) 蔡长平, 黄军, 曾艳, 等. 一株辣椒内生拮抗细菌的筛选及初步鉴定[J]. 湖南农业科学, 2018(7): 1-4. DOI:10.16498/j.cnki.hnnykx.2018.007.001 |
[63] |
Cui LX, Yang CD, Wei LJ, et al. Isolation and identification of an endophytic bacteria Bacillus velezensis 8-4 exhibiting biocontrol activity against potato scab[J]. Biological Control, 2020, 141: 104156. DOI:10.1016/j.biocontrol.2019.104156 |
[64] |
Pan HQ, Li QL, Hu JC. The complete genome sequence of Bacillus velezensis 9912D reveals its biocontrol mechanism as a novel commercial biological fungicide agent[J]. Journal of Biotechnology, 2017, 247: 25-28. DOI:10.1016/j.jbiotec.2017.02.022 |
[65] |
Yang K, Zheng KB, Huang XH, et al. Identification and antifungal activity of marine Bacillus velezensis strain TCS001[J]. Chinese Journal of Pesticide Science, 2018, 20(3): 333-339. (in Chinese) 杨可, 郑柯斌, 黄晓慧, 等. 海洋生境贝莱斯芽孢杆菌TCS001的鉴定及抑真菌活性[J]. 农药学报, 2018, 20(3): 333-339. DOI:10.16801/j.issn.1008-7303.2018.0041 |
[66] |
Wang JY, Li B, Wang YG, et al. Screening and characteristic analysis of Bacillus velezensis from sea cucumber (Apostichopus japonicus) ponds[J]. Journal of Fishery Sciences of China, 2018, 25(3): 567-575. (in Chinese) 王金燕, 李彬, 王印庚, 等. 刺参养殖池塘一株贝莱斯芽孢杆菌的分离及其生理特性[J]. 中国水产科学, 2018, 25(3): 567-575. |
[67] |
Kim SY, Song H, Sang MK, et al. The complete genome sequence of Bacillus velezensis strain GH1-13 reveals agriculturally beneficial properties and a unique plasmid[J]. Journal of Biotechnology, 2017, 259: 221-227. DOI:10.1016/j.jbiotec.2017.06.1206 |
[68] |
Zhang Y, Gao X, Wang S, et al. Application of Bacillus velezensis NJAU-Z9 enhanced plant growth associated with efficient rhizospheric colonization monitored by qPCR with primers designed from the whole genome sequence[J]. Current Microbiology, 2018, 75(12): 1574-1583. DOI:10.1007/s00284-018-1563-4 |
[69] |
Wang N, Li P, Pan JW, et al. Bacillus velezensis A2 fermentation exerts a protective effect on renal injury induced by zearalenone in mice[J]. Scientific Reports, 2018, 8(1): 13646. DOI:10.1038/s41598-018-32006-z |
[70] |
Shu X, Wang YT, Zhou Q, et al. Biological degradation of aflatoxin B1 by cell-free extracts of Bacillus velezensis DY3108 with broad pH stability and excellent thermostability[J]. Toxins, 2018, 10(8): 330. DOI:10.3390/toxins10080330 |
[71] |
Regassa AB, Taegyu C, Lee YS, et al. Supplementing biocontrol efficacy of Bacillus velezensis against Glomerella cingulata[J]. Physiological and Molecular Plant Pathology, 2018, 102: 173-179. DOI:10.1016/j.pmpp.2018.03.002 |
[72] |
Sun PP, Cui JC, Jia XH, et al. Isolation and characterization of Bacillus amyloliquefaciens L-1 for biocontrol of pear ring rot[J]. Horticultural Plant Journal, 2017, 3(5): 183-189. DOI:10.1016/j.hpj.2017.10.004 |
[73] |
Sun PP, Cui JC, Jia XH, et al. Complete genome sequence of Bacillus velezensis L-1, which has antagonistic activity against pear diseases[J]. Genome Announcements, 2017, 5(48): e01271-17. DOI:10.1128/genomeA.01271-17 |
[74] |
Jin Q, Jiang QY, Zhao L, et al. Complete genome sequence of Bacillus velezensis S3-1, a potential biological pesticide with plant pathogen inhibiting and plant promoting capabilities[J]. Journal of Biotechnology, 2017, 259: 199-203. DOI:10.1016/j.jbiotec.2017.07.011 |
[75] |
Meng QX, Jiang H, Hao JJ. Effects of Bacillus velezensis strain BAC03 in promoting plant growth[J]. Biological Control, 2016, 98: 18-26. DOI:10.1016/j.biocontrol.2016.03.010 |
[76] |
Meng QX, Jiang HH, Hanson LE, et al. Characterizing a novel strain of Bacillus amyloliquefaciens BAC03 for potential biological control application[J]. Journal of Applied Microbiology, 2012, 113(5): 1165-1175. DOI:10.1111/j.1365-2672.2012.05420.x |
[77] |
Shen YR, Xiang JL, Wang JQ, et al. Isolation, identification and antimicrobial properties of a biocontrol strain BU396 against Streptomyces scabies[J]. Microbiology China, 2019, 46(10): 2601-2611. (in Chinese) 申永瑞, 向君亮, 王佳琦, 等. 疮痂链霉菌拮抗菌株BU396的分离鉴定与抗菌性质分析[J]. 微生物学通报, 2019, 46(10): 2601-2611. |
[78] |
Du ST, Li SN, Zhu BC. Screening and identification of antagonistic strain DL-59 of Bacillus velezensis against Alternaria brassicae and biocontrol efficiency[J]. Journal of Agricultural University of Hebei, 2010, 33(6): 51-56. (in Chinese) 杜淑涛, 李术娜, 朱宝成. 白菜黑斑病拮抗细菌Bacillus velezensis DL-59的筛选鉴定及田间防效实验[J]. 河北农业大学学报, 2010, 33(6): 51-56. DOI:10.3969/j.issn.1000-1573.2010.06.011 |
[79] |
Chen L. Complete genome sequence of Bacillus velezensis LM2303, a biocontrol strain isolated from the dung of wild yak inhabited Qinghai-Tibet plateau[J]. Journal of Biotechnology, 2017, 251: 124-127. DOI:10.1016/j.jbiotec.2017.04.034 |
[80] |
Gao YX, Zhang DF, Ke XL, et al. Selection and characterization of intestinal Bacillus strain antagonistic against pathogenic Streptococcus agalactiae of tilapia[J]. Acta Microbiologica Sinica, 2019, 59(5): 926-938. (in Chinese) 高艳侠, 张德锋, 可小丽, 等. 罗非鱼源无乳链球菌肠道拮抗芽孢杆菌的筛选及其生物学特性[J]. 微生物学报, 2019, 59(5): 926-938. DOI:10.13343/j.cnki.wsxb.20180368 |
[81] |
Zhang DF, Gao YX, Ke XL, et al. Bacillus velezensis LF01:in vitro antimicrobial activity against fish pathogens, growth performance enhancement, and disease resistance against streptococcosis in Nile tilapia (Oreochromis niloticus)[J]. Applied Microbiology and Biotechnology, 2019, 103(21-22): 9023-9035. DOI:10.1007/s00253-019-10176-8 |
[82] |
Li J, Wu ZB, Zhang Z, et al. Effects of potential probiotic Bacillus velezensis K2 on growth, immunity and resistance to Vibrio harveyi infection of hybrid grouper (Epinephelus lanceolatus ♂ × E.fuscoguttatus ♀)[J]. Fish & Shellfish Immunology, 2019, 93: 1047-1055. |
[83] |
Zhang ZY, Raza MF, Zheng ZQ, et al. Complete genome sequence of Bacillus velezensis ZY-1-1 reveals the genetic basis for its hemicellulosic/cellulosic substrate-inducible xylanase and cellulase activities[J]. 3 Biotech, 2018, 8(11): 465. DOI:10.1007/s13205-018-1490-x |
[84] |
Zeng X, Zhang YH, Chi HR, et al. Antimicrobial activity of endophytic bacterium strain B-11 isolated from Curcuma wenyujin[J]. Microbiology China, 2019, 46(5): 1018-1029. (in Chinese) 曾欣, 张亚惠, 迟惠荣, 等. 温郁金内生拮抗细菌B-11的分离及其抑菌活性[J]. 微生物学通报, 2019, 46(5): 1018-1029. |
[85] |
Fan B, Wang C, Ding XL, et al. AmyloWiki:an integrated database for Bacillus velezensis FZB42, the model strain for plant growth-promoting Bacilli[J]. Database, 2019, 2019: baz071. DOI:10.1093/database/baz071 |
[86] |
Devi S, Kiesewalter HT, Kovács R, et al. Depiction of secondary metabolites and antifungal activity of Bacillus velezensis DTU001[J]. Synthetic and Systems Biotechnology, 2019, 4(3): 142-149. DOI:10.1016/j.synbio.2019.08.002 |
[87] |
Wang C.Effects of Bacillus velezensis V4 and Rhodotorula mucilaginosa on the growth, immune response and gut microbiota of salmons and trouts[D].Beijing: Doctoral Dissertation of University of Chinese Academy of Sciences (the Institute of Oceanology, Chinese Academy of Sciences), 2017(in Chinese) 王纯.芽孢杆菌V4和胶红酵母对鲑鳟鱼生长免疫及肠道菌群影响研究[D].北京: 中国科学院大学(中国科学院海洋研究所)博士学位论文, 2017 |
[88] |
Wang J, Zhou M, Du WL. Research progress on application of Bacillus methylotrophicus in biological control of plant diseases[J]. Hans Journal of Agricultural Sciences, 2018, 8(7): 690-698. (in Chinese) 王杰, 周萌, 杜伟玲. 甲基营养型芽胞杆菌在植物病害生物防治上的应用研究进展[J]. 农业科学, 2018, 8(7): 690-698. DOI:10.12677/HJAS.2018.87104 |