微生物学通报  2019, Vol. 46 Issue (9): 2378−2385

扩展功能

文章信息

杜瑞, 王柏辉, 罗玉龙, 王宇, 李权威, 韩利伟, 赵丽华, 靳烨
DU Rui, WANG Bo-Hui, LUO Yu-Long, WANG Yu, LI Quan-Wei, HAN Li-Wei, ZHAO Li-Hua, JIN Ye
益生菌调控胃肠道菌群改善肉品质的研究进展
Advance in studying the effect of probiotics on gastrointestinal tract microorganism to improve meat quality
微生物学通报, 2019, 46(9): 2378-2385
Microbiology China, 2019, 46(9): 2378-2385
DOI: 10.13344/j.microbiol.china.180791

文章历史

收稿日期: 2018-09-06
接受日期: 2018-11-13
网络首发日期: 2018-11-24
益生菌调控胃肠道菌群改善肉品质的研究进展
杜瑞 , 王柏辉 , 罗玉龙 , 王宇 , 李权威 , 韩利伟 , 赵丽华 , 靳烨     
内蒙古农业大学    内蒙古  呼和浩特    010018
摘要: 胃肠道菌群对动物健康和生产性能起到重要作用。将益生菌应用于畜禽养殖可调节肠道微生态平衡,调控脂肪代谢,提高饲料利用率以及促进风味物质形成等多种途径提高畜禽肉的品质。本文综述了不同益生菌调节胃肠道微生态的机理,并通过改善肠道菌群结构来改善畜禽肉的品质,为进一步研究开发以胃肠道菌群为靶点的益生菌饲料提供参考。
关键词: 益生菌    胃肠道菌群    肉品质    
Advance in studying the effect of probiotics on gastrointestinal tract microorganism to improve meat quality
DU Rui , WANG Bo-Hui , LUO Yu-Long , WANG Yu , LI Quan-Wei , HAN Li-Wei , ZHAO Li-Hua , JIN Ye     
Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
Abstract: The gastrointestinal flora plays an important role in animal health and production performance. The application of probiotics in livestock and poultry can regulate intestinal micro-ecological balance, regulate fat metabolism, improve feed utilization and promote the formation of flavor substances. It can improve meat quality, included carcass quality of livestock and poultry. This paper reviews the mechanisms what regulates gastrointestinal microecology by different probiotics, and improves the meat quality of livestock and poultry by improving the structure of intestinal flora. It can reference for further research and development of probiotic feeds targeting gastrointestinal flora.
Keywords: Probiotics    Gastrointestinal tract microorganism    Meat quality    

胃肠道菌群是一个超级复杂生物体,由宿主自身与宿主内定殖的微生物共同组成,并参与调节宿主体内新陈代谢和免疫体系[1]。胃肠道菌群失调,如双歧杆菌(Bifidobacterium)减少、脱硫弧菌(Vibrio desulphuri)增加能引起肥胖、系统性炎症以及代谢综合征等疾病产生[2]。在畜禽产业中,抗生素的过度使用破坏了胃肠道菌群平衡,在畜禽的微生物群体中产生抗生素的耐药性,并可能转移到人类微生物群。然而益生菌可作为抗生素很好的替代品,在畜禽膳食中添加益生菌可有效调节胃肠道菌群,进而改善肉用品质,在畜禽养殖中有着巨大的潜力。

1 益生菌改善肠道菌群 1.1 益生菌

“益生菌”来源于希腊语的“Pro”和“biotic”,意思为对生命有意义,是抗生素的天然替代品[3]。1965年,Lilly和Stillwell首次将益生菌作为抗生素的反义词,并将其定义为一种微生物产生的可以刺激其他微生物生长的物质[4]。益生菌则需要通过体内外有效评价具备对宿主有益,无毒性,无致病作用,可在消化道存活,能适应胃酸和胆酸,能在消化道表面定殖以及产生有用的酶类和代谢物等条件才能说明菌株具备益生特性[5]

1.2 胃肠道微生态

胃肠道微生态是一个由宿主和大量胃肠道微生物组成的共生生态系统,组成复杂多样。微生物的种类达上千种,其中只有30多种占到肠道微生物的99%,主要集中于厚壁菌门(Firmicutes)和拟杆菌门(Bacteroidetes)[6]。菌群在胃肠道内可分为病原菌和非病原菌。病原菌对宿主健康有害,肠道内的病原菌主要为变形菌门(Proteobacteria),包括大肠杆菌(Escherichia coli)、沙门氏菌(Salmonella)、霍乱弧菌(Vibrio cholerae)、幽门螺旋杆菌(Helicobacter pylori)等,这类细菌可引起动物腹泻[7]。非病原菌则对宿主健康有益或者无影响,以厚壁菌门(Firmicutes)为主,参与肠道内的多糖发酵,厚壁菌门中代表性的菌目为芽孢杆菌目(Bacillales)和乳杆菌目(Lactobacillus),芽孢杆菌属(Bacillus)的主要作用是维持动物肠道的健康。正常情况下,宿主的胃肠道菌群处于平衡状态,并能够反映动物的营养、免疫、代谢等生理功能。

1.3 益生菌改善胃肠道微生态

益生菌群由多种微生物组成,可分泌有益的酶、有机酸、维生素和无毒的抗菌物质来改善肠道微生物区系,并影响机体免疫系统[8]。益生菌可在胃肠道内通过竞争、排斥、抑制致病菌的定殖能力,改变胃肠道内微生物结构,调控机体的代谢功能和肠黏膜屏障功能。目前,将益生菌株应用于畜禽养殖是研究热点,这能为益生菌调控胃肠道菌群改善肉品质提供新思路。

1.3.1 乳酸菌

乳酸菌是一类以糖类发酵产乳酸的无芽孢、革兰氏染色阳性细菌,在胃肠道中释放乳酸,产抗菌素抑制有害菌,净化肠道环境,维持肠道菌群平衡,促进营养物质吸收。目前已经将乳酸菌应用到了改善反刍动物的胃肠道方面,发现乳酸菌能产生黏附素定殖于肠黏膜表面,防止细菌的过度生长,并增加瘤胃液中丙酸含量,降低乙酸含量,保持胃肠道菌群平衡,并增加反刍动物的体重[9-10]。一些研究表明,益生菌提高反刍动物的体重不是由益生菌直接介导的,而是通过影响动物行为如采食量和改善瘤胃微生物群落结构和功能来实现的[11]

乳酸菌在肠道黏膜内定殖,改变了其他菌群的相对丰度,从而达到益生肠道的作用。益生菌的菌种、菌株、提取源不同也会影响肠道特定病原菌的抑制效果。本团队将一株具有降胆固醇性能的植物乳杆菌应用于小鼠后发现小鼠的饲料利用率提高,粪便的pH值降低,小鼠肠道微生物菌群发生改变,其中乳酸菌与双歧杆菌(Bifidobacterium)等有益菌明显增多,同时大肠杆菌(E. coli)和肠球菌(Enterococcus)等致病菌得到抑制,从而改善了肠道微群结构[12]。Decroos等研究得出乳酸杆菌(Lactobacilli)的添加能够有效抑制传染性梭菌群(Clostridium difficile)和弯曲杆菌(Campylobacter)的数量[13],其原因是乳酸杆菌能诱导肠上皮细胞HT-29的黏蛋白(MUC2、MUC3)基因表达量增加,促进上皮细胞分泌黏液,从而减少了肠道病原体与黏膜上皮细胞的结合[14]。Chen等研究发现鼠李氏乳杆菌(Lactobacillus rhamnosus)可显著增加乳酸菌的数量,并抑制大肠杆菌和盲肠杆菌的生长,这与鼠李氏乳杆菌能调节保护肠上皮细胞完整性的多蛋白复合物的表达和定位有关[15]。但Loh等研究发现添加乳酸杆菌后只显著抑制了产气荚膜梭菌(Clostridium perfringens)的数量,而对其他细菌没有显著影响,乳酸杆菌可以产生一种抑制荚膜梭菌的特异性细菌素[16]。膳食乳酸菌可以改善肠道菌群,部分原因是通过刺激免疫防御系统或分泌抗菌药物实现[17-18]。这种结果可能与选择的微生物不同有关,具体对哪些菌有促进或抑制作用还需要进一步研究及探讨。

1.3.2 芽孢杆菌

芽孢杆菌(Bacillus spore)是好氧或兼性厌氧菌,能形成内孢子,能产生淀粉酶、蛋白酶、脂肪酶、植酸酶、纤维素酶和木聚糖酶等多种胞外酶,在小肠内发挥益生菌的作用[19-20]。芽孢杆菌还有胆盐水解酶活性、降胆固醇能力和抗氧化活性,应用于动物营养中可帮助消化饲料和提高养分吸收[21]。潘文杰等从健康成年猪粪便中分离得到一株具有产淀粉酶活性的芽孢杆菌SY200,该菌对肠道内产肠毒素大肠杆菌(Escherichia coli)、鸡白痢沙门菌(Salmonella pullorum)、金黄色葡萄球菌(Staphylococcus aureus)均有较强的生物拮抗作用,抑菌物质主要为细菌的代谢产物[22]

在芽孢杆菌中,枯草芽孢杆菌(Bacillus subtilis)和地衣芽孢杆菌(Bacillus licheniformis)比较常用,枯草芽孢杆菌有抑制小肠沙门氏菌和肠毒性大肠杆菌黏附肠上皮细胞的能力,研究者们发现枯草杆菌能减少粪便中产气荚膜菌和肠杆菌科(Enterobacteriaceae)的数量[23-24]。范利霞研究枯草芽孢杆菌发现,其对胆盐的耐受力较强,并且对大肠杆菌、金黄色葡萄球菌具有一定的抑制作用,制成复合菌剂时,能提高羊吞噬细胞的功能,进而增强绵羊的免疫功能[25]。在成年反刍动物中,益生菌主要以瘤胃为靶位来改善纤维消化,益生菌的施用维持了瘤胃微生物的平衡,增加了纤维素、淀粉酶、脲酶、蛋白酶等酶的产量,从而提高了对纤维食品的使用[26]。将枯草杆菌应用于发酵生产饲料可使反刍动物的产肉量提高,这与改变瘤胃发酵方式有关。而地衣芽孢杆菌可通过调节动物的微生物群,增加双歧杆菌菌群数,间接地发挥免疫赋活作用,提高机体防御功能,并最终提高肉的品质。Qiao等在奶牛的饲料中添加地衣活菌发现,奶牛的产奶量提高,其原因可能是芽孢杆菌改善了瘤胃微生物的结构,并作用于饲料,提高中性洗涤纤维、酸性洗涤纤维和饲料化合物的发酵以及降解效率[27]

1.3.3 酵母菌

酵母菌(Yeast)是一种典型的兼性厌氧单细胞真菌,能将糖发酵成酒精和二氧化碳。酵母菌对肠道菌群紊乱有调整作用,可作为一种有价值的动物饲料成分,提供B族维生素和维生素E及一些必需的矿物质和饲粮纤维资源[28]。酵母菌能改善瘤胃发酵环境,将瘤胃内由碳水化合物生成的大量乳酸分解,从而稳定瘤胃pH值[29];毛胜勇等发现酵母菌能提高玉米及淀粉条件下发酵体系中的pH值,预防瘤胃酸中毒,这与酵母菌能产生一些必需生长因子(氨基酸、肽、维生素及有机酸等)提高了瘤胃总菌数量有关,总菌数量的增多意味着需要更多的挥发性脂肪酸(Volatile fatty acid,VFA)碳架用于微生物细胞的生成,而微生物细胞数量的增多则可稳定瘤胃pH值[30-31]。余蕾研究发现布拉酵母菌(Saccharomyces boulardii)对肠道菌群紊乱有调整作用,能增加肠道菌群多样性,促进丙酸杆菌(Propionibacterium)、毛螺菌科(Spirillaceae)等的生长,并可抑制理研科菌(Rikenellaceae)等生长[32]。酵母菌还可与一些有害菌竞争发酵底物,消除氧气,为瘤胃内微生物创造一个更好的无氧环境,瘤胃中的多数微生物对氧高度敏感,氧气的含量与微生物数量及活性密切相关[33]

2 益生菌对畜禽肉品质的影响

畜禽的肉品质体现在肉的色泽、嫩度、系水力等方面,这很大程度上决定了肉的贮藏或进一步加工的可行性,而膳食益生菌能够改善肠道菌群结构,提高屠宰率,进而改善畜禽肉的品质。

2.1 胴体品质

益生菌及其代谢产物可调节瘤胃微生物,稳定瘤胃pH,改善瘤胃环境和发酵状况,从而提高肉的胴体品质(屠宰率、眼肌面积、瘦肉率及产肉性能等),其作用机理可能是通过调节肠道微生态平衡、促进肠道发育、提高饲料利用率降低腹泻率等多种途径提高畜禽的胴体品质。Bayatkouhsar等研究发现,在日粮中添加乳酸杆菌可提高犊牛的采食量和日增重[34]。Hu等在饲料中添加枯草芽孢杆菌后发现猪肠道中乳酸菌的数量增多,而屠宰率也得到了提高,这可能是芽孢杆菌刺激了猪肠道内有益细菌的生长[35],增强了肠道功能,使得饲料的利用率得到提高[36]。目前一些微生态制剂已经应用于畜禽养殖中,在绵羊的基础饲粮中加入微生态制剂(芽孢杆菌、双歧杆菌)可明显提高肉羊的日采食量和日增重,达到育肥效果[37]。微生态制剂也可改善家禽的胴体品质。黄金华和谢文惠等在禽类饲料中添加复合益生菌制剂,降低了鸡的腹脂率,并提高了屠宰性能[38-39];吴红翔等在饲料中添加益生菌发现广东麻鸡的屠宰率和鸡胸率得到提高[40]

2.2 色泽

肉的色泽是肌肉的生理学、生物化学和微生物学变化的外部表现,是消费者直观评价衡量肉制品的依据。肌红蛋白中铁离子的价态(还原态Fe2+,氧化态Fe3+)和与O2结合的位置是导致其顔色变化的根本所在。研究发现,益生菌有抗氧化作用,可以螯合金属离子、清除自由基、抑制脂质过氧化,进而提高肉色稳定性[40]。同时,益生菌如丁酸梭菌也能提高肉中抗氧化酶的活性,从而清除组织中的自由基,抗脂质酸败,达到改善肉色的作用,在禽类饲料中添加含硒的益生菌能改善肉质的抗氧化能力及色泽,这种益生菌能诱导基因产物HSP70的表达,通过修复受损的蛋白质来维持细胞完整性,还可防止宰后肉质的氧化损伤来提高抗氧化能力[41]。同时,Yang等发现,肉色取决于宰后热应激下氧化后肌红蛋白的含量,富含硒的益生菌可将无机硒转化为有机硒,而有机硒比无机硒更能减少肌红蛋白的氧化,从而改善肉色[42]。益生菌也能促进其他矿物质的吸收来改善肉色。张磊等研究发现,益生菌能提高猪肉中的铁含量和锌含量,改善肉色[43];评价肉色的指标以红度值(a*)为主,亮度值(L*)和黄度值(b*)是辅助指标。在禽类饲料中添加芽孢杆菌可增加肉的红度和黄度值,可能是益生菌提高了营养物质的吸收率,增加了肌红蛋白含量,进而调控了肉色;家畜中添加德氏乳杆菌也可增加肉的红度和大理石纹评分[44-45]

2.3 嫩度

嫩度主要取决于肌肉组织各组分及肌肉内部的生物化学变化对各组分特性的变化,是反映肉质的重要指标之一,而益生菌具有改善嫩度的效果。张天阳在猪的饲料中加入植物乳杆菌(Lactobacillus plantarum)和戊糖片球菌(Pediococcus pentosaceus),发现肉的系水力、干物质含量、粗蛋白含量、粗灰分含量有了明显提高,并且肉的嫩度得到很好的改善;饲喂乳酸菌的过程中猪肉的抗氧化性提高,过氧化物得到有效的抑制,进而改善了嫩度[46]。研究发现,肉的嫩度与肌纤维的粗细有关,肌纤维越细肉质越嫩,而益生菌能降低肉的肌纤维直径和面积[45]。Alfaig等在家禽饲料中加入枯草芽孢杆菌发现鸡胸肉的粘聚性、弹性和韧性有了明显改善[47]

2.4 系水力

系水力指当肌肉受到外力作用时,其保持原有水分与添加水分的能力。肌肉的保水性直接影响肉的滋味、香气、多汁性、营养成分、嫩度、颜色等食用品质。研究发现,地衣芽孢杆菌、丁酸梭菌等益生菌可以提高畜禽肌肉的系水力[48]。肌内脂肪能与肌肉紧密结合,有利于水分保留,提高系水力。郭小华等研究发现,肉鸡饲料中添加酵母培养物能降低肌肉的滴水损失,这可能与酵母培养物中富含的小肽、氨基酸和核苷酸能提高肌肉中肌内脂肪的含量进而提高保水性有关[49]。杨华和呼红梅等将微生态制剂加入畜类饲料中发现羊肉的脂肪沉积量增加,滴水损失显著降低,改善了肉的多汁性,提高了肉品质[37, 50]。Herdian等在绵羊饲料中添加益生菌和无机矿物复合饲料,发现肌肉中的胆固醇含量降低,肉的保水性提高[51]

3 益生菌改善肉品质的途径 3.1 调节菌群结构影响肉品质

研究发现,厚壁菌门和拟杆菌门有助于宿主代谢,能有效改善宿主对饮食的吸收以及调节脂质代谢作用,而益生菌进入动物肠道菌群后,可以改变厚壁菌门与拟杆菌门的比例,抑制有害菌的生长,维持肠道菌群结构的稳态[52]。研究发现,丁酸梭菌代谢产物为丁酸、乙酸等短链脂肪酸,可以降低肠道pH值,从而抑制有害菌的生长[48]。脂肪沉积对肉品的风味品质有很大的影响,肉烹制后脂肪还可使结缔组织松散,从而提高肌肉的多汁性和嫩度,而硬壁菌门和拟杆菌门的相对丰度对脂肪沉积的影响效果较大[53]。郭秀兰研究肠道中硬壁菌门和拟杆菌门的比例对脂肪沉积的影响时发现,脂肪沉积与硬壁菌门成正相关,与拟杆菌门呈负相关[54]。崔成在饲料中加入芽孢杆菌后发现,猪肠道食糜和黏膜中硬壁菌、拟杆菌数量及丰度发生改变,脂肪沉积能力得到改善[55]。Wang等在肉鸡膳食中加入约氏乳杆菌后发现肉鸡肠道内细菌丰富度明显增加,厚壁菌门与拟杆菌门的比值降低,最终鸡肉的风味物质和营养物质含量都得到了改善[56]。因此,益生菌可以通过改善肠道中厚壁菌与拟杆菌的数量来改善肉品质,但改善机制还需要进一步研究。

3.2 调节脂肪酸

益生菌在调节畜禽的脂肪代谢提高肉品质方面有一定的作用。比如,丁酸梭菌可通过影响畜禽的脂肪合成酶活性和脂质合成相关基因表达来提高肉中肌内脂肪含量。益生菌不仅调节肠道菌群,也参与宿主脂肪等大分子物质的代谢和吸收,包括减少饱和脂肪酸和增加多不饱和脂肪酸[57]。张天阳发现猪摄入益生菌后,肉中的多不饱和脂肪酸增加,包括亚油酸、α-亚麻酸、二十二碳六烯酸等[46]。研究者在鸡饲料中添加益生菌(乳酸菌)后,发现鸡肉中总脂肪酸增加,同时不饱和脂肪酸和饱和脂肪酸的比例提高,益生菌活性的增强可对脂肪酸的摄取和吸收有积极影响;而肌内脂肪及其脂肪酸组成与肉的嫩度、剪切力、pH、系水力和风味等肉品质指标有关,提高肌内脂肪含量可改善肌肉风味,改善嫩度[58-59]。吴娟娟研究发现鸡摄入乳酸菌后,调控不饱和脂肪酸的THRSP、PPARγ基因表达量提高,饱和脂肪酸的FAS基因表达量降低,这说明益生菌能通过调控肠道菌群,进而调控脂肪代谢相关基因,影响脂类代谢[60]。共轭亚油酸(CLA)参与脂肪分解与代谢,有很强的生物学活性。研究表明,畜禽的饲料中添加益生菌后肉中的CLA可大幅增加。王柏辉等研究了不同饲养方式下苏尼特羊肠道菌群发现,羊肉中的α-亚麻酸和共轭亚油酸与纤维杆菌属、瘤胃球菌属间呈正相关,与拟杆菌属呈负相关,说明可通过改变肠道菌群结构来改善羊肉品质[61]。廖秀冬和李婧妍在饲喂丁酸梭菌后,鸡肉中PUFA:SFA比例增加,尤其是CLA含量提高,丁酸梭菌在机体内具有转换亚油酸产生共轭亚油酸的能力[62-63]。同时,人工饲喂含有益生菌母乳替代品的羔羊免疫反应提高,肉中CLA含量增加,不饱和脂肪酸与饱和脂肪酸的比值提高[64]

3.3 促进风味物质形成

益生菌通过肠道菌群促进脂肪的利用,将其氧化为小分子物质,提高肉的风味从而改善了肉品质;而一些风味物质来源于菌群的代谢产物,由畜禽吸收并进一步沉积到肌肉中[65]。Shrimpton等观察到风味物质可从肠道转移到肌肉中,这说明部分风味来源于盲肠菌群中发生的代谢反应[66]。Liu等发现肉鸡饲喂约氏乳杆菌后,肉中的肌苷酸以及脯氨酸、苯丙氨酸等滋味物质增加,肉的风味改善[67]

短链脂肪酸阈值低,在风味的形成中起重要作用。益生菌进入畜禽肠道后可产生乙酸、丁酸和丙酸,它们可能是益生菌中的芽孢杆菌分解产生[68]。一些游离脂肪酸可被益生菌分解生成一些小分子物质(醛、酮、醇、烃等),它们对肉的风味有很大贡献。Wang等模拟畜禽胃液发现,与对照组对比,益生菌组中风味物质明显提高,且挥发性物质增加到55种,其中(E)-2-庚烯醛和(E)-辛烯醛是消费者更满意的肉质风味。总之,不同的益生菌可以影响风味的组成,对肉质风味有一定的促进作用[68]

4 结语

益生菌的摄入可调整胃肠道菌群的结构,进而提高畜禽免疫力并改善肉品质。益生菌调控胃肠道菌群将成为未来畜牧业领域的发展方向。今后的研究将会集中在畜禽中益生菌种的选择并建立相应的评价技术,深入开展对膳食益生菌调节胃肠道菌群的机理研究,开发以胃肠道菌群为靶点的益生菌饲料,改善胃肠道菌群微生态环境,为改善畜禽肉品质提供科学的理论依据。

REFERENCES
[1]
Jia W, Li HK, Zhao LP, et al. Gut microbiota: a potential new territory for drug targeting[J]. Nature Reviews Drug Discovery, 2008, 7(2): 123-129.
[2]
Wang JJ, Tang H, Zhang CH, et al. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice[J]. The ISME Journal, 2015, 9(1): 1-15. DOI:10.1038/ismej.2014.99
[3]
Gibson GR, Fuller R. Aspects of in vitro and in vivo research approaches directed toward identifying probiotics and prebiotics for human use[J]. Journal of Nutrition, 2000, 130(2): 391S-395S. DOI:10.1093/jn/130.2.391S
[4]
Lilly DM, Stillwell RH. Probiotics: Growth-promoting factors produced by microorganisms[J]. Science, 1965, 147(3659): 747-748. DOI:10.1126/science.147.3659.747
[5]
Feng YY, Qiao L, Yao HM, et al. Research progress on the evaluation methods of safety and efficacy of probiotics[J]. Chinese Animal Husbandry & Veterinary Medicine, 2017, 44(7): 2022-2032. (in Chinese)
冯媛媛, 乔琳, 姚宏明, 等. 益生菌安全性和有效性评价方法的研究进展[J]. 中国畜牧兽医, 2017, 44(7): 2022-2032.
[6]
Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora[J]. Science, 2005, 308(5728): 1635-1638. DOI:10.1126/science.1110591
[7]
Qu W, Zhang Z, Ma JZ, et al. Effect of probiotics on gut microbiota in mice evaluated by high-throughput sequencing[J]. Food Science, 2017, 38(1): 214-219. (in Chinese)
曲巍, 张智, 马建章, 等. 高通量测序研究益生菌对小鼠肠道菌群的影响[J]. 食品科学, 2017, 38(1): 214-219.
[8]
Pelicano E, Souza PD, Souza HD, et al. Effect of different probiotics on broiler carcass and meat quality[J]. Revista Brasileira de Ciência Avícola, 2003, 5(3): 207-214. DOI:10.1590/S1516-635X2003000300009
[9]
Endres W. Probiotics in the prevention of intestinal diseases in infancy[J]. Monatsschrift Kinderheilkunde, 2003, 151(S1): S24-S26. DOI:10.1007/s00112-003-0785-z
[10]
Blaut M. Relationship of prebiotics and food to intestinal microflora[J]. European Journal of Nutrition, 2002, 41(S1): i11-i16.
[11]
Schofield BJ, Lachner N, Le OT, et al. Beneficial changes in rumen bacterial community profile in sheep and dairy calves as a result of feeding the probiotic Bacillus amyloliquefaciens H57[J]. Journal of Applied Microbiology, 2018, 124(3): 855-866. DOI:10.1111/jam.13688
[12]
Jin ZM, Zhang HB, Liu XW, et al. Effects of supplementation of Lactobacillus plantarum with different dosage on fecal microbiota[J]. Science & Technology of Food Industry, 2014, 35(24): 342-345. (in Chinese)
靳志敏, 张宏博, 刘夏炜, 等. 不同剂量植物乳杆菌对小鼠肠道菌群的影响[J]. 食品工业科技, 2014, 35(24): 342-345.
[13]
Decroos K, Vercauteren T, Werquin G, et al. Repression of clostridium population in young broiler chickens after administration of a probiotic mixture[J]. Communications in Agricultural & Applied Biological Sciences, 2004, 69(1): 5-13.
[14]
Mack DR, Michail S, Wei S, et al. Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression[J]. American Journal of Physiology, 1999, 276(4): G941-G950.
[15]
Chen F, Gao SS, Zhu LQ, et al. Effects of dietary Lactobacillus rhamnosus CF supplementation on growth, meat quality, and microenvironment in specific pathogen-free chickens[J]. Poultry Science, 2018, 97(1): 118-123. DOI:10.3382/ps/pex261
[16]
Loh TC, Thanh NT, Foo HL, et al. Feeding of different levels of metabolite combinations produced by Lactobacillus plantarum on growth performance, fecal microflora, volatile fatty acids and villi height in broilers[J]. Animal Science Journal, 2010, 81(2): 205-214. DOI:10.1111/j.1740-0929.2009.00701.x
[17]
La Fata G, Weber P, Mohajeri MH. Probiotics and the gut immune system: indirect regulation[J]. Probiotics & Antimicrobial Proteins, 2018, 10(1): 11-21.
[18]
Bernet-Camard MF, Liévin V, Brassart D, et al. The human Lactobacillus acidophilus strain LA1 secretes a nonbacteriocin antibacterial substance(s) active in vitro and in vivo[J]. Applied and Environmental Microbiology, 1997, 63(7): 2747-2753.
[19]
Cutting SM. Bacillus probiotics[J]. Food Microbiology, 2011, 28(2): 214-220. DOI:10.1016/j.fm.2010.03.007
[20]
Latorre JD, Hernandez-Velasco X, Wolfenden RE, et al. Evaluation and selection of Bacillus species based on enzyme production, antimicrobial activity, and biofilm synthesis as direct-fed microbial candidates for poultry[J]. Frontiers in Veterinary Science, 2016, 3: 95.
[21]
Shobharani P, Halami PM. In vitro evaluation of the cholesterol-reducing ability of a potential probiotic Bacillus spp[J]. Annals of Microbiology, 2016, 66(2): 643-651. DOI:10.1007/s13213-015-1146-6
[22]
Pan WJ, Feng J, Yang F. Identification of a strain of amylase-producing Bacillus sp. SY200 and its biological antagonism against animal pathogenic bacteria[J]. Chinese Journal of Microecology, 2017, 29(8): 891-895. (in Chinese)
潘文杰, 冯杰, 杨帆. 一株产淀粉酶芽胞杆菌SY200的鉴定及其对动物病原菌的生物拮抗试验[J]. 中国微生态学杂志, 2017, 29(8): 891-895.
[23]
Ye XL, Li PC, Yu QH, et al. Bacillus subtilis inhibition of enterotoxic Escherichia coli-induced activation of MAPK signaling pathways in Caco-2 cells[J]. Annals of Microbiology, 2013, 63(2): 577-581. DOI:10.1007/s13213-012-0506-8
[24]
Jeong JS, Kim IH. Effect of Bacillus subtilis C-3102 spores as a probiotic feed supplement on growth performance, noxious gas emission, and intestinal microflora in broilers[J]. Poultry Science, 2014, 93(12): 3097-3103. DOI:10.3382/ps.2014-04086
[25]
Fan LX. The development of composite probiotics on ruminant animals and immunity function[D] Hohhot: Master's Thesis of Inner Mongolia Agricultural University, 2010 (in Chinese)
范利霞.复合微生态制剂的研制及其对反刍动物免疫机能的影响[D].呼和浩特: 内蒙古农业大学硕士学位论文, 2010 http://cdmd.cnki.com.cn/article/cdmd-10129-2010150466.htm
[26]
Rigobelo EC, De Ávila FA. Protective effect of probiotics strains in ruminants[Z]. 2012
[27]
Qiao GH, Shan AS, Ma N, et al. Effect of supplemental Bacillus cultures on rumen fermentation and milk yield in Chinese Holstein cows[J]. Journal of Animal Physiology & Animal Nutrition, 2010, 94(4): 429-436.
[28]
Pacheco MTB, Caballero-Córdoba GM, Sgarbieri VC. Composition and nutritive value of yeast biomass and yeast protein concentrates[J]. Journal of Nutritional Science & Vitaminology, 1997, 43(6): 601-612.
[29]
Chadati A. Clinical symptoms, laboratory tests and comprehensive treatment of rumen acidosis in sheep[J]. Modern Animal Husbandry Technology, 2018(2): 68. (in Chinese)
阿斯哈尔·恰达提. 羊瘤胃酸中毒的临床症状、实验室检查与综合治疗[J]. 现代畜牧科技, 2018(2): 68.
[30]
Mao SY, Long LM, Zhu WY. Effect of Selenomonas ruminantium alone, or in combination with yeast cultures, on in vitro rumen bacterial fermentation[J]. Acta Prataculturae Sinica, 2010, 19(4): 176-186. (in Chinese)
毛胜勇, 龙黎明, 朱伟云. 体外研究反刍兽新月形单胞菌及与酵母联用对瘤胃微生物发酵的影响[J]. 草业学报, 2010, 19(4): 176-186.
[31]
Newbold CJ, Wallace RJ, Mcintosh FM. Mode of action of the yeast Saccharomyces cerevisiae as a feed additive for ruminants[J]. British Journal of Nutrition, 1996, 76(2): 249-261. DOI:10.1079/BJN19960029
[32]
Yu L. The role and molecular mechanism of S. boulardii-induced gastrointestinal microbiota modulation in acute liver failure therapy[D]. Guiyang: Doctoral Dissertation of Guizhou Medical University, 2017 (in Chinese)
余蕾.布拉氏酵母菌干预急性肝衰竭小鼠肠道菌群机制研究[D].贵阳: 贵州医科大学博士学位论文, 2017 http://cdmd.cnki.com.cn/Article/CDMD-10660-1017086441.htm
[33]
Geng CY, Ren LP, Zhou ZM, et al. Yeast preparation: application effects in ruminants and possible mechanisms[J]. Chinese Journal of Animal Nutrition, 2015, 27(4): 1011-1020. (in Chinese)
耿春银, 任丽萍, 周振明, 等. 反刍动物酵母菌制剂应用的效果及可能作用机制[J]. 动物营养学报, 2015, 27(4): 1011-1020. DOI:10.3969/j.issn.1006-267x.2015.04.002
[34]
Bayatkouhsar J, Tahmasebi AM, Naserian AA, et al. Effects of supplementation of lactic acid bacteria on growth performance, blood metabolites and fecal coliform and lactobacilli of young dairy calves[J]. Animal Feed Science & Technology, 2013, 186(1/2): 1-11.
[35]
Hu YL, Dun YH, Li S, et al. Effects of Bacillus subtilis KN-42 on growth performance, diarrhea and faecal bacterial flora of weaned piglets[J]. Asian-Australasian Journal of Animal Sciences, 2014, 27(8): 1131-1140. DOI:10.5713/ajas.2013.13737
[36]
Shi BM, Meng XY, Cai JC, et al. Effect of compound probiotics on pig microorganism preparation, immune function and meat quality[J]. Journal of Northeast Agricultural University, 2018, 49(3): 58-64. (in Chinese)
石宝明, 孟祥宇, 蔡建成, 等. 复合微生物制剂对猪生产性能、免疫功能和肉质影响[J]. 东北农业大学学报, 2018, 49(3): 58-64.
[37]
Yang H, Zhang HJ, Wu XM, et al. Effect of microbial ecological agents on growth performance and immunity of meat sheep[J]. Acta Ecologae Animalis Domastici, 2015, 36(10): 27-32. (in Chinese)
杨华, 张韩杰, 吴信明, 等. 微生态制剂对肉羊生长性能和免疫功能的影响[J]. 家畜生态学报, 2015, 36(10): 27-32. DOI:10.3969/j.issn.1673-1182.2015.10.006
[38]
Huang JH, Li TY, Wang SC, et al. Effects of complex-probiotic-preparation on growth performance, slaughter performance and meat quality of broiler[J]. Animal Husbandry & Feed Science, 2014, 35(5): 30-33. (in Chinese)
黄金华, 李泰佑, 王士长, 等. 复合益生菌制剂对肉鸡生长性能、屠宰性能和肌肉品质的影响[J]. 畜牧与饲料科学, 2014, 35(5): 30-33.
[39]
Xie WH, Jiang N, Zhang AZ. Effects of compound probiotics on growth performance, slaughter performance and immune indices of broilers[J]. Chinese Journal of Animal Nutrition, 2018, 30(1): 360-367. (in Chinese)
谢文惠, 姜宁, 张爱忠. 复合益生菌制剂对肉鸡生长性能、屠宰性能和免疫指标的影响[J]. 动物营养学报, 2018, 30(1): 360-367. DOI:10.3969/j.issn.1006-267x.2018.01.043
[40]
Wu HX, Ouyang JY, Liu SF, et al. Effect of xylooligosaccharides probiotics and probiotics on slaughter performance and meat quality in Guangdong Hemp chicken[J]. Acta Agriculturae Universitatis Jiangxiensis, 2006, 28(6): 899-902. (in Chinese)
吴红翔, 欧阳捡云, 刘三凤, 等. 木寡糖益生素和益生素对广东麻鸡屠宰性能及肌肉品质的影响[J]. 江西农业大学学报, 2006, 28(6): 899-902. DOI:10.3969/j.issn.1000-2286.2006.06.021
[41]
Khan AZ, Kumbhar S, Liu YH, et al. Dietary supplementation of selenium-enriched probiotics enhances meat quality of broiler chickens (Gallus gallus domesticus) raised under high ambient temperature[J]. Biological Trace Element Research, 2018, 182(2): 328-338. DOI:10.1007/s12011-017-1094-z
[42]
Yang YR, Meng FC, Wang P, et al. Effect of organic and inorganic selenium supplementation on growth performance, meat quality and antioxidant property of broilers[J]. African Journal of Biotechnology, 2012, 11(12): 3031-3036.
[43]
Zhang L, Zhang GS, Lou YW, et al. Production performance and meat quality of pig "elevated bed + probiotics" production mode[J]. Jiangxi Journal of Animal Husbandry & Veterinary Medicine, 2018(3): 12-16. (in Chinese)
张磊, 张国生, 娄佑武, 等. 生猪"高架床+益生菌"生产模式产肉性能及肉品质分析研究[J]. 江西畜牧兽医杂志, 2018(3): 12-16. DOI:10.3969/j.issn.1004-2342.2018.03.005
[44]
Yang JJ, Xu YY, Qian K, et al. Effects of chromium-enriched Bacillus subtilis KT260179 supplementation on growth performance, caecal microbiology, tissue chromium level, insulin receptor expression and plasma biochemical profile of mice under heat stress[J]. British Journal of Nutrition, 2016, 115(5): 774-781. DOI:10.1017/S0007114515005127
[45]
Wei LK, Li R, Liu M, et al. Effects of Lactobacillus delbrueckii on performance, carcass traits and meat quality of Ningxiang pigs[J]. Chinese Journal of Animal Nutrition, 2017, 29(12): 4562-4569. (in Chinese)
韦良开, 李瑞, 刘明, 等. 德氏乳杆菌对宁乡猪生产性能、胴体性状及肉品质的影响[J]. 动物营养学报, 2017, 29(12): 4562-4569. DOI:10.3969/j.issn.1006-267x.2017.12.038
[46]
Zhang TY. Effects of feeding lactic acid bacteria on growth, carcass and meat quality of finishing pigs[D]. Taian: Master's Thesis of Shandong Agricultural University, 2013 (in Chinese)
张天阳.饲喂乳酸菌对生长育肥猪生长、胴体及肉质特性影响的研究[D].泰安: 山东农业大学硕士学位论文, 2013 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2303830
[47]
Alfaig E, Angelovicova M, Kral M, et al. Effect of probiotics and thyme essential oil on the texture of cooked chicken breast meat[J]. Acta Scientiarum Polonorum Technologia Alimentaria, 2013, 12(4): 379-384.
[48]
Li K, Luo JJ, Meng K, et al. Effects of probiotics on growth performance, carcass traits, immune function and meat quality of broiler chickens[J]. Chinese Journal of Animal Nutrition, 2015, 27(9): 2903-2910. (in Chinese)
李可, 罗建杰, 孟昆, 等. 益生菌对肉仔鸡生产性能、胴体性状、免疫功能和肉品质的影响[J]. 动物营养学报, 2015, 27(9): 2903-2910. DOI:10.3969/j.issn.1006-267x.2015.09.030
[49]
Guo XH, Liu M, Li WH, et al. Effects of yeast culture on growth performance, meat quality and intestinal microflora of broilers[J]. Chinese Animal Husbandry & Veterinary Medicine, 2017, 44(6): 1673-1679. (in Chinese)
郭小华, 刘明, 李文辉, 等. 日粮中添加酵母培养物对肉仔鸡生长性能、肉品质和肠道菌群的影响[J]. 中国畜牧兽医, 2017, 44(6): 1673-1679.
[50]
Hu HM, Lin S, Wu Y, et al. Effects of probiotics supplementation on growth performance and meat quality of pigs[J]. Swine Production, 2017(2): 50-53. (in Chinese)
呼红梅, 林松, 武英, 等. 饲粮添加益生菌对猪生长性能和肉品质的影响[J]. 养猪, 2017(2): 50-53. DOI:10.3969/j.issn.1002-1957.2017.02.021
[51]
Herdian H, Sofyan A, Sakti AA, et al. Performance and meat quality of local sheep administered with feed additive containing probiotic and organic mineral complex[J]. Media Peternakan, 2014, 36(3): 203-208.
[52]
Zang KL, Jia Y, Cui WJ, et al. Modulation of probiotic Lactobacillus helveticus on gut microbiota in mice[J]. Food Science, 2018, 39(1): 156-164. (in Chinese)
臧凯丽, 贾彦, 崔文静, 等. 瑞士乳杆菌调控小鼠肠道菌群变化规律的研究[J]. 食品科学, 2018, 39(1): 156-164.
[53]
Yang L, Wang BH, Jin Y. Rumen flora and nutrient deposition in ruminants[J]. Heilongjiang Animal Science and Veterinary Medicine, 2017(15): 85-87. (in Chinese)
杨蕾, 王柏辉, 靳烨. 反刍动物瘤胃菌群与机体营养沉积研究进展[J]. 黑龙江畜牧兽医, 2017(15): 85-87.
[54]
Guo XL. Detection of Firmicutes and Bacteroidetes in the pig gut and the correlation between their abundance and fat deposition[D]. Ya'an: Doctoral Dissertation of Sichuan Agricultural University, 2009 (in Chinese)
郭秀兰.猪肠道硬壁菌门和拟杆菌门数量的检测及其相对丰度与脂肪沉积的相关性研究[D].雅安: 四川农业大学博士学位论文, 2009 http://cdmd.cnki.com.cn/Article/CDMD-10626-2009258864.htm
[55]
Cui C. Effect and metabolism of antibiotics, probiotics and tremella fuciformis ferment substance on pig intestinal Firmicutes and Bacteroidetes, fat deposition and fat metabolism-related genes expression[D]. Ya'an: Doctoral Dissertation of Sichuan Agricultural University, 2013 (in Chinese)
崔成.抗生素、益生菌及银耳孢子发酵物对猪肠道硬壁门菌和拟杆门菌、脂肪沉积和脂肪代谢相关基因表达的影响及其作用机理[D].雅安: 四川农业大学博士学位论文, 2013 http://cdmd.cnki.com.cn/Article/CDMD-10626-1014103193.htm
[56]
Wang HS, Ni XQ, Qing XD, et al. Live probiotic Lactobacillus johnsonii BS15 promotes growth performance and lowers fat deposition by improving lipid metabolism, intestinal development, and gut microflora in broilers[J]. Frontiers in Microbiology, 2017, 8: 1073. DOI:10.3389/fmicb.2017.01073
[57]
Popova T. Effect of probiotics in poultry for improving meat quality[J]. Current Opinion in Food Science, 2017, 14: 72-77. DOI:10.1016/j.cofs.2017.01.008
[58]
Li J. Effects of different microflora on intestinal chemical composition and meat quality in Broilers[D]. Beijing: Master's Thesis of China Agricultural University, 2006 (in Chinese)
李菊.肉仔鸡不同菌群状态对肠道化学成分及肉品质的影响[D].北京: 中国农业大学硕士学位论文, 2006 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y939807
[59]
Cheng SY, Belal SA, Kang DR, et al. Influence of probiotics-friendly pig production on meat quality and physicochemical characteristics[J]. Korean Journal for Food Science of Animal Resources, 2018, 38(2): 403-416.
[60]
Wu JJ. Effects of intestinal microflora on intestinal mucosal structure, immune function and fat metabolism in young chickens[D]. Nanchang: Master's Thesis of Jiangxi Agricultural University, 2015 (in Chinese)
吴娟娟.肠道菌群对仔鸡肠道黏膜结构、免疫功能及脂肪代谢的影响[D].南昌: 江西农业大学硕士学位论文, 2015 http://cdmd.cnki.com.cn/Article/CDMD-10410-1015648128.htm
[61]
Wang BH, Yang L, Luo YL. Effects of different feeding patterns on intestinal flora and fatty acid metabolism of Sunit Sheep[J]. Food Science, 2018, 39(17): 1-7. (in Chinese)
王柏辉, 杨蕾, 罗玉龙, 等. 饲养方式对苏尼特羊肠道菌群与脂肪酸代谢的影响[J]. 食品科学, 2018, 39(17): 1-7. DOI:10.7506/spkx1002-6630-201817001
[62]
Liao XD. Screening of Clostridium butyricum and its effects on animal antioxidant capacity and meat quality[D]. Beijing: Doctoral Dissertation of China Agricultural University, 2015 (in Chinese)
廖秀冬.丁酸梭菌的筛选及其对动物抗氧化能力和肉鸡肉品质影响的研究[D].北京: 中国农业大学博士学位论文, 2015 http://cdmd.cnki.com.cn/Article/CDMD-10019-1015584357.htm
[63]
Li JY. Screening of probiotics for synthesis of conjugated linoleic acid and their immunomodulatory function[D]. Harbin: Doctoral Dissertation of Harbin Institute of Technology, 2012 (in Chinese)
李婧妍.合成共轭亚油酸益生菌的筛选及其免疫调节功能研究[D].哈尔滨: 哈尔滨工业大学博士学位论文, 2012 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D239130
[64]
Santillo A, Annicchiarico G, Caroprese M, et al. Probiotics in milk replacer influence lamb immune function and meat quality[J]. Animal, 2012, 6(2): 339-345. DOI:10.1017/S1751731111001571
[65]
Harris ND, Strong DH, Sunde ML. Intestinal flora and chicken flavor[J]. Journal of Food Science, 1968, 33(5): 543-547. DOI:10.1111/j.1365-2621.1968.tb03671.x
[66]
Shrimpton DH, Grey TC. Speculations on the origin and nature of flavor precursors in chicken muscler[J]. World's Poultry Science, 1965, 21: 180.
[67]
Liu L, Ni XQ, Zeng D, et al. Effect of a dietary probiotic, Lactobacillus johnsonii BS15, on growth performance, quality traits, antioxidant ability, and nutritional and flavour substances of chicken meat[J]. Animal Production Science, 2016, 57(5): 920-926.
[68]
Wang Y, Sun J, Zhong H, et al. Effect of probiotics on the meat flavour and gut microbiota of chicken[J]. Scientific Reports, 2017, 7: 6400. DOI:10.1038/s41598-017-06677-z