微生物学通报  2019, Vol. 46 Issue (5): 1185−1195

扩展功能

文章信息

刘娜, 谢学辉, 王钰, 孙朋, 白洪伟
LIU Na, XIE Xue-Hui, WANG Yu, SUN Peng, BAI Hong-Wei
细菌利用不同碳、氮源共代谢降解脱色偶氮染料研究进展
Carbon and nitrogen co-metabolism during bacterial degradation and decolorization of azo dyes
微生物学通报, 2019, 46(5): 1185-1195
Microbiology China, 2019, 46(5): 1185-1195
DOI: 10.13344/j.microbiol.china.180356

文章历史

收稿日期: 2018-05-07
接受日期: 2018-11-09
网络首发日期: 2018-12-26
细菌利用不同碳、氮源共代谢降解脱色偶氮染料研究进展
刘娜1 , 谢学辉2,3 , 王钰1 , 孙朋1 , 白洪伟1     
1. 宿州学院环境与测绘工程学院    安徽  宿州    234000;
2. 东华大学环境科学与工程学院    上海    201620;
3. 上海污染控制与生态安全研究院    上海    200092
摘要: 本文主要综述了细菌利用碳、氮源等不同共代谢基质降解脱色偶氮染料的研究进展。综合文献结果表明, 在单一碳源、单一氮源、复合碳氮源等不同共代谢基质条件下, 细菌降解脱色偶氮染料的效能存在较大差异。其影响因素主要包括碳源种类、氮源种类、浓度、碳氮源复合比例等, 其中碳、氮源种类影响最为显著。针对偶氮染料, 只有提供合适的碳、氮源共代谢基质, 才能对细菌降解脱色的效果起到明显的促进作用。同时, 在不同碳、氮源共代谢基质条件下, 细菌菌群群落结构及优势功能菌种差异较大, 而不同碳、氮源共代谢基质作为偶氮染料还原脱色的电子供体, 产生的脱色效能也有显著不同。最后, 对利用碳、氮源共代谢降解脱色偶氮染料的研究方向进行了展望, 认为复合合适的碳、氮源在提高细菌菌群降解脱色效率方面具有较大潜力, 另一方面, 细菌混合菌群利用碳、氮源共代谢降解脱色偶氮染料的微观分子生态学机制, 酶学作用机制, 功能菌种与功能蛋白之间相互作用机制等还有待深入研究。
关键词: 碳、氮源    细菌降解脱色    偶氮染料    共代谢    
Carbon and nitrogen co-metabolism during bacterial degradation and decolorization of azo dyes
LIU Na1 , XIE Xue-Hui2,3 , WANG Yu1 , SUN Peng1 , BAI Hong-Wei1     
1. School of Environment and Surveying Engineering, Suzhou University, Suzhou, Anhui 234000, China;
2. College of Enviromental Science and Engineering, Donghua University, Shanghai 201620, China;
3. Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
Abstract: This article mainly reviewed the research progress of bacteria using carbon, nitrogen as co-substrate degrading and decolorizing azo dyes. The results of the comprehensive literature showed that there was a great difference in the efficacy of the bacteria under different co-substrate conditions, such as with single carbon source, single nitrogen source, and composite of carbon and nitrogen sources. The main influencing factors included the type of carbon source, the type of nitrogen source, concentration, composite ratio of carbon and nitrogen source, etc. Among them, the type of carbon and nitrogen sources had the most significant impact. For degradation and decolorization of azo dyes, the performance could be promoted only by providing suitable type of carbon and nitrogen sources. At the same time, under different carbon and nitrogen co-substrate conditions, the bacterial community structure and dominant functional bacteria species differed greatly. Different carbon and nitrogen co-substrates were used as electron donors for azo dye reduction and decolorization, and with significant differences. Finally, the research direction was forecasted. It was considered that suitable carbon and nitrogen sources had great potential for improving the degradation and decolorization efficiency of bacterial flora. On the other hand, the microbiological mechanism of carbon and nitrogen as co-metabolism substrates, the enzymatic mechanisms, the interaction mechanism between functional strains and functional proteins had to be further studied.
Keywords: Carbon and nitrogen sources    Bacterial degradation and decolorization    Azo dyes    Co-metabolism    

随着社会经济和纺织工业的快速发展,我国对染料的需求量日益增大,然而染料在使用过程中一般不能被完全利用,残留的染料往往随着废水一起排出。偶氮染料作为数量最多的染料之一,由于结构复杂、种类多样,且在使用过程中容易产生更具毒性的中间产物,因此若未经处理的染料及其中间产物排入环境,将会对水体环境和人类健康造成极大的威胁[1-2]

目前,对偶氮染料的处理方法众多,而生物法因具有处理量大、操作简单、产生较少二次污染等特点被广泛应用于偶氮染料处理[3-4]。国内外学者发现了众多具有染料降解脱色潜力的微生物,如细菌、真菌、藻类等,其中细菌因为具有繁殖速度快、降解效果好、适应环境能力强等优点,最为学者所关注[5]。细菌一般通过分泌的胞外酶作用于染料分子,从而使发色基团从染料分子脱落,达到脱色效果,甚至进一步作用于产生的中间大分子,最终将其降解为小分子化合物,如CO2和H2O[6]。细菌的生存一般需要碳、氮源等营养元素的存在,然而研究表明细菌很难以染料大分子作为单一碳、氮源生存,但是外加碳、氮源却能够显著强化细菌降解脱色偶氮染料的效果。这是因为环境中的微生物可以通过共代谢方式来降解难降解污染物。研究表明,不同碳、氮源的添加对细菌共代谢降解脱色偶氮染料具有一定差异性,但是对于其深入的机理研究还鲜见报道。因此,深入了解并掌握细菌利用不同碳、氮源的共代谢作用对偶氮染料降解脱色过程的影响,研究不同碳、氮源共代谢基质条件下酶学作用机制的差异,对于进一步准确选择并有效利用碳、氮源共代谢降解脱色偶氮染料具有一定指导意义。

1 降解脱色偶氮染料的细菌或菌群

偶氮染料是一类含有偶氮键(-N=N)的大分子化合物,其降解脱色的关键是发色基团偶氮键的断裂,迄今为止,许多学者筛选驯化出了具有高效降解偶氮染料能力的细菌(表 1)。从表 1可以看出,不同菌属的单一细菌都能够对多种偶氮染料完成高效降解脱色。Du等[23]利用菌株Aeromonas sp. DH-6对偶氮染料甲基橙进行降解脱色,结果表明在pH 3.7-7.0和温度5-45 ℃条件下,菌株对100 mg/L的甲基橙可以达到完全降解脱色效果。Li等[24]利用菌株J18 143对多种偶氮染料(120 mg/L)进行降解,结果发现在较宽的pH值、温度和染料浓度范围内都可以达到良好的降解脱色效果。

表 1 具有高效降解脱色偶氮染料能力的细菌或菌群
菌株或菌群
Bacteria or bacteria flora
降解偶氮染料名称
Azo dyes
参考文献
References
Lysinibacillus sp. 雷马素红
Remazol Red
[7]
Pseudomonas sp. 活性红120
Reactive Red-120
[8]
Klebsiella sp. 甲基红、甲基橙、刚果红、橙Ⅰ
Methyl Red, Methyl Orange, Congo Red, Orange I
[9]
Bacillus sp. 刚果红
Congo Red
[10]
Lactococcus sp. 活性黑5
Reactive Black 5
[11]
Aeromonas sp. 活性黑5、酸性橙7、酸性红106、活性蓝160等
Reactive Black 5, Acid Orange 7, Acid Red 106, Reactive Blue 160, etc.
[12]
Enterobacter sp. 活性蓝19、活性黑5
Reactive Blue 19, Reactive Black 5
[13]
Proteus mirabilis LAG 活性蓝13
Reactive Blue 13
[14]
Rhizobium radiobacter MTCC 8161 活性红141
Reactive Red 141
[15]
Providencia sp. 酸性黑210
Acid Black 210
[16]
Sphingomonas paucimobilis 甲基红
Methyl Red
[17]
Halomonas sp. 活性红2
Reactive Red 2
[18]
Acinetobacter calcoaceticus NCIM 2890 单偶氮紫染料
Mono-Azo Dye Amaranth
[19]
Microbial consortium GG-BL 金黄HER
Golden Yellow HER
[20]
Bacterial consortium EDPA 酸性褐Ⅴ
Acid Maroon Ⅴ
[21]
Bacterial consortium DMC 直接黑22
Direct Black 22
[22]

与单一细菌不同,菌群因由同一种属或不同种属的细菌组成,因此其对碳、氮源等共代谢基质的需求更加多元化。研究发现细菌菌群在碳、氮源共代谢基质存在条件下,同样具有高效降解脱色作用。Jain等[25]利用细菌菌群SB4对偶氮染料活性紫5R (100 mg/L)进行降解脱色,研究发现当没有碳、氮源条件下,SB4仅有4%的脱色率,而当以葡萄糖(1 g/L)和酵母提取物(1 g/L)作为碳、氮源时,其脱色率提高了25倍(完全脱色)。类似地,Khan等[26]利用不同碳氮源共代谢菌群AR1降解偶氮染料活性红195 (100 mg/L),结果表明在微氧条件下,当有麦芽糖(0.1%,质量体积比)和蛋白胨(0.1%,质量体积比)存在时,AR1对活性红195的脱色效果更加显著。由此可以看出,碳、氮源共代谢基质的添加可以在一定程度上提高细菌或菌群的降解脱色能力,细菌或菌群的高效降解脱色能力离不开碳、氮源带来的共代谢作用[27-28]

2 碳、氮源共代谢作用

微生物共代谢作用是环境中难降解有机污染物治理的一种重要方式,共代谢是指一些难降解有机物的降解是在微生物从其他底物获取碳源和能源的过程中才能被降解的过程[29],而这些底物可以被认为是共代谢基质。微生物在利用共代谢基质共代谢降解脱色偶氮染料的过程中,认为共代谢基质是电子供体,而染料则扮演电子受体的角色。通过将共代谢基质释放的电子传递到染料分子,与染料分子作用,从而达到偶氮键断裂、染料降解脱色的目的。共代谢基质包括碳源、氮源类物质,一些能提高处理效率的有机物(如乳酸、染料中间体等)。其中,碳、氮源被认为是最常用的共代谢基质。碳源、含碳化合物是微生物生长所需的一类营养物质,包括有机碳源和无机碳源两大类,其中有机碳源主要有糖类、脂类、小分子醇、有机酸和生物质等,无机碳源主要有二氧化碳、碳酸盐类等。氮源包括有机氮源和无机氮源,其中有机氮源主要有蛋白胨、牛肉膏、酵母提取物等,同时由于它们营养丰富有时也将它们作为有机碳源添加,而无机氮源主要有硝酸盐和氨盐等。在细菌降解脱色偶氮染料过程中,提供合适的碳、氮源共代谢基质能够促进细菌降解脱色效果。

2.1 单一碳源共代谢作用

在偶氮染料降解脱色的过程中,碳源的添加能够提高单菌的降解脱色效果,且不同的降解脱色环境下,不同种类碳源的共代谢作用呈现出较大的差异。Pathak等[30]利用不同种类的碳源以及菌株Morganella sp. HK-1共代谢降解脱色活性黑B (20 g/L),结果表明在众多碳源(0.35%,质量体积比)中,葡萄糖能够显著提高菌株的降解脱色效果(脱色率为98%)。Franciscon等[31]利用兼氧菌VN-31对偶氮染料进行降解,结果表明在微氧条件下,仅当葡萄糖和丙酮酸两种碳源共代谢基质存在条件下,兼氧菌VN-31才能有效地对多种偶氮染料进行降解脱色。

与单菌类似,单一碳源对菌群的降解脱色能力同样具有一定的强化作用。Saba等[32]利用附着微生物菌群生长的反应器对印染废水(染料浓度100 mg/L、微生物浓度107-108 CFU/mL、MLSS 1 000 mg/L、COD > 1 000 mg/L)进行处理,研究结果表明当添加酵母提取物作为碳源时,其处理效果更佳。研究表明,利用碳源共代谢细菌降解脱色偶氮染料时,认为碳源是电子供体,而染料则扮演电子受体的角色,电子通过氧化还原介质被传递到染料分子,与染料分子作用,从而达到偶氮键断裂、染料降解脱色的目的[26]

2.2 单一氮源共代谢作用

与单一碳源共代谢作用类似,单一氮源的添加同样能够促进细菌对偶氮染料的降解脱色效果。Pathak等[30]利用细菌Morganella sp. HK-1对偶氮染料RB-B进行脱色,结果表明在多种氮源存在条件下脱色率可以高达95%以上。Imran等[33]利用菌株Shewanella sp.对偶氮染料(200 mg/L)进行降解脱色,发现当按10%比例接种微生物时,酵母提取物(1 g/L)的添加能够提高脱色效果。Chen等研究表明,有机氮源和无机氮源都能够促进细菌对偶氮染料的降解脱色效果[12]

菌群降解脱色偶氮染料过程中,同样需要氮源共代谢基质的存在,并且由于种群组成的多样性,其对氮源的需求更加多样化。Balapure等[34]利用混合菌群BDN对偶氮染料活性蓝160 (100 mg/L)进行降解脱色,在添加氮源(0.5%,质量体积比)的条件下,微生物对活性蓝160的脱色率是无氮源添加的20倍。利用氮源共代谢细菌降解脱色偶氮染料时,认为氮源是NADH再生的关键,而NADH作为电子供体,能够达到偶氮键断裂的目的,从而增强降解脱色效果[30, 35]。因此,在不同的处理环境下选取合适的单一的碳、氮源有可能有效促进细菌降解脱色效果。

2.3 复合碳、氮源共代谢作用

复合碳、氮源共代谢基质即是将不同碳、氮源共代谢基质按不同的比例复合而成。虽然碳、氮源共代谢基质在细菌降解脱色偶氮染料过程中都能够达到偶氮键断裂的目的,但它们扮演不同的角色,作用方式有显著差别。如果将一种碳源和一种氮源按照合适的比例同时添加到降解系统中,有可能起到事半功倍的效果。Amar等[15]利用菌株Rhizobium radiobacter MTCC 8161对活性红141 (50 mg/L)进行降解脱色,结果表明与单一碳、氮源相比,复合碳、氮源的添加能够显著提高菌群的降解脱色效果,其中,当以酵母提取物(0.5%,质量体积比)和尿素(0.5%,质量体积比)分别作为单一碳、氮源时,菌株的脱色率分别为56%和27%,而当将两者组合成复合碳、氮源添加后,菌株的脱色率高达85%。类似地,Moosvi等[36]利用单一和复合碳、氮源共代谢细菌降解脱色活性紫5 (100 mg/L),结果表明在水解酸化条件下,当分别以葡萄糖(0.1%,质量体积比)和酵母提取物(0.05%,质量体积比)作为单一碳、氮源时,细菌脱色率分别为5.57%和23%,而将葡萄糖和酵母提取物组合后作为复合碳、氮源时,细菌对活性紫5的脱色率高达94%。

利用菌群对偶氮染料进行降解脱色时,菌群的菌种组成较为复杂,群落结构组成和优势菌种都会对降解脱色作用产生较大影响,它们通过彼此之间的相互作用完成降解脱色作用,其降解脱色效果较单一细菌更为出色[37]。Joshi等[38]利用葡萄糖和酵母提取物强化细菌降解脱色系统,研究表明当葡萄糖和酵母提取物按一定比例复合时,能够起到良好的效果。在菌群降解脱色偶氮染料的过程中,单一碳、氮源的添加不一定能够满足多个菌种对营养和能量的需求,而复合碳、氮源的添加则能够较为全面地提供营养物质,促进各种降解酶的活性,从而提高菌群降解脱色效果。本实验室在前期研究中,采用梯度浓度压力驯化法,筛选驯化出对活性黑5具有良好降解脱色性能的混合菌群FF。研究结果表明,该混合菌群FF以牛肉膏、蛋白胨为复合共代谢基质,在活性黑5初始浓度为200 mg/L,培养温度35 ℃、pH 8.0的条件下,静置培养12 h,测定其平均脱色率为84.6%,24 h后其最高脱色率可达94.8%,连续培养150代以后其降解脱色效果依然非常稳定[39]。同时研究了培养基中不同碳、氮源对混合菌群FF生长和降解脱色的影响。在碳源试验中,当碳源为蔗糖时,降解脱色效果最好为82.1%,在氮源试验中,当氮源为蛋白胨时,生长和降解脱色总体效果最好,脱色率为73.1%。而各种单一碳、氮源实验结果表明,混合菌群FF在不同碳、氮源条件下生长和降解脱色效果都不如在牛肉膏和蛋白胨复合培养基中效果好。同时,利用LC-MS测定活性黑5的降解脱色中间产物,初步推测其降解脱色机理,结果表明可能存在两种降解途径[40]

从上述研究可以看出,碳、氮源共代谢基质的添加,能够在一定程度上刺激细菌或菌群对偶氮染料的降解脱色效果,这可能是因为碳、氮源的添加提高了细菌或菌群分泌相关作用酶的活性,如偶氮还原酶[33]。另外,与单一碳、氮源相比,复合碳、氮源能够为细菌或菌群提供更加全面的营养需求,从而满足不同菌种在生长或降解过程中对共代谢基质的需要,因此,复合碳、氮源共代谢基质在细菌菌群共代谢降解脱色偶氮染料中可能有更大潜力。

3 碳、氮源共代谢作用的影响因素 3.1 碳、氮源种类

碳、氮源共代谢基质的添加能够在一定程度上促进细菌或菌群对偶氮染料的降解脱色效果,但是并非所有种类的碳、氮源都适合于特定环境下的细菌或菌群处理系统。研究发现,利用不同种类的碳、氮源共代谢菌群降解脱色偶氮染料时,结果呈现出较大的差异性[41]。Du等[23]利用细菌Aeromonas sp. DH-6对偶氮染料甲基橙(100 mg/L)进行降解脱色,结果发现大部分碳、氮源都能够促进降解脱色效果,其中葡萄糖和酵母提取物分别是最佳碳源和氮源,但是蔗糖和NaNO3分别对降解脱色效果具有轻微和强烈的抑制作用。这是因为细菌在一定环境下对碳、氮源具有一定的选择性,并非所有种类的碳、氮源都适宜细菌的生长,而适宜生长的碳、氮源不一定能够促进细菌分泌降解酶的活性,从而影响其降解脱色效率。Imran等[33]利用细菌Shewanella sp. IFN4对偶氮染料进行降解脱色,研究表明除了酵母提取物,其他碳、氮源共代谢基质如葡萄糖、蔗糖、蛋白胨、牛肉膏等都不能提高偶氮还原酶的活性。因此,对于不同的菌群、降解脱色环境,针对偶氮染料只有提供合适的碳、氮源共代谢基质,才能对细菌的降解脱色效果起到明显的促进作用。

3.2 碳、氮源浓度

在利用碳、氮源共代谢细菌降解脱色偶氮染料过程中,在相同环境条件下,除了碳、氮源种类之外,碳、氮源浓度对细菌降解脱色偶氮染料效果同样会产生极大的影响。与未添加碳、氮源共代谢基质相比,添加合适碳、氮源之后细菌的降解脱色效果得到明显提高。研究发现,在一定浓度范围内随着浓度的增加,碳、氮源共代谢基质对细菌降解脱色偶氮染料的强化作用逐渐增强。但是,随着浓度的进一步提高,碳、氮源对细菌降解脱色效果的增强作用不明显,甚至出现降低的现象。这可能是因为高浓度共代谢基质条件下,细菌会优先选择利用共代谢基质,从而导致染料降解脱色效率降低[42]。Imran等[33]利用酵母提取物促进脱色菌株Shewanella sp. IFN4的偶氮还原酶活性,从而增强其降解脱色效果,但这种促进作用很大程度上依赖于酵母提取物的浓度,当酵母提取物的浓度从0逐渐增加到1 g/L时,偶氮还原酶的活性从1.32 U/mg蛋白质直线增加到3.12 U/mg蛋白质,当酵母提取物的浓度大于1 g/L时,偶氮还原酶活性增加趋势减缓并趋向于饱和状态。因此,在利用碳、氮源共代谢细菌降解脱色偶氮染料过程中,应探索碳、氮源共代谢基质的最佳浓度,从而有效提高细菌降解脱色效果。

3.3 碳、氮源复合比例

利用多种碳、氮源对细菌降解脱色偶氮染料过程进行强化时,复合比例的选择会直接影响细菌降解脱色效果。Liao等[43]利用细菌对偶氮染料活性黑B (20 mg/L)进行降解脱色,研究发现当添加葡萄糖和酵母提取物为碳、氮源时,其降解脱色效果得到显著提高,而且研究表明最佳碳氮比为6:5。Joshi等[38]利用细菌菌群TJ-1对多种结构不同的偶氮染料进行降解脱色,研究发现当同时利用葡萄糖和酵母提取物作为碳源,且葡萄糖和酵母提取物的含量分别为0.06 g/L和0.6 g/L时,菌群TJ-1可以完全降解脱色偶氮染料AO7 (40 mg/L),相当于单独添加3 g/L酵母提取物时的降解脱色效果。因此,在利用复合碳、氮源共代谢细菌降解脱色偶氮染料时,选取合适的碳、氮源复合比例,能够最大程度的起到促进作用。

综上所述,碳、氮源的种类、浓度和复合比例对共代谢细菌降解脱色偶氮染料产生重要影响,其中碳、氮源种类影响最为显著,并不是所有的碳、氮源都能促进细菌降解脱色效果,例如Al-Amrani等[44]利用缺氧-好氧序批式反应器对偶氮染料进行降解脱色,通过添加碳、氮源来促进反应器中菌群的降解脱色作用,结果发现没有碳、氮源添加的反应器反而表现出了更好的处理效果。Ong等[45]也得到了类似的结果。因此,只有选择合适的碳、氮源种类、浓度和复合比例,才能有效增强细菌降解脱色偶氮染料效果。

4 碳、氮源共代谢基质对菌群群落结构的影响

利用细菌菌群对染料进行降解脱色时,菌群各菌株之间相互作用、相互联系,共同代谢降解脱色偶氮染料,其降解脱色效果较单一菌株更佳。当给菌群提供不同碳、氮源时,将会在一定程度上影响菌群的群落结构及优势菌种类,从而影响降解脱色效果。Sun等[46]利用不同碳源(葡萄糖、醋酸)共代谢菌群降解脱色偶氮染料茜素黄R (100 mg/L),探讨菌群群落结构及优势菌对其响应差异情况,结果表明当提供葡萄糖(1 g/L)时,Citrobacter (29.2%)、Enterococcus (14.7%)和Alkaliflexus (9.2%)是优势菌种,而当提供醋酸(1 g/L)时,Acinetobacter (17.8%)和Achromobacter (6.4%)则成为优势菌种,不同种类碳源的添加导致菌群群落结构、组成及优势菌种发生变化,从而引起菌群对茜素黄R降解脱色效果的差异。

研究发现,当向水解酸化反应器中添加不同碳、氮源共代谢基质后,菌群群落结构和优势菌种都呈现出较大的响应差异性[47-49]。特别地,当蔗糖存在条件下,与未添加碳、氮源的情况相比,不仅脱色率得到了一定的提高,而且优势菌群拟杆菌(Bacteroidetes)和厚壁菌(Firmicutes)也得到了强化,而它们可能在染料降解中起到重要作用[50]。进一步采用实验室静置培养方式考察不同碳、氮源共代谢基质作用下,菌群群落结构的响应状况时发现,在无机碳源和有机氮源共代谢基质存在条件下,菌群DDMZ1的群落结构变化幅度较小,而糖类(尤其是果糖)共代谢基质存在条件下,对菌群的群落结构影响较大[51]

5 碳、氮源共代谢降解偶氮染料的酶学作用机制

目前普遍认为,偶氮染料可以被细菌在好氧和厌氧两种条件下降解。在好氧条件下偶氮染料降解过程中,细菌利用的酶一般是特异性的偶氮还原酶,该种特异性酶对氧气不敏感,可以在有氧存在的条件下催化细菌对偶氮键的断裂,从而完成偶氮染料的脱色过程[52]。但是在好氧条件下,相比于偶氮染料,氧气更容易获得电子,从而阻碍偶氮键的还原作用,大大影响了偶氮染料的脱色速率。在厌氧条件下,偶氮染料还原的研究已经有很多报道。通常认为,偶氮染料分子在厌氧或微氧状态下易被细菌还原[53],而还原的机理认为是依赖黄素酶的非特异性还原[54]。由于偶氮分子的极性和空间位阻较大,无法进入细胞膜内[55],因此是通过氧化还原介体完成的还原反应[56]。俞承志等[57]研究发现,活性黑5的兼氧还原过程就是通过氧化还原介体在胞外完成偶氮键的断裂实现脱色。

近年来,人们利用基因工程技术,将编码偶氮还原酶的特异性基因克隆到大肠杆菌等易于生长且无害的菌种中,以期获得偶氮还原酶的大量表达生产。如重组表达的芽孢杆菌OY1-2和Xenophilus azovorans KF46F的偶氮还原酶活性分别提高10-50倍[58]。研究表明,这些基因工程菌虽然在胞内过量表达了偶氮还原酶,但是并没有表现出比野生菌更强的脱色能力[59]。对于磺酸取代类偶氮染料,由于染料分子复杂的结构及其取代基的高极性,使其很难进入细菌细胞内被偶氮还原酶还原[60],因此在细菌细胞内过量表达的偶氮还原酶难以发挥作用。而有研究发现,醌类化合物作为介体能促进偶氮染料脱色,此过程依赖于细菌细胞膜上或细胞质内的醌还原酶,在醌还原酶的作用下,醌类化合物被还原为相应的氢醌,氢醌再通过纯化学的作用将偶氮染料还原使其脱色[61]。周觅等[59]以葡萄糖作为共代谢基质,利用细菌细胞的醌还原酶活性,选用醌类化合物作为氧化还原介体,研究了基因工程菌E. coli YB对偶氮染料的脱色,得到了目前已报道最快的细菌比脱色速率。

研究发现在厌氧还原过程中,碳、氮源共代谢基质主要作为电子供体实现偶氮染料生物还原。其中糖类、有机酸、蛋白质等有机物均能作为氧化态化合物厌氧还原的电子供体[62]。另外,糖类、蛋白质等有机底物水解发酵的最主要产物乙酸、H2、丙酸等短链脂肪酸(VFAs),也可作为电子供体还原部分氧化态污染物[63]。菌株Shewanella aquimarina还原偶氮染料的研究结果表明,乳酸和甲酸是酸性红27 (AR27)还原最有效的电子供体,AR27在5-6 h内的还原脱色率高达97%以上,并能耐受高盐度条件(5% NaCl)[64]。Liu等[65]利用菌株Shewanella oneidensis MR-1对偶氮染料进行降解脱色,结果发现当以乳酸和甲酸为电子供体时,在10 h内对AR27的还原脱色率可分别达到94.0%和90.5%,然而葡萄糖、蔗糖、乙酸、甘油、柠檬酸和水杨酸为电子供体时的还原去除率低于30%。由此可见,甲酸、乳酸等有机酸是希瓦氏菌属还原偶氮染料的最有效电子供体。而在活性污泥混合菌群中,虽然VFAs混合物和丙酸均能作为酸性橙7 (AO7)还原的电子供体,但是以葡萄糖为电子供体时的还原速率最高[66],葡萄糖发酵形成还原力[NAD(P)H]是混合菌群中AO7快速还原的限速步骤[62]

综上,虽然纯菌株对偶氮染料的脱色具有良好的效果,但是也存在一定的局限性。这是因为纯菌株细胞内酶的种类有限,无法同时催化多种不同结构类型偶氮染料的脱色,而混合菌群或厌氧污泥能够打破纯菌株降解偶氮染料的局限性,不同代谢类型的细菌具有不同的酶系种类,可通过不同的代谢作用协同实现对不同结构的偶氮染料的脱色[67]。研究发现,在不同共代谢基质条件下,菌群对双偶氮染料活性黑5和蒽醌染料活性艳蓝的脱色效能呈现出较大的差异[47]。由文献可知,宏蛋白质组学是当今发展最迅速的研究领域之一[68],它能使人们在细胞水平上更加直观地了解生物群落[69]。它不仅能够反映出各个蛋白的功能以及群落在胁迫下的响应,同时也能更好地认识多样的微生物群落与生态系统之间复杂的相互作用关系[70-71]。近年来,已经有一定数量关于活性污泥样品的大规模的蛋白质组学研究证明了宏蛋白质组学在揭示微生物群落功能、蛋白质相互作用、生理机能和进化的分子生物学机制研究中的巨大潜力[72-73],今后可开展此方面相关研究。

碳、氮源特别是复合碳、氮源条件下,细菌共代谢降解脱色偶氮染料的作用机制较为复杂,对其微观分子生态学作用机制、酶学作用机制以及功能菌种和功能蛋白相互作用机制进行深入研究,能从根本上了解其共代谢作用机理,尤其对于混合菌群共代谢降解染料作用机理有更深入的认识,将对于如何有效利用碳、氮源共代谢处理含偶氮染料实际印染废水具有重要理论指导意义。

6 结语

细菌利用碳、氮源共代谢降解脱色偶氮染料,共代谢基质能够有效促进细菌或菌群的降解脱色效能。其降解脱色效果受碳、氮源种类、浓度、碳氮源复合比例等多方面因素的影响,其中碳、氮源种类影响最为显著。只有选择合适的单一或复合碳、氮源共代谢基质,才能最大程度地促进细菌或菌群对偶氮染料的降解脱色作用。由于碳、氮源特别是复合碳、氮源共代谢基质条件下,细菌或菌群共代谢降解脱色偶氮染料的微生物学作用机制较为复杂,也存在较大差异。因此,今后可以开展微观生物学、分子生态学、酶学机制、宏蛋白质组学等方面的研究,探讨不同条件下,单一碳、氮源或复合碳、氮源对细菌或菌群的降解脱色性能、染料降解机理、菌群群落结构,以及功能菌种和功能蛋白相互作用机制的影响,比较其差异性,同时可以筛选出优势功能菌种、功能蛋白及其最佳碳、氮源等,为进一步应用提供理论依据。

参考文献
[1]
Saratale RG, Saratale GD, Kalyani DC, et al. Enhanced decolorization and biodegradation of textile azo dye Scarlet R by using developed microbial consortium-GR[J]. Bioresource Technology, 2009, 100(9): 2493-2500. DOI:10.1016/j.biortech.2008.12.013
[2]
Forss J, Pinhassi J, Lindh M, et al. Microbial diversity in a continuous system based on rice husks for biodegradation of the azo dyes Reactive Red 2 and Reactive Black 5[J]. Bioresource Technology, 2013, 130: 681-688. DOI:10.1016/j.biortech.2012.12.097
[3]
Shanmugam BK, Mahadevan S. Metabolism and biotransformation of azo dye by bacterial consortium studied in a bioreaction calorimeter[J]. Bioresource Technology, 2015, 196: 500-508. DOI:10.1016/j.biortech.2015.07.108
[4]
Cerboneschi M, Corsi M, Bianchini R, et al. Decolorization of acid and basic dyes: understanding the metabolic degradation and cell-induced adsorption/precipitation by Escherichia coli[J]. Applied Microbiology and Biotechnology, 2015, 99(19): 8235-8245. DOI:10.1007/s00253-015-6648-4
[5]
Cui DZ, Li GF, Zhao D, et al. Microbial community structures in mixed bacterial consortia for azo dye treatment under aerobic and anaerobic conditions[J]. Journal of Hazardous Materials, 2012, 221-222: 85-192.
[6]
Telke AA, Joshi SM, Jadhav SU, et al. Decolorization and detoxification of Congo red and textile industry effluent by an isolated bacterium Pseudomonas sp. SU-EBT[J]. Biodegradation, 2010, 2: 283-296.
[7]
Saratale RG, Gandhi SS, Purankar MV, et al. Decolorization and detoxification of sulfonated azo dye C[J]. Journal of Bioscience and Bioengineering, 2013, 115(6): 658-667. DOI:10.1016/j.jbiosc.2012.12.009
[8]
Paul J, Kadam AA, Govindwar SP, et al. An insight into the influence of low dose irradiation pretreatment on the microbial decolouration and degradation of Reactive Red-120 dye[J]. Chemosphere, 2013, 90(4): 1348-1358. DOI:10.1016/j.chemosphere.2012.07.049
[9]
Cui DZ, Li GF, Zhao M, et al. Decolourization of azo dyes by a newly isolated Klebsiella sp. strain Y3, and effects of various factors on biodegradation[J]. Biotechnology and Biotechnological Equipmen, 2014, 28(3): 478-486. DOI:10.1080/13102818.2014.926053
[10]
Lončar N, Gligorijević N, Božić N, et al. Congo red degrading laccases from Bacillus amyloliquefaciens strains isolated from salt spring in Serbia[J]. International Biodeterioration & Biodegradation, 2014, 91: 18-23.
[11]
You SJ, Teng JY. Anaerobic decolorization bacteria for the treatment of azo dye in a sequential anaerobic and aerobic membrane bioreactor[J]. Journal of the Taiwan Institute of Chemical Engineers, 2009, 40(5): 500-504. DOI:10.1016/j.jtice.2009.01.007
[12]
Chen KC, Wu JY, Liou DJ, et al. Decolorization of the textile dyes by newly isolated bacterial strains[J]. Journal of Biotechnology, 2003, 101(1): 57-68.
[13]
Chen G, Huang MH, Chen L, et al. A batch decolorization and kinetic study of Reactive Black 5 by a bacterial strain Enterobacter sp. GY-1[J]. International Biodeterioration & Biodegradation, 2011, 65(6): 790-796.
[14]
Olukanni OD, Osuntoki AA, Kalyani DC, et al. Decolorization and biodegradation of Reactive Blue 13 by Proteus mirabilis LAG[J]. Journal of Hazardous Materials, 2010, 184(1/3): 290-298.
[15]
Amar T, Dayanand K, Jyoti J, et al. Kinetics and mechanism of Reactive Red 141 degradation by a bacterial isolate Rhizobium radiobacter MTCC 8161[J]. Acta Chimica Slovenica, 2008, 55: 320-329.
[16]
Agrawal S, Tipre D, Patel B, et al. Optimization of triazo Acid Black 210 dye degradation by Providencia sp. SRS82 and elucidation of degradation pathway[J]. Process Biochemistry, 2014, 49(1): 110-119. DOI:10.1016/j.procbio.2013.10.006
[17]
Ayed L, Mahdhi A, Cheref A, et al. Decolorization and degradation of azo dye Methyl Red by an isolated Sphingomonas paucimobilis: Biotoxicity and metabolites characterization[J]. Desalination, 2011, 274(1/3): 272-277.
[18]
Balamurugan B, Thirumarimurugan M, Kannadasan T. Anaerobic degradation of textile dye bath effluent using Halomonas sp.[J]. Bioresource Technology, 2011, 102(10): 6365-6369. DOI:10.1016/j.biortech.2011.03.017
[19]
Ghodake G, Jadhav U, Tamboli D, et al. Decolorization of textile dyes and degradation of mono-azo dye amaranth by Acinetobacter calcoaceticus NCIM 2890[J]. Indian Journal of Microbiology, 2011, 51(4): 501-508. DOI:10.1007/s12088-011-0131-4
[20]
Waghmode TR, Kurade MB, Khandare RV, et al. A sequential aerobic/microaerophilic decolorization of sulfonated mono azo dye Golden Yellow HER by microbial consortium GG-BL[J]. International Biodeterioration & Biodegradation, 2011, 65(7): 1024-1034.
[21]
Patel Y, Mehta C, Gupte A. Assessment of biological decolorization and degradation of sulfonated di-azo dye Acid Maroon Ⅴ by isolated bacterial consortium EDPA[J]. International Biodeterioration & Biodegradation, 2012, 75: 187-193.
[22]
Mohana S, Shrivastava S, Divecha J, et al. Response surface methodology for optimization of medium for decolorization of textile dye Direct Black 22 by a novel bacterial consortium[J]. Bioresource Technology, 2008, 99(3): 562-569. DOI:10.1016/j.biortech.2006.12.033
[23]
Du LN, Li G, Zhao YH, et al. Efficient metabolism of the azo dye methyl orange by Aeromonas sp. strain DH-6: Characteristics and partial mechanism[J]. International Biodeterioration & Biodegradation, 2015, 105: 66-72.
[24]
Li T, Guthrie JT. Colour removal from aqueous solutions of metal-complex azo dyes using bacterial cells of Shewanella strain J18 143[J]. Bioresource Technology, 2010, 101(12): 4291-4295. DOI:10.1016/j.biortech.2010.01.024
[25]
Jain K, Shah V, Chapla D, et al. Decolorization and degradation of azo dye—Reactive Violet 5R by an acclimatized indigenous bacterial mixed cultures-SB4 isolated from anthropogenic dye contaminated soil[J]. Journal of Hazardous Materials, 2012, 213-214: 378-386. DOI:10.1016/j.jhazmat.2012.02.010
[26]
Khan Z, Jain K, Soni A, et al. Microaerophilic degradation of sulphonated azo dye – Reactive Red 195 by bacterial consortium AR1 through co-metabolism[J]. International Biodeterioration & Biodegradation, 2014, 94: 167-175.
[27]
Jonstrup M, Kumar N, Guieysse B, et al. Decolorization of textile dyes by Bjerkandera sp. BOL 13 using waste biomass as carbon source[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(3): 388-394.
[28]
Zhang QY, Xie XH, Liu JS. Research overview of microbial co-metabolism on printing and dyeing wastewater treatment[J]. Chemical Industry and Engineering Progress, 2017, 36(9): 3492-3501. (in Chinese)
张庆云, 谢学辉, 柳建设. 微生物共代谢处理印染废水研究进展[J]. 化工进展, 2017, 36(9): 3492-3501.
[29]
Jensen HL. Carbon nutrition of some microorganisms decomposing halogen-substituted aliphatic acids[J]. Acta Agriculturae Scandinavica, 1963, 13(4): 404-412. DOI:10.1080/00015126309435665
[30]
Pathak H, Soni D, Chauhan K. Evaluation of in vitro efficacy for decolorization and degradation of commercial azo dye RB-B by Morganella sp. HK-1 isolated from dye contaminated industrial landfill[J]. Chemosphere, 2014, 105: 126-132. DOI:10.1016/j.chemosphere.2014.01.004
[31]
Franciscon E, Zille A, Fantinatti-Garboggini F, et al. Microaerophilic–aerobic sequential decolourization/ biodegradation of textile azo dyes by a facultative Klebsiella sp. strain VN-31[J]. Process Biochemistry, 2009, 44(4): 446-452. DOI:10.1016/j.procbio.2008.12.009
[32]
Saba B, Khalid A, Nazir A, et al. Reactive black-5 azo dye treatment in suspended and attach growth sequencing batch bioreactor using different co-substrates[J]. International Biodeterioration & Biodegradation, 2013, 85: 556-562.
[33]
Imran M, Arshad M, Negm F, et al. Yeast extract promotes decolorization of azo dyes by stimulating azoreductase activity in Shewanella sp. strain IFN4[J]. Ecotoxicology and Environmental Safety, 2016, 124: 42-49. DOI:10.1016/j.ecoenv.2015.09.041
[34]
Balapure KH, Jain K, Chattaraj S, et al. Co-metabolic degradation of diazo dye- reactive blue 160 by enriched mixed cultures BDN[J]. Journal of Hazardous Materials, 2014, 279: 85-95. DOI:10.1016/j.jhazmat.2014.06.057
[35]
Pathak H, Patel S, Rathod M, et al. In vitro studies on degradation of synthetic dye mixture by Comamonas sp. VS-MH2 and evaluation of its efficacy using simulated microcosm[J]. Bioresource Technology, 2011, 102(22): 10391-10400. DOI:10.1016/j.biortech.2011.09.039
[36]
Moosvi S, Keharia H, Madamwar D. Decolourization of textile dye Reactive Violet 5 by a newly isolated bacterial consortium RVM 11.1[J]. World Journal of Microbiology and Biotechnology, 2005, 21(5): 667-672. DOI:10.1007/s11274-004-3612-3
[37]
Mishra S, Maiti A. The efficacy of bacterial species to decolourise reactive azo, anthroquinone and triphenylmethane dyes from wastewater: a review[J]. Environmental Science and Pollution Research, 2018, 25(9): 8286-8314. DOI:10.1007/s11356-018-1273-2
[38]
Joshi T, Iyengar L, Singh K, et al. Isolation, identification and application of novel bacterial consortium TJ-1 for the decolourization of structurally different azo dyes[J]. Bioresource Technology, 2008, 99(15): 7115-7121. DOI:10.1016/j.biortech.2007.12.074
[39]
Xie XH, Fan FX, Yuan XW, et al. Isolation of high performance bacterial consortium FF and its decolorization effects on reactive black 5[J]. Journal of Donghua University (Natural Science), 2013, 39(6): 802-813. (in Chinese)
谢学辉, 范凤霞, 袁学武, 等. 高效混合菌群FF的筛选及其对活性黑5的脱色作用[J]. 东华大学学报:自然科学版, 2013, 39(6): 802-813.
[40]
Fan FX. Study on decolorization and degradation of reactive black 5 by the flora FF[D]. Shanghai: Master's Thesis of Donghua University, 2013 (in Chinese)
范凤霞.混合菌群FF对活性黑5的脱色降解研究[D].上海: 东华大学硕士学位论文, 2013 http://cdmd.cnki.com.cn/Article/CDMD-10255-1013161601.htm
[41]
Rasool K, Mahmoud KA, Lee DS. Influence of co-substrate on textile wastewater treatment and microbial community changes in the anaerobic biological sulfate reduction process[J]. Journal of Hazardous Materials, 2015, 299: 453-461. DOI:10.1016/j.jhazmat.2015.07.044
[42]
Wang H, Zheng XW, Su JQ, et al. Biological decolorization of the reactive dyes Reactive Black 5 by a novel isolated bacterial strain Enterobacter sp. EC3[J]. Journal of Hazardous Materials, 2009, 171(1/3): 654-659.
[43]
Liao CS, Hung CH, Chao SL. Decolorization of azo dye reactive black B by Bacillus cereus strain HJ-1[J]. Chemosphere, 2013, 90(7): 2109-2114. DOI:10.1016/j.chemosphere.2012.10.077
[44]
Al-Amrani WA, Lim PE, Seng CE, et al. Factors affecting bio-decolorization of azo dyes and COD removal in anoxic–aerobic REACT operated sequencing batch reactor[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(2): 609-616. DOI:10.1016/j.jtice.2013.06.032
[45]
Ong SA, Toorisaka E, Hirata M, et al. Decolorization of Orange Ⅱ using an anaerobic sequencing batch reactor with and without co-substrates[J]. Journal of Environmental Sciences, 2012, 24(2): 291-296. DOI:10.1016/S1001-0742(11)60766-3
[46]
Sun Q, Li ZL, Wang YZ, et al. Cathodic bacterial community structure applying the different co-substrates for reductive decolorization of Alizarin Yellow R[J]. Bioresource Technology, 2016, 208: 64-72. DOI:10.1016/j.biortech.2016.02.003
[47]
Xie XH, Liu N, Ping J, et al. Illumina MiSeq sequencing reveals microbial community in HA process for dyeing wastewater treatment fed with different co-substrates[J]. Chemosphere, 2018, 201: 578-585. DOI:10.1016/j.chemosphere.2018.03.025
[48]
Xie XH, Liu N, Yang B, et al. Comparison of microbial community in hydrolysis acidification reactor depending on different structure dyes by Illumina MiSeq sequencing[J]. International Biodeterioration & Biodegradation, 2016, 111: 14-21.
[49]
Liu N, Xie XH, Yang B, et al. Performance and microbial community structures of hydrolysis acidification process treating azo and anthraquinone dyes in different stages[J]. Environmental Science and Pollution Research, 2017, 24(1): 252-263. DOI:10.1007/s11356-016-7705-y
[50]
Liu N, Xie XH, Yang B, et al. Changes of microbial community in hydrolysis acidification processs before and after bioaugmentation[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 2769-2774. (in Chinese)
刘娜, 谢学辉, 杨波, 等. 生物强化水解酸化过程前后微生物群落结构变化[J]. 环境工程学报, 2016, 10(6): 2769-2774.
[51]
Zhang QY, Xie XH, Yu CZ, et al. Effects of different co-metabolic substrates on the decolorization of reactive black 5 by bacteria and the community structure of bacterial flora[J]. Chinese Journal of Ecology, 2017, 36(9): 2572-2580. (in Chinese)
张庆云, 谢学辉, 俞承志, 等. 不同共代谢基质对活性黑5脱色菌群脱色性能及群落结构的影响[J]. 生态学杂志, 2017, 36(9): 2572-2580.
[52]
Zhang M. Study on the decolorizing characteristics and the catalysis mechanism of redox mediators during the azo dyes biodegradation processes[D]. Harbin: Master's Thesis of Northeast Forestry University, 2016 (in Chinese)
张淼.蒽醌介体强化偶氮染料的脱色特性及机理研究[D].哈尔滨: 东北林业大学硕士学位论文, 2016 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y3145958
[53]
Işık M, Sponza DT. A batch kinetic study on decolorization and inhibition of Reactive Black 5 and Direct Brown 2 in an anaerobic mixed culture[J]. Chemosphere, 2004, 55(1): 119-128. DOI:10.1016/j.chemosphere.2003.10.008
[54]
Bürger S, Stolz A. Characterisation of the flavin-freeoxygen-tolerant azoreductase from Xenophilus azovorans KF46F in comparison to flavin-containing azoreductases[J]. Applied Microbiology and Biotechnology, 2010, 87(6): 2067-2076. DOI:10.1007/s00253-010-2669-1
[55]
van der Zee FP, Lettinga G, Field JA. Azo dye decolourisation by anaerobic granular sludge[J]. Chemosphere, 2001, 44(5): 1169-1176. DOI:10.1016/S0045-6535(00)00270-8
[56]
Cui DZ, Li GF, Zhao D, et al. Effect of quinoid redox mediators on the aerobic decolorization of azo dyes by cells and cell extracts from Escherichia coli[J]. Environmental Science and Pollution Research, 2015, 22(6): 4621-4630. DOI:10.1007/s11356-014-3698-6
[57]
Yu CZ, Xie XH, Zheng XL, et al. Decolorization and repigmentation of reactive black 5 biodegradation and their mechanisms[J]. Chemical Industry and Engineering Progress, 2016, 35(9): 2987-2996. (in Chinese)
俞承志, 谢学辉, 郑秀林, 等. 活性黑5的生物脱色、复色现象及机理[J]. 化工进展, 2016, 35(9): 2987-2996.
[58]
Blümel S, Knackmuss HJ, Stolz A. Molecular cloning and characterization of the gene coding for the aerobic Azoreductase from Xenophilus azovorans KF46F[J]. Applied and Environmental Microbiology, 2002, 68(8): 3948-3955. DOI:10.1128/AEM.68.8.3948-3955.2002
[59]
Zhou M, Liu GF, Zhou JT, et al. Decolorization of azo dyes using Quinone reductase and Quinoid compounds[J]. Environmental Science, 2009, 30(6): 1810-1817. (in Chinese)
周觅, 柳广飞, 周集体, 等. 醌还原酶-醌类化合物对偶氮染料脱色的作用[J]. 环境科学, 2009, 30(6): 1810-1817. DOI:10.3321/j.issn:0250-3301.2009.06.043
[60]
Stolz A. Basic and applied aspects in the microbial degradation of azo dyes[J]. Applied Microbiology and Biotechnology, 2001, 56(1/2): 69-80.
[61]
Rau J, Stolz A. Oxygen-insensitive nitroreductases NfsA and NfsB of Escherichia coli function under anaerobic conditions as Lawsone-dependent azo reductases[J]. Applied and Environmental Microbiology, 2003, 69(6): 3448-3455. DOI:10.1128/AEM.69.6.3448-3455.2003
[62]
Li JH, Wu WH, Huang JG. Anaerobic reduction of azo compounds: a review[J]. Environmental Science & Technology, 2018, 41(4): 52-58. (in Chinese)
李家浩, 吴卫红, 黄进刚. 偶氮类化合物厌氧还原研究进展[J]. 环境科学与技术, 2018, 41(4): 52-58.
[63]
Mun CH, He JZ, Ng WJ. Pentachlorophenol dechlorination by an acidogenic sludge[J]. Water Research, 2008, 42(14): 3789-3798. DOI:10.1016/j.watres.2008.07.010
[64]
Meng XM, Liu GF, Zhou JT, et al. Azo dye decolorization by Shewanella aquimarina under saline conditions[J]. Bioresource Technology, 2012, 114: 95-101. DOI:10.1016/j.biortech.2012.03.003
[65]
Liu GF, Zhou JT, Wang J, et al. Decolorization of azo dyes by Shewanella oneidensis MR-1 in the presence of humic acids[J]. Applied Microbiology and Biotechnology, 2011, 91(2): 417-424. DOI:10.1007/s00253-011-3273-8
[66]
Méndez-Paz D, Omil F, Lema JM. Anaerobic treatment of azo dye Acid Orange 7 under batch conditions[J]. Enzyme and Microbial Technology, 2005, 36(2/3): 264-272.
[67]
Khehra MS, Saini HS, Sharma DK, et al. Comparative studies on potential of consortium and constituent pure bacterial isolates to decolorize azo dyes[J]. Water Research, 2005, 39(20): 5135-5141. DOI:10.1016/j.watres.2005.09.033
[68]
Guo HL, Wang XD, Lee DJ. Proteomic researches for lignocellulose-degrading enzymes: A mini-review[J]. Bioresource Technology, 2018, 265: 532-541. DOI:10.1016/j.biortech.2018.05.101
[69]
Jing YH, Wan JJ, Angelidaki I, et al. iTRAQ quantitative proteomic analysis reveals the pathways for methanation of propionate facilitated by magnetite[J]. Water Research, 2017, 108: 212-221. DOI:10.1016/j.watres.2016.10.077
[70]
Du Z, Chen YG, Li X. Quantitative proteomic analyses of the microbial degradation of estrone under various background nitrogen and carbon conditions[J]. Water Research, 2017, 123: 361-368. DOI:10.1016/j.watres.2017.06.070
[71]
Qu YY, Wang JW, Ma Q, et al. A novel environmental fate of graphene oxide: Biodegradation by a bacterium Labrys sp. WJW to support growth[J]. Water Research, 2018, 143: 260-269. DOI:10.1016/j.watres.2018.03.070
[72]
Hu SD, Guo J, Zou SL, et al. Application of metaproteomics in study of activated sludge[J]. Chinese Journal of Applied and Environmental Biology, 2016, 22(4): 725-731. (in Chinese)
胡少达, 郭锦, 邹少兰, 等. 宏蛋白质组学在活性污泥研究中的应用[J]. 应用与环境生物学报, 2016, 22(4): 725-731.
[73]
Xu HK, Yan KQ, He YB, et al. The strategies and challenges in metaproteomics bioinformatics[J]. Progress in Biochemistry and Biophysics, 2018, 45(1): 23-35. (in Chinese)
徐洪凯, 闫克强, 何燕斌, 等. 宏蛋白质组学信息分析的基本策略及其挑战[J]. 生物化学与生物物理进展, 2018, 45(1): 23-35.