微生物学通报  2019, Vol. 46 Issue (11): 2848−2856

扩展功能

文章信息

孙清扬, 张静静, 李冰清, 王岩, 张晓华
SUN Qing-Yang, ZHANG Jing-Jing, LI Bing-Qing, WANG Yan, ZHANG Xiao-Hua
金属离子对重组深渊滕黄单胞菌低温α-淀粉酶LamA的活性和稳定性影响
Effect of metal ions on the activity and stability of recombinant cold-adapted α-amylase LamA from Luteimonas abyssi
微生物学通报, 2019, 46(11): 2848-2856
Microbiology China, 2019, 46(11): 2848-2856
DOI: 10.13344/j.microbiol.china.180998

文章历史

收稿日期: 2018-12-06
接受日期: 2019-04-19
网络首发日期: 2019-05-30
金属离子对重组深渊滕黄单胞菌低温α-淀粉酶LamA的活性和稳定性影响
孙清扬1 , 张静静1 , 李冰清2 , 王岩1 , 张晓华1     
1. 中国海洋大学海洋生命学院    山东  青岛    266003;
2. 山东省医学科学院基础医学研究所    山东  济南    250031
摘要: 【背景】 深渊藤黄单胞菌XH031 (Luteimonas abyssi XH031)是从深海分离到的一株具有很强淀粉降解能力的细菌,前期实验显示其α-淀粉酶LamA在低温环境下仍能保持较高酶活力。若能够提升其热稳定性,会有更好的应用前景。【目的】 分析钙离子的存在对LamA热稳定性的影响,并通过钙离子结合位点的关键氨基酸的定点突变,初步明确其作用机制。【方法】 在不同的离子条件下检测LamA的热稳定性,利用生物信息学方法预测可能影响钙离子结合及耐热性的氨基酸位点,对目的氨基酸进行定点突变,表达和纯化突变蛋白,并进行功能鉴定。【结果】 钙离子明显提高了LamA的热稳定性:在未添加钙离子时,于65 ℃处理30 min已完全失活;而在5 mmol/L钙离子条件下,于65 ℃处理30 min后仍具有36%的酶活力。对预测位点进行定点突变后,突变蛋白D200R和H233D/M234C完全失活;N120D、Q185E和T224D活性降低。在未添加钙离子时,突变蛋白稳定性受高温影响程度与野生型差别不大;而在钙离子条件下,N120D在65 ℃时的酶活力仅为野生型的27.8%,推测位点Asn120与钙离子的结合能够稳定低温酶LamA在较高温度下的结构。【结论】 初步明确了钙离子可提升低温α-淀粉酶LamA的热稳定性,为今后相关酶类的工程改造提供理论基础。
关键词: 海洋酶资源    作用机制    α-淀粉酶    离子依赖    热稳定性增强    
Effect of metal ions on the activity and stability of recombinant cold-adapted α-amylase LamA from Luteimonas abyssi
SUN Qing-Yang1 , ZHANG Jing-Jing1 , LI Bing-Qing2 , WANG Yan1 , ZHANG Xiao-Hua1     
1. College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, China;
2. Institute of Basic Medicine, Shandong Academy of Medical Science, Jinan, Shandong 250031, China
Abstract: [Background] Luteimonas abyssi XH031 is one kind of marine bacteria with strong starch degradation ability. Previous studies showed that LamA, a cold-adapted α-amylase identified from strain XH031, kept high activity under low temperature. LamA will have great application prospects if the high temperature tolerance is improved. [Objective] To determine the calcium ion-dependent thermo-stability enhancement mechanism of LamA, site-directed mutagenesis of key amino acids in the calcium ion binding region was constructed. [Methods] The thermo-stability of LamA was measured in the presence of different chemicals. The amino acid sites that affect calcium ion binding and thermal stability were searched by bioinformatics analysis. Furthermore, the mutant proteins were constructed by the site-directed mutagenesis method and then overexpressed and purified. [Results] Under the calcium-free conditions, LamA was completely inactivated after incubation at 65 ℃ for 30 minutes. However, in the presence of 5 mmol/L calcium ion, LamA still had 36% of the activity after incubation at 65 ℃ for 30 min. The result showed that calcium ions can significantly improve the thermo-stability of LamA. The D200R and H233D/M234C mutant proteins completely lost starch degradation activities. Moreover, the activities of N120D, Q185E and T224D mutant proteins were decreased. However, the mutant proteins kept similar stability compared with the wild-type enzyme under the high temperature and calcium-free conditions. N120D mutant protein preserved only 27.8% residual activity compared with the wild-type enzyme at 65 ℃ supplemented with the calcium ion. Through molecular biology experiments and protein structure simulation, we speculated that the calcium ion binding to the Asn120 site stabilized the structure of LamA under high temperatures. [Conclusion] This study preliminarily clarified the mechanism of calcium ion-dependent thermo-stability enhancement of the cold-adapted α-amylase LamA and provided a theoretical basis for the engineering transformation of related enzymes.
Keywords: Marine enzyme resource    Catalytic mechanism    α-Amylase    Ion dependent    Thermo-stability enhancement    

α-淀粉酶可催化淀粉内部α-1, 4糖苷键的水解[1-3],是目前用途最广泛、需求量最大的工业用酶之一,在食品、纺织、饲料等领域都有大量应用[4-5]。α-淀粉酶的热稳定性与其空间结构具有重要关系[2, 6],主要受氢键、疏水相互作用、静电相互作用等影响[7],金属离子等填充物也是重要的影响因素[8-10]。对Bacillus amyloliquefaciens的α-淀粉酶研究发现,Asp233结合Ca2+可影响酶的热稳定性,为α-淀粉酶热稳定性改造提供了思路[11]。在研究最为透彻的B. licheniformis的α-淀粉酶中,结构域A、B之间嵌入的Ca2+也对其稳定性和活性起到重要作用[12-13]。然而,对低温α-淀粉酶在此方面的研究却较为欠缺。α-淀粉酶的热稳定性是影响其应用的重要因素,目前使用较广泛的中高温α-淀粉酶难以用于低温处理的加工环节,较低的热稳定性又是低温α-淀粉酶在工业应用中的瓶颈[14]。而开发温度耐受范围较宽的α-淀粉酶,则可在具有温度变化的生产过程中,节省转换酶类的成本和时间,宽松加工条件,具有较好的应用前景。

当前绝大多数的α-淀粉酶来源于陆地生物[15-17],海洋来源的α-淀粉酶则处于高度未开发状态。本实验的深渊藤黄单胞菌XH031 (Luteimonas abyssi XH031)是从深海分离到的一株细菌[18],在前期研究中已经完成了该菌株的全基因组测序,克隆表达了一个α-淀粉酶基因,纯化了α-淀粉酶LamA,并对其酶学特性进行了初步研究。LamA蛋白序列较新颖,其比活力可达到8 881 U/mg,在同类α-淀粉酶中比活力较高,且在低温环境下仍能保持较高酶活力[19]。本课题拟在前期研究的基础上,寻找提升低温α-淀粉酶LamA热稳定性的途径,开发其在较高温度下的应用价值,使其具有更宽的温度耐受范围;并初步明确影响这一特性的关键氨基酸位点,为更多α-淀粉酶向宽温度耐受方向改造提供参考依据。

1 材料与方法 1.1 材料

1.1.1 菌株和质粒

用于实验的菌株和质粒如表 1所示。

表 1 实验所用的菌株和质粒 Table 1 Strains and plasmids used in this study
Strains or plasmids Usage Source
Luteimonas abyssi XH031 Target strain The South Pacific circulation[18]
E. coli JM109 Amplification of recombinant plasmid New England Biolaboratories (Beverly, MA)
E. coli BL21(DE3) As an expression host, to construct expression engineering bacteria Novagen (Madison, WI)
pET-24a(+) As an expression vector, to construct an α-amylase recombinant expression plasmid Novagen (Madison, WI)
pET-24a/LamA Site-directed mutation template This study

1.1.2 LB培养基(g/L)

酵母膏5.0,蛋白胨10.0,NaCl 10.0;调节pH至7.0,固体培养基需加入2%琼脂,1×105 Pa灭菌20 min。

1.1.3 主要试剂和仪器

Prime STAR GXL DNA Polymerase,TaKaRa公司;质粒提取试剂盒,北京博迈德基因技术有限公司;琼脂糖凝胶DNA回收试剂盒,天根生化科技有限公司。高速冷冻离心机,Thermo公司;PCR仪,Applied Biosystems公司;酶标仪,Fecan公司。

1.2 方法

1.2.1 金属离子对LamA热稳定性的影响测定

在等浓度的LamA中分别加入终浓度1 mmol/L和5 mmol/L的Na+、K+、Ca2+、Fe3+、Mn2+、Al3+、Zn2+、Mg2+,并设置空白对照。吸取10 μL酶液,加入90 μL用50 mmol/L Tris-HCl缓冲液(pH 8.0)配制的1%可溶性淀粉溶液,于65 ℃反应10 min。加入100 μL DNS试剂,沸水浴5 min,冷却,定容至1 mL。吸取150 μL反应液,用酶标仪测定其OD540。参考麦芽糖标准曲线,计算待测蛋白的酶活力[19]。再于LamA中分别加入浓度逐渐升高的Ca2+,与空白对照一同于30、55和65 ℃温浴30 min,测定剩余酶活力。

1.2.2 LamA关键位点预测及突变

对LamA的蛋白序列进行BLASTp和CD-Search分析,并将其与相似性较高且经过实验验证的α-淀粉酶序列P22630 [Aeromonas hydrophila]、O18420 [Drosophila subobscura]、O18408 [Drosophila melanogaster]、P22998 [Streptomyces violaceus]、P27350 [Streptomyces thermoviolaceus]进行多序列比对,参考研究最为透彻的B. licheniformis的α-淀粉酶(UniProtKB:Q208A7)的钙结合区域关键位点[20],预测可能影响LamA热稳定性及Ca2+结合的氨基酸位点。

以pET-24a/LamA为模板,以突变位点为中心设计表 2所示引物,使Asn120、Gln185、Asp200、His233、Met234和Thr224突变为性质相反的氨基酸。以pET-24a/LamA为模板,将含有突变位点的引物作为扩增引物,PCR扩增体系(50 μL):5×Prime STAR GXL Buffer 10 μL,dNTP Mixture (2.5 mmol/L) 4 μL,Primer 1 (20 μmol/L) 1 μL,Primer 2 (20 μmol/L) 1 μL,Template 0.5 μL,Prime STAR GXL DNA polymerase 2 μL,ddH2O 31.5 μL。PCR反应条件:98 ℃ 2 min;98 ℃ 10 s,60 ℃ 15 s,68 ℃ 10 s/1 kb,共30个循环;72 ℃ 2 min。扩增产物进行琼脂糖凝胶电泳分析,并将目的片段切胶回收纯化,得到含有突变位点的线性片段;5′-磷酸化处理使其自连为环状质粒,转化进感受态细胞BL21中;挑取阳性克隆,提取质粒,进行酶切和测序验证。

表 2 实验中所用引物 Table 2 Primers used in this study
Primers Sequences (5′→3′)
N120D-F GTGGTGCTCGACCACATGGCG
N120D-R GTCGGCATAGGTCTCGACGCC
H233D/M234C-F GCTGCGAAAGACTGTCCGGCC
H233D/M234C-R ATCCACCCGGAAGCCGGTCAC
Q185E-F CAGGTCGAGCAGTGGCGCCTG
Q185E-R GCTCACGTCGGTGTAGTCGAC
D200R-F CCGCGCCTGGTCGCCAACGAT
D200R-R AAGGCCGGGATCGTCGCCGCC
T224D-F GTGGACGGCTTCCGGGTGGAT
T224D-R GCCGAGCGCCTTCAGTGCGAG
注:下划线为突变的氨基酸,红色为定点突变的核苷酸位点.
Note: Mutated amino acids are underlined and site-directed mutant nucleotides are marked in red.

1.2.3 重组突变蛋白的表达、纯化及活性检测

将活化的重组表达菌株和空载对照接种至LB液体培养基(卡那霉素终浓度100 μg/mL)中,37 ℃、170 r/min振荡培养;待OD600达到0.4-0.6之间,加入终浓度0.1 mmol/L的IPTG,16 ℃、170 r/min诱导表达12-20 h。于4 ℃、12 000 r/min离心10 min收集菌体,重悬于过滤除菌的Binding buffer中,置于冰上超声破碎(小探头200 V,超声5 s,间隙10 s,50次);于4 ℃、12 000 r/min离心30 min,收集上清液,用0.2 μm滤器过滤,4 ℃保存备用。将上清液加入镍层析柱中上样,依次用咪唑浓度逐渐提高(10、20、50、75、250 mmol/L)的缓冲液(20 mmol/L Tris-HCl,pH 8.0;0.5 mmol/L NaCl)洗涤蛋白层析柱,最后用咪唑浓度500 mmol/L的缓冲液洗脱层析柱。将收集到的蛋白液于4 ℃透析,除盐复性。配置12% (质量体积比)的分离胶,用SDS-PAGE法检测表达蛋白的纯化结果[19]

吸取2 μL酶液,以透析液作为空白对照,使用NanoDrop 2000/2000c测定蛋白浓度,并将酶液稀释为相同浓度。各取10 μL酶液加入可溶性淀粉平板,37 ℃过夜;使用卢戈氏碘液检验,观察是否有透明圈。利用麦芽糖标准溶液绘制的标准曲线,计算LamA和各突变蛋白的比活力。

1.2.4 温度对LamA及突变蛋白的活性和稳定性的影响测定

参照1.2.1的方法,在90 μL的1%可溶性淀粉溶液中分别加入10 μL等浓度的LamA和突变蛋白,于不同温度(4、10、16、30、37、50、60、70、80、90、100 ℃)下反应10 min,测定和计算LamA和各突变蛋白在不同反应温度下的相对酶活。再将等浓度的LamA和突变蛋白于不同温度(0、10、20、30、37、50、60、70、80、90、100 ℃)下温浴20 min,在相同反应体系下,于最适温度反应10 min,测定LamA和各突变蛋白的剩余酶活力。

1.2.5 LamA和突变蛋白在钙离子条件下的热稳定性测定

在等浓度的LamA和突变蛋白中,加入终浓度5 mmol/L的Ca2+,分别于37 ℃和65 ℃下温浴1 h。参照1.2.1的方法,在1%可溶性淀粉溶液中加入10 μL酶液,于最适温度(LamA和T224D为50 ℃;N120D和Q185E为37 ℃)反应10 min,测定其剩余酶活力。

1.2.6 钙离子结合位点的蛋白结构分析

对LamA的蛋白序列进行BLAST分析,在PDB数据库中选取相似度高的蛋白,利用软件PyMOL和Adobe Illustrator模拟LamA的Ca2+结合区域的蛋白结构。

2 结果与分析 2.1 金属离子对LamA热稳定性的影响

在LamA中分别添加不同浓度的Na+、K+、Ca2+、Fe3+、Mn2+、Al3+、Zn2+、Mg2+,检测其在65 ℃下的酶活力(图 1)。Na+、K+、Al3+对LamA在65 ℃的酶活力几乎没有影响;Fe3+、Mn2+、Zn2+、Mg2+有轻微抑制作用,但不具显著差异;Ca2+则明显提高了酶活力。

图 1 不同金属离子对LamA热稳定性的影响 Figure 1 Effects of different metal ions on thermo-stability of LamA

进一步实验发现,未添加Ca2+时,65 ℃处理30 min完全失活(5 min即失去90%活性),55 ℃处理30 min相对酶活为5%;而在添加1 mmol/L和5 mmol/L的Ca2+后,相对酶活显著上升(表 3)。此外,当Ca2+浓度继续升高时(5-50 mmol/L),相对酶活没有随之增强,说明5 mmol/L的Ca2+足够使LamA保持在65 ℃和55 ℃的酶活力及稳定性。根据上述结果,初步推测LamA具有影响热稳定性的Ca2+结合位点。

表 3 不同浓度Ca2+对LamA热稳定性的影响 Table 3 Effect of different calcium ion concentrations on thermo-stability of LamA
Temperature (℃) Time of treatment (min) Calcium ion concentration (mmol/L) Relative activity (%)
55 30 0 5
1 35
5 55
65 30 0 0
1 25
5 36
注:将30 ℃处理后的酶活力计为100%.
Note: The enzymatic activity after treatment at 30 ℃ was counted as 100%.
2.2 LamA生物信息学分析

α-淀粉酶LamA的基因序列全长为1 428 bp,编码510个氨基酸,预测其信号肽长度为35个氨基酸,BLASTp结果分析其为钙结合蛋白。选取与LamA相似性较高且经过实验验证的α-淀粉酶序列,与LamA的蛋白序列进行多序列比对(图 2),并参考B. licheniformis的α-淀粉酶(UniProtKB:Q208A7)钙结合区域关键位点[20],预测了5个可能影响LamA耐热性及Ca2+结合的氨基酸位点:Asn120、Gln185、Asp200、His233和Met234。通过NCBI的CD-Search预测的Ca2+结合位点Thr224也于此处一并研究。

图 2 LamA与其他α-淀粉酶的蛋白序列比对 Figure 2 The protein sequence alignment of LamA and other α-amylases using the DNAMAN 注:*:主要研究的氨基酸位点,其中Thr224是通过NCBI的CD-Search预测的钙离子结合位点;图中其他蛋白序列的UniProtKB:P22630 [Aeromonas hydrophila]、O18420 [Drosophila subobscura]、O18408 [Drosophila melanogaster]、P22998 [Streptomyces violaceus]、P27350 [Streptomyces thermoviolaceus]. Note: The sites marked with * represent the amino acid sites. Thr224 is a calcium ion binding site predicted by NCBI's CD-Search. The UniProtKB of other sequences are as follows: P22630 [Aeromonas hydrophila], O18420 [Drosophila subobscura], O18408 [Drosophila melanogaster], P22998 [Streptomyces violaceus], P27350 [Streptomyces thermoviolaceus].

由于LamA序列较新颖,与PDB数据库中其他蛋白序列相似性较低,不适合进行同源建模。选取与LamA相似度相对高且同样结合Ca2+的蛋白进行比对(表 4),发现Ca2+活性中心比较保守,可用这些蛋白来模拟LamA的Ca2+结合区域(图 3)。综合模拟结果,判断Asn120、Asp200和His233为Ca2+结合区域的保守位点,Gln185也可能在该区域中起到关键作用。Asp具有负电性,Asn和His为极性氨基酸,均可与Ca2+产生相互作用。进一步推测,在未添加Ca2+时,区域中多个羰基氧可产生静电排斥;而当羰基氧与Ca2+结合后,则会使结构的稳定性增加。此外,Asn120与Asp200之间的氢键也可能对蛋白结构的稳定性起到作用。

表 4 制作模拟图所使用的蛋白与LamA的序列比对数据 Table 4 Sequence alignment of LamA with the proteins used to make the simulation
Accession Max score Total score Query cover (%) E value Perc. Ident (%)
1VIW_A 94.7 94.7 89 1e-20 25.69
1TMQ_A 94.7 94.7 89 1e-20 25.86
1G94_A 90.1 90.1 76 4e-19 28.20
1JXK_A 87.0 87.0 87 5e-18 25.06
1XGZ_A 83.6 83.6 66 8e-17 26.67

图 3 黄粉虫幼虫α-淀粉酶钙离子结合区域的蛋白结构模拟 Figure 3 Protein structure simulation of calcium ion binding region of Tenebrio molitor larval α-amylase 注:图中所使用蛋白为黄粉虫幼虫α-淀粉酶(PDB ID: 1TMQ_A),其Asn98、Asp155、His189与LamA的Asn120、Asp200和His233对应. Note: The protein used in the figure is Tenebrio molitor larval α-amylase (PDB ID: 1TMQ_A), and Asn98, Asp155 and His189 in the figure correspond to Asn120, Asp200 and His233 of LamA respectively.
2.3 重组突变蛋白的活性检测

对预测的关键位点进行突变,诱导表达和纯化了重组突变蛋白,并使用可溶性淀粉平板检验各突变蛋白的酶活力:D200R和H233D/M234C完全失活;N120D、Q185E、T224D出现透明圈,但活性均较LamA有所降低(图 4)。利用麦芽糖标准曲线计算比活力,突变蛋白的比活力均低于LamA (表 5)。

图 4 可溶性淀粉平板检验LamA及突变蛋白酶活力 Figure 4 Enzyme activity assay of LamA and mutant proteins by soluble starch plate medium

表 5 LamA和突变蛋白的比活力 Table 5 Specific activity of LamA and mutant proteins
Protein Specific activity (U/mg)
LamA 2 706.8
N120D 1 574.1
Q185E 1 595.1
T224D 1 587.6
2.4 温度对LamA及突变蛋白的活性和稳定性的影响

于pH 8.0的反应体系中进行酶活力测定实验,结果如图 5所示,突变蛋白T224D的最适反应温度与LamA相同,均为50 ℃;而N120D与Q185E的最适反应温度为37 ℃。温度升高后,3种突变蛋白相对酶活的降低速率与LamA无显著差别。此外,对Thr224的突变影响了其低温活性。

图 5 温度对LamA及突变蛋白活性的影响 Figure 5 Effects of temperature on the activity of LamA and mutant proteins 注:将最适反应温度下的酶活力计为100%. Note: The enzyme activity at the optimum reaction temperature was counted as 100%.

温度稳定性实验的结果如图 6所示,LamA和3种突变蛋白在30-37 ℃之间稳定性最高,且稳定性受高温的影响程度差别不大。综合两个实验结果,初步判断Asn120、Gln185和Thr224并非直接决定热稳定性的位点,可能还需其他条件才能实现对LamA热稳定性的影响。

图 6 不同温度对LamA及突变蛋白稳定性的影响 Figure 6 Effects of temperature on the stability of LamA and mutant proteins 注:将最高的残余酶活力计为100%. Note: The highest residual enzyme activity was counted as 100%.
2.5 关键位点在钙离子条件下对LamA热稳定性的作用

在5 mmol/L的Ca2+条件下,测定LamA和突变蛋白在65 ℃的稳定性,发现N120D的实验结果较有意义(图 7)。常温下N120D与LamA的酶活力差别不大,说明Asn120与Ca2+的结合不会直接增强酶活力;但当温度升高至65 ℃时,LamA的相对酶活降为36%,而N120D的相对酶活则骤降为10%,仅为同温下LamA酶活力的27.8%。说明当Ca2+存在时,Asn120位点对LamA的热稳定性作用显著。

图 7 5 mmol/L钙离子条件下N120与LamA的热稳定性 Figure 7 Comparison of thermal stability of N120 and LamA under 5 mmol/L calcium ion condition 注:将LamA在37 ℃的酶活力计为100%. Note: The enzymatic activity of LamA at 37 ℃ was counted as 100%.
3 讨论与结论

目前已有许多研究探讨了钙结合对高温α-淀粉酶热稳定性的关键作用[8, 11, 21-23],但对低温α-淀粉酶的相关研究却较为欠缺。LamA作为低温α-淀粉酶,却可通过添加Ca2+来提高热稳定性,因而具有较好的研究价值。本实验初步明确了Asn120为此过程的关键位点,推测Asn120与Ca2+的结合不会直接增强酶活力,但能帮助LamA在较高的温度下稳定结构。此后计划将Asn120突变为更多其他氨基酸,来进一步明确其作用机制。此外,根据与B. licheniformis的α-淀粉酶的比对分析[13, 20],推测Asn120、Asp200和His233还可能是LamA中Ca-Na-Ca结构的关键位点,对钠离子结合的相关研究也将成为下一步的探讨方向。

α-淀粉酶的热稳定性影响了其在实际应用中的经济可行性[24]。目前发现的低温酶通常具有较高的结构灵活性[25],表现出更低的活化焓和活化熵[26],因此可以在生产过程中节省能源、提高效率[27-31]。但低温酶较弱的温度耐受性一直是其应用中的瓶颈[32-33]。解决这一问题的思路通常是通过定点突变来改造低温酶[34-35],例如最近对来自Euplotes focardii的低温α-淀粉酶的突变改造[36]。而LamA则为这一问题的解决提供了另一种方向:通过直接添加离子等方式,使低温α-淀粉酶获得更宽的温度耐受范围,可使其在食品、饲料加工等具有温度变化的生产过程中具有更好的应用前景。

本实验中的LamA在同类α-淀粉酶中比活力较高,且在低温环境下仍能保持较高酶活力[19],添加Ca2+后热稳定性的增强,则赋予了它更高的潜在应用价值。在本次研究中,已初步明确了与这一特性相关的关键位点。通过研究LamA的热稳定性与Ca2+的相关性,也有望为更多α-淀粉酶向宽温度耐受方向改造提供参考依据。

REFERENCES
[1]
Janeček Š, Svensson B, Macgregor EA. α-Amylase: an enzyme specificity found in various families of glycoside hydrolases[J]. Cellular and Molecular Life Sciences, 2014, 71(7): 1149-1170. DOI:10.1007/s00018-013-1388-z
[2]
Nielsen JE, Borchert TV. Protein engineering of bacterial α-amylases[J]. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 2000, 1543(2): 253-274. DOI:10.1016/S0167-4838(00)00240-5
[3]
Dhital S, Warren FJ, Butterworth PJ, et al. Mechanisms of starch digestion by α-amylase—structural basis for kinetic properties[J]. Critical Reviews in Food Science and Nutrition, 2017, 57(5): 875-892. DOI:10.1080/10408398.2014.922043
[4]
Khemakhem B, Ali MB, Aghajari N, et al. Engineering of the α-amylase from Geobacillus stearothermophilus US100 for detergent incorporation[J]. Biotechnology and Bioengineering, 2009, 102(2): 380-389. DOI:10.1002/bit.22083
[5]
van der Maarel JEC, van der Veen B, Uitdehaag JCM, et al. Properties and applications of starch-converting enzymes of the α-amylase family[J]. Journal of Biotechnology, 2002, 94(2): 137-155. DOI:10.1016/S0168-1656(01)00407-2
[6]
Tomazic SJ, Klibanov AM. Mechanisms of irreversible thermal inactivation of Bacillus alpha-amylases[J]. Journal of Biological Chemistry, 1988, 263(7): 3086-3091.
[7]
Zonouzi R, Khajeh K, Monajjemi M, et al. Role of the salt bridge between Arg176 and Glu126 in the thermal stability of the Bacillus amyloliquefaciens α-amylase (BAA)[J]. Journal of Microbiology and Biotechnology, 2013, 23(1): 7-14.
[8]
Tang SY, Le QT, Shim JH, et al. Enhancing thermostability of maltogenic amylase from Bacillus thermoalkalophilus ET2 by DNA shuffling[J]. FEBS Journal, 2010, 273(14): 3335-3345.
[9]
Hiteshi K, Gupta R. Thermal adaptation of α-amylases: a review[J]. Extremophiles, 2014, 18(6): 937-944. DOI:10.1007/s00792-014-0674-5
[10]
Violet M, Meunier JC. Kinetic study of the irreversible thermal denaturation of Bacillus licheniformis α-amylase[J]. Biochemical Journal, 1989, 263(3): 665-670. DOI:10.1042/bj2630665
[11]
Lee S, Mouri Y, Minoda M, et al. Comparison of the wild-type α-amylase and its variant enzymes in Bacillus amyloliquefaciens in activity and thermal stability, and insights into engineering the thermal stability of Bacillus α-amylase[J]. Journal of Biochemistry, 2006, 139(6): 1007-1015. DOI:10.1093/jb/mvj107
[12]
Ghollasi M, Khajeh K, Naderi-Manesh H, et al. Engineering of a Bacillus α-amylase with improved thermostability and calcium independency[J]. Applied Biochemistry and Biotechnology, 2010, 162(2): 444-459. DOI:10.1007/s12010-009-8879-2
[13]
Li LZ, Yang J, Li J, et al. Role of two amino acid residues' insertion on thermal stability of thermophilic α-amylase AMY121 from a deep sea bacterium Bacillus sp. SCSIO 15121[J]. Bioprocess and Biosystems Engineering, 2015, 38(5): 871-879. DOI:10.1007/s00449-014-1330-2
[14]
Gerday C, Aittaleb M, Bentahir M, et al. Cold-adapted enzymes: from fundamentals to biotechnology[J]. Trends in Biotechnology, 2000, 18(3): 103-107.
[15]
Holligan S, Wang JX, Cant JP, et al. A proteomics approach to detect tissue-wide adaptive changes in the pancreas associated with increased pancreatic α-amylase activity in domestic cattle (Bos taurus)[J]. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2013, 8(1): 65-71. DOI:10.1016/j.cbd.2012.12.002
[16]
Behringer V, Borchers C, Deschner T, et al. Measurements of salivary alpha amylase and salivary cortisol in hominoid primates reveal within-species consistency and between-species differences[J]. PLoS One, 2013, 8(4): e60773. DOI:10.1371/journal.pone.0060773
[17]
Blesák K, Janeček Š. Two potentially novel amylolytic enzyme specificities in the prokaryotic glycoside hydrolase α-amylase family GH57[J]. Microbiology, 2013, 159: 2584-2593. DOI:10.1099/mic.0.071084-0
[18]
Fan XY, Yu T, Li Z, et al. Luteimonas abyssi sp. nov., isolated from deep-sea sediment[J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64: 668-674. DOI:10.1099/ijs.0.056010-0
[19]
Song QH, Wang Y, Yin C, et al. LaaA, a novel high-active alkalophilic alpha-amylase from deep-sea bacterium Luteimonas abyssi XH031T[J]. Enzyme and Microbial Technology, 2016, 90: 83-92. DOI:10.1016/j.enzmictec.2016.05.003
[20]
Machius M, Declerck N, Huber R, et al. Activation of Bacillus licheniformis α-amylase through a disorder→order transition of the substrate-binding site mediated by a calcium–sodium–calcium metal triad[J]. Structure, 1998, 6(3): 281-292. DOI:10.1016/S0969-2126(98)00032-X
[21]
Suzuki Y, Ito N, Yuuki T, et al. Amino acid residues stabilizing a Bacillus alpha-amylase against irreversible thermoinactivation[J]. Journal of Biological Chemistry, 1989, 264(32): 18933-18938.
[22]
Khemakhem B, Ali MB, Aghajari N, et al. The importance of an extra loop in the B-domain of an α-amylase from B. stearothermophilus US100[J]. Biochemical and Biophysical Research Communications, 2009, 385(1): 78-83. DOI:10.1016/j.bbrc.2009.04.137
[23]
Ali MB, Khemakhem B, Robert X, et al. Thermostability enhancement and change in starch hydrolysis profile of the maltohexaose-forming amylase of Bacillus stearothermophilus US100 strain[J]. Biochemical Journal, 2006, 394(1): 51-56. DOI:10.1042/BJ20050726
[24]
Haki GD, Rakshit SK. Developments in industrially important thermostable enzymes: a review[J]. Bioresource Technology, 2003, 89(1): 17-34. DOI:10.1016/S0960-8524(03)00033-6
[25]
Sanchez AC, Ravanal MC, Andrews BA, et al. Heterologous expression and biochemical characterization of a novel cold-active α-amylase from the Antarctic bacteria Pseudoalteromonas sp. 2-3[J]. Protein Expression and Purification, 2019, 155: 78-85. DOI:10.1016/j.pep.2018.11.009
[26]
Cavicchioli R, Charlton T, Ertan H, et al. Biotechnological uses of enzymes from psychrophiles[J]. Microbial Biotechnology, 2011, 4(4): 449-460. DOI:10.1111/j.1751-7915.2011.00258.x
[27]
Margesin R, Feller G. Biotechnological applications of psychrophiles[J]. Environmental Technology, 2010, 31(8/9): 835-844.
[28]
Groudieva T, Kambourova M, Yusef H, et al. Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice, Spitzbergen[J]. Extremophiles, 2004, 8(6): 475-488. DOI:10.1007/s00792-004-0409-0
[29]
Sarmiento F, Peralta R, Blamey JM. Cold and hot extremozymes: industrial relevance and current trends[J]. Frontiers in Bioengineering and Biotechnology, 2015, 3: 148.
[30]
Arabacı N, Arıkan B. Isolation and characterization of a cold-active, alkaline, detergent stable α-amylase from a novel bacterium Bacillus subtilis N8[J]. Preparative Biochemistry and Biotechnology, 2018, 48(5): 419-426. DOI:10.1080/10826068.2018.1452256
[31]
Wang XF, Kan GF, Ren XL, et al. Molecular cloning and characterization of a novel α-amylase from antarctic sea ice bacterium Pseudoalteromonas sp. M175 and its primary application in detergent[J]. BioMed Research International, 2018, 2018: 3258383.
[32]
Place SP, Hofmann GE. Constitutive expression of a stress-inducible heat shock protein gene, hsp70, in phylogenetically distant Antarctic fish[J]. Polar Biology, 2005, 28(4): 261-267. DOI:10.1007/s00300-004-0697-y
[33]
Cavicchioli R, Siddiqui KS, Andrews D, et al. Low-temperature extremophiles and their applications[J]. Current Opinion in Biotechnology, 2002, 13(3): 253-261. DOI:10.1016/S0958-1669(02)00317-8
[34]
Mabrouk SB, Aghajari N, Ali MB, et al. Enhancement of the thermostability of the maltogenic amylase MAUS149 by Gly312Ala and Lys436Arg substitutions[J]. Bioresource Technology, 2011, 102(2): 1740-1746. DOI:10.1016/j.biortech.2010.08.082
[35]
Cesarini S, Bofill C, Pastor FIJ, et al. A thermostable variant of P. aeruginosa cold-adapted LipC obtained by rational design and saturation mutagenesis[J]. Process Biochemistry, 2012, 47(12): 2064-2071. DOI:10.1016/j.procbio.2012.07.023
[36]
Yang G, Yao H, Mozzicafreddo M, et al. Rational engineering of a cold-adapted α-amylase from the Antarctic ciliate Euplotes focardii for simultaneous improvement of thermostability and catalytic activity[J]. Applied and Environmental Microbiology, 2017, 83(13): e00449-17.