微生物学通报  2018, Vol. 45 Issue (2): 395−404

扩展功能

文章信息

张玲, 陈代文, 余冰, 何军, 虞洁, 罗钧秋, 毛湘冰, 黄志清, 郑萍, 罗玉衡
ZHANG Ling, CHEN Dai-Wen, YU Bing, HE Jun, YU Jie, LUO Jun-Qiu, MAO Xiang-Bing, HUANG Zhi-Qing, ZHENG Ping, LUO Yu-Heng
两种类型膳食纤维对BALB/c小鼠结肠细菌群落结构的影响
Two dietary fibers influence the bacterial community in the colon of BALB/c mice
微生物学通报, 2018, 45(2): 395-404
Microbiology China, 2018, 45(2): 395-404
DOI: 10.13344/j.microbiol.china.170320

文章历史

收稿日期: 2017-04-23
接受日期: 2017-08-16
网络首发日期(www.cnki.net): 2017-08-31
两种类型膳食纤维对BALB/c小鼠结肠细菌群落结构的影响
张玲 , 陈代文 , 余冰 , 何军 , 虞洁 , 罗钧秋 , 毛湘冰 , 黄志清 , 郑萍 , 罗玉衡     
四川农业大学动物营养研究所 教育部动物抗病营养重点实验室   四川 成都   611130
摘要【背景】 膳食纤维被认为是第七类营养素,主要在单胃动物后肠被微生物利用。【目的】 研究典型可溶性膳食纤维燕麦β-葡聚糖和典型不可溶性膳食纤维微晶纤维素(MCC)对小鼠结肠细菌群落结构和组成的影响。研究结果可为动物含纤维饲粮的科学配制提供参考,并为人类食品中不同类型膳食纤维的合理利用提供一定借鉴。【方法】 选用27只6周龄健康雄性BALB/c小鼠(18.13±0.95 g),按体重无差异原则随机分为3组,分别饲喂含20% MCC (纯度≥99%,M组),28%燕麦β-葡聚糖(纯度为70%,G组)和不含膳食纤维(对照组)的饲粮,试验期为21 d。试验结束后每个处理随机选取3只小鼠处死,收集结肠食糜,利用PCR-DGGE (Polymerase chain reaction-denaturing gradient gel electrophoresis)和高通量测序技术比较分析各组小鼠结肠食糜细菌群落结构的差异。【结果】 3组小鼠结肠细菌PCR-DGGE图谱条带丰富度和Shannon指数存在明显差异,表现为G组低于M组和对照组(P=0.027,0.035);聚类分析发现,3组小鼠各有2个样品聚于一簇,各组条带相似性为:G组71%,M组55%,对照组67%。高通量测序发现,3组小鼠结肠细菌Shannon指数和β-多样性指数存在显著差异(P=0.047,0.035);Bacteroidetes、Firmicutes和Proteobacteria为小鼠结肠中的优势细菌门类,占总比例的95.9%−99.4%。与对照组相比,G组小鼠结肠Bacteroidetes相对丰度升高26.78%,M组降低15.62%,其中S27_4科属水平未分类细菌和Bacteroides属细菌对这种差异的贡献最大(P=0.099,0.051);G组Firmicutes相对丰度较对照组降低28.99%,而M组比对照组高15.82%,且该差异主要由Clostridiales目某属细菌、Ruminococcaceae科某属细菌和Lactobacillus属细菌造成(P=0.027、0.061和0.079)。【结论】 两种类型的膳食纤维均对小鼠结肠细菌群落结构产生影响,饲粮中添加高水平燕麦β-葡聚糖降低了小鼠结肠细菌群落的多样性;小鼠结肠存在特异性利用两种纤维的菌群;S27_4科细菌更偏好于利用燕麦β-葡聚糖等植物性多糖,Clostridiales目可能存在特异性利用纤维素的细菌种群。
关键词膳食纤维     BALB/c小鼠     结肠细菌     PCR-DGGE     高通量测序    
Two dietary fibers influence the bacterial community in the colon of BALB/c mice
ZHANG Ling, CHEN Dai-Wen, YU Bing, HE Jun, YU Jie, LUO Jun-Qiu, MAO Xiang-Bing, HUANG Zhi-Qing, ZHENG Ping, LUO Yu-Heng     
Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
Received: April 23, 2017; Accepted: August 16, 2017; Published online (www.cnki.net): August 31, 2017
Foundation item: National Natural Science Foundation of China (31301987)
*Corresponding author: LUO Yu-Heng, E-mail: luoluo212@126.com.
Abstract: [Background] Dietary fiber has been regarded as the seventh nutrients and can be utilized by the microbes in the hindgut of monogastric animals. [Objective] The present study was conducted to investigate the influence of oat β-glucan (a typical soluble dietary fiber) and microcrystalline cellulose (MCC, an insoluble dietary fiber) on the structure and composition of colonic bacteria in BALB/c mice. Results of current study can provide a reference for the formulating of dietary fiber containing feed in animal production and the rational utilization of different types of dietary fibers in human food. [Methods] A total of 27 healthy male BALB/c mice (18.13±0.95 g) at the age of six weeks were selected and randomly allocated to three groups. Mice in the three groups were fed diet containing 20% MCC (the purity≥99%, M), 28% oat β-glucan (the purity is 70%, G), and control diet without fibrous supplement, respectively. The experiment lasted for 21 days. At the end of the experiment, three mice from each group were sacrificed and the colonic digesta of each mouse was collected. The bacterial community of the digesta samples from the three groups were compared using PCR-DGGE (Polymerase chain reaction-denaturing gradient gel electrophoresis) and high-throughput sequencing methods. [Results] PCR-DGGE analysis showed significant differences on the richness and Shannon index of the three groups, of which group G presented lower than groups M and control (P=0.027, 0.035). The cluster analysis showed that there were two samples of each group clustered into separate clade and the similarities of bands for group G, M and control were 71%, 55% and 67%, respectively. The results of high-throughput sequencing showed a significant difference on the bacterial Shannon index and β-diversity among the three groups (P=0.047, 0.035). In all samples, Bacteroidetes, Firmicutes and Proteobacteria were identified as the most three predominant phyla, comprising 95.9% to 99.4% of the total reads. Compared to control group, the relative abundance of phylum Bacteroidetes in group G showed a 26.78% increase, while it showed a 15.62% decrease in group M of those genera in Bacteroidetes, an unclassified genus belonging to family S27_4 and Bacteroides made a maximum contribution to the change of this phylum (P=0.099, 0.051). On the other hand, the relative abundance of Firmicutes in group G showed a 28.99% decrease than control group, while it showed a 15.82% increase in group M, and this change was found mainly due to the change of relative abundance of order Clostridiales, Ruminococcaceae and Lactobacillus (P=0.027, 0.061 and 0.079, respectively). [Conclusion] Therefore, both of the two dietary fibers influenced the bacterial community in the colon of BALB/c mice. The supplement of high-level oat β-glucan in the diet decreased the bacterial diversity in the colon of the mice. Core bacteria groups specifically utilizing the two types of dietary fibers were found in the colon of BALB/c mice. Bacteria belonging to family S27_4 may prefer to utilize plant polysaccharide, such as oat β-glucan, while some bacteria belonging to order Clostridiales may specifically use MCC.
Key words: Dietary fiber     BALB/c mice     Colonic bacteria     PCR-DGGE     High-throughput sequencing    

膳食纤维是一类不能被动物小肠消化吸收,但能被后肠微生物发酵的一类多于10链节的多糖[1],当其到达单胃动物结肠则成为厌氧菌的主要能源物质,被发酵产生有机酸(乳酸、琥珀酸)和短链脂肪酸(Short-chain fatty acids,SCFAs,主要为乙酸、丙酸和丁酸)等微生物代谢产物,影响宿主肠道健康和营养物质代谢[2]。因此,膳食纤维的种类、来源及添加量对肠道微生物的组成和功能有巨大影响[3]。根据水溶性可将膳食纤维分为两大类,即可溶性膳食纤维(Soluble dietary fiber,SDF)和不可溶性膳食纤维(Insoluble dietary fiber,IDF)[4],通常认为SDF较IDF具有较高粘性[5],并且大多数SDF由于其结构中的羟基、酯基等有极强的亲水性,易于与微生物接触,被认为比IDF具有更高的微生物发酵效率[6]。研究表明,饮食中加入一定量的膳食纤维可降低如肥胖、二型糖尿病等的发病率[7-8]。近年的研究表明,“膳食纤维—肠道微生物—机体能量代谢”之间存在重要联系[9]

现有关于膳食纤维与肠道微生物的研究结果大部分来源于体外发酵试验,但由于膳食纤维在体内的消化利用是一个非常复杂的过程,而绝大部分后肠微生物难以被体外培养,因此体外培养试验的结果不能很好地反映动物体内的状况。此外,目前相关的体内研究多以成分复杂的混合纤维为研究对象,所得结果也不尽相同,对单一类型或组分的膳食纤维与单胃动物后肠微生物群落结构的关系研究极少。

燕麦β-葡聚糖(典型SDF)是由单体D-葡萄糖通过β-(1→4)和β-(1→3)键连接的线性聚合物[10],组成纤维素(典型IDF)的葡萄糖单体则是以β-1, 4糖苷键连接[11]。纤维素葡萄糖单体的线性有序排列造成其分子间结合较为紧密、水溶性较差,而β-葡聚糖则相反,其主链与侧链的不规则性使其水溶性较好。因此,本研究选择燕麦β-葡聚糖和微晶纤维素(Microcrystalline cellulose,MCC)作为非饲粮源性的膳食纤维添加物,以BALB/c小鼠为研究对象,利用PCR-DGGE和高通量测序技术比较分析摄入两种不同类型(SDF/IDF)纯膳食纤维后小鼠结肠细菌群落结构的变化情况,为人和动物科学、合理地利用不同类型或来源的膳食纤维提供理论依据和数据支持。

1 材料与方法 1.1 主要试剂和仪器

粪便提取试剂盒,艾莱德生物技术有限公司;2×Taq Master Mix,天根生化科技(北京)有限公司;AxyPrep DNA凝胶回收试剂盒,美国AXYGEN公司。PCR仪、DGGE电泳仪,美国Bio-Rad公司;MiSeq高通量测序技术平台,上海翰宇生物技术有限公司。

1.2 试验设计与样品采集

选用27只6周龄健康雄性BALB/c小鼠(18.13±0.95 g),按体重无差异原则随机分为3组,分别饲喂含20% MCC (纯度大于99%,M组)、28%燕麦β-葡聚糖(纯度为70%,G组)和不含膳食纤维(对照组)的饲粮(饲粮配方见表 1),试验期为21 d。试验初和试验末空腹称重计算平均体增重。试验结束后每个处理随机选取3只小鼠。脱臼处死后,无菌采集含有食糜的结肠中段,迅速放入液氮中暂存,采样结束转移到−80保存。

表 1 试验饲粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of the experimental diet (air-dry basis) (g/kg)
项目
Items
C组
Group C
G组
Group G
M组
Group M
酪蛋白 Casein§ 233 200 233
玉米淀粉 Corn starch 316 280 316
蔗糖 Sucrose 60 60 60
棕榈油 Palm kernel fat 111 100 111
大豆油 Soybean oil 10 10 10
亚麻籽油 Linseed oil 10 10 10
燕麦β-葡聚糖 Oat β-glucan 0 280 0
微晶纤维素 MCC 0 0 200
膨润土 Bentonite clay 200 0 0
矿物元素预混料 Mineral permixa 50 50 50
维生素预混料 Vitamin permixb 10 10 10
合计 Total 1 000 1 000 1 000
主要营养物质提供代谢能的百分比 Calculated macronutrient metabolizable energy (%)
   蛋白 Protein 24.45 19.91 20.04
   碳水化合物 Carbohydrates 41.80 52.84 52.30
   脂肪 Fat 33.75 27.25 27.66
注:a:矿物元素混合物添加水平同AIN-93G-MX;b:维生素预混料添加剂量同AIN-93-VX;§:酪蛋白纯度≥90%.
Note: a: Minerals were added to the diets in the form of AIN-93G-MX mineral mix; b: Vitamins were added to the diets in the form of AIN-93-VX vitamin mix; §: The purity of Casein was above 90%.
1.3 结肠食糜总DNA提取

取0.1 g左右结肠食糜使用粪便DNA试剂盒按照说明书提取。使用NanoDrop 2000检测基因组DNA浓度及纯度,1.2%琼脂糖凝胶电泳检测DNA完整性,−20保存。

1.4 细菌16S rRNA基因V6–V8区扩增

选择细菌通用引物968f-GC (上游带GC夹子:5′-CGCCCGGGGCGCGCCCCGGGCGGGGCGGGGGCACGGGGGGAACGCGAAGAACCTTAC-3′)和1401r (5′-CGGTGTGTACAAGACCC-3′)扩增16S rRNA基因V6−V8可变区。PCR反应体系:2×Taq Master Mix 12.5 μL,上、下游引物(10 μmol/L)各1 μL,DNA模板(250−390 ng/μL) 1 μL,ddH2O补足25 μL。PCR反应条件:94℃ 5 min;94℃ 30 s,56℃ 20 s,68℃ 40 s,35个循环;68℃ 7 min。采用1.2%琼脂糖电泳鉴定PCR产物。

1.5 DGGE分析

DGGE使用Bio-Rad DCode垂直电泳仪进行,8%聚丙烯酰胺凝胶浓度梯度为40%−60%。缓冲液使用1×TAE,设置电压220 V,电泳10 min后改为100 V,时间设置为12 h。电泳结束后进行硝酸银染色,凝胶显色定影后用GS800校正型光密度扫描分析系统扫描留图。

用分析软件Quantity One 4.6.2进行条带计数及分析并计算Shannon多样性指数。用IBM SPSS 21软件非参数检验(Nonparametric tests)中的Kruskal-Wallis H方法分析组间差异。

1.6 细菌16S rRNA基因V3–V4区扩增

使用带有Barcode的引物343f (5′-TACGGRAG GCAGCAG-3′)和806r (5′-GGACTACHVGGGTWT CTAAT-3′)对结肠细菌16S rRNA基因V3−V4可变区进行扩增。PCR反应体系同1.4,每个样品4个重复。PCR反应条件:94;95,56,68,35个循环;68 5 min。将同一个样品的4个重复混合均匀,使用2%琼脂糖凝胶电泳检测,切胶纯化PCR产物。用1.5%琼脂糖凝胶电泳检测纯化后回收PCR产物。样品送至上海翰宇生物科技有限公司进行高通量测序(Illumina MiSeq 2000测序平台)。

1.7 测序数据分析

下机数据首先使用FLASH软件进行去噪和拼接,获得有效数据;在97%的序列相似度水平,使用UPARSE软件对所有序列进行可操作分类单元(Operational taxonomic unit,OTU)聚类分析。采用UCHIME检测并去除PCR扩增过程产生的嵌合体,Usearch_global方法分析各OTU丰度。然后与Greengenes数据库(gg_13_5_otus)进行比对,采用QIIME软件(http://qiime.org/scripts/assign_ taxonomy.html)及RDP Classifier贝叶斯算法(Version 2.2,http://sourceforge.net/projects/rdp-classifier/)对每个OTU中的所有序列进行一致性分析和注释,在各分类水平统计每个样品的群落组成。细菌群落组成采用直观的柱状图呈现,样品中分类水平未被命名的种类命名为“Others”。

用Mothur软件计算样品的α-多样性指数[12](Shannon指数、覆盖率、OTU数和Chao1指数),基于UniFrac距离分析样品的β-多样性[13]R介于(−1,1)之间,R > 0,说明组间差异显著;R < 0,说明组内差异大于组间差异,统计分析的可信度用P表示,P < 0.05表示统计具有显著性。

2 结果与分析 2.1 两种类型膳食纤维对小鼠体增重的影响

对小鼠体增重进行分析,发现3组之间差异均不显著(P > 0.05),但G组和M组小鼠体增重均有提高,表现为M组 > G组(表 2),分别比对照组体增重提高49.3%和41.9%。

表 2 各组小鼠初重、末重和平均体增重 Table 2 The initial weight, final weight and average weight gain of mice in different groups
组别
Group
初始重
Initial weight (g)
末重
Final weight (g)
平均体增重
Average weight gain (g)
Group C 18.13±0.88 20.17±1.63 2.03±1.45
Group G 18.12±0.84 21.00±1.09 2.88±0.93
Group M 18.14±1.20 21.18±1.51 3.03±1.92
注:C:对照组;G:添加燕麦β-葡聚糖组;M:添加MCC组.下表同.数据采用单因素方差分析进行统计(n=9),置信水平为95%;数据采用平均值±标准差表示. 3个处理组差异均不显著(P > 0.05).
Note: C: Control; G: Oat β-glucan; M: MCC. The same as below. The data was analyzed using One-way ANOVA method (n=9), and the confidence level was 95%. Data is shown as mean ± standard deviation. No significant difference was found among the three groups.
2.2 两种类型膳食纤维对小鼠结肠细菌群落结构及多样性的影响

PCR-DGGE图谱分析发现,3组小鼠结肠食糜中细菌Shannon指数和丰富度存在显著差异(P < 0.05,表 3),表现为M组 > 对照组 > G组。

表 3 各组小鼠结肠细菌的Shannon指数、均匀度(EH)和丰富度(S)指数 Table 3 The Shannon index, evenness (EH) and richness (S) index of bacteria in the colonic digesta of mice in different groups
组别
Group
Shannon指数
Shannon index
均匀度指数
Evenness index (EH)
丰富度指数
Species richness (S)
Group C 3.67±0.06 1.00±0.01 39.67±2.31
Group G 3.23±0.05 0.99±0.01 26.00±1.00
Group M 3.83±0.02 0.99±0.01 45.00±3.61
P-value 0.027 0.393 0.035
注:数据采用多独立样本秩和检验进行统计(n=3);P > 0.05表示差异不显著,P < 0.05表示差异显著.下表同.
Note: The data was analyzed using Kruskal-Wallis H test (n=3); P > 0.05 means no significant difference, while P < 0.05 means significant difference. The same as below.

UPMAGA聚类分析发现,G组、M组和对照组各有2个样品聚于一簇(相似度分别为71%、55%和67%,图 1)。

图 1 PCR-DGGE图谱聚类分析 Figure 1 Cluster analysis of PCR-DGGE profile 注:使用UPMGA方法对PCR-DGGE图谱进行聚类. G:添加燕麦β-葡聚糖组;M:添加MCC组;C:对照组.下图同. Note: The phylogenetic tree is generated using UPMGA analysis according to PCR-DGGE profile. G: Oat β-glucan; M: MCC; C: Control. The same as below.
2.3 两种类型膳食纤维对小鼠结肠细菌组成和种类的影响

所选的9个样品共测得原始序列763 894条,去除低质量序列和嵌合体后,共得到661 942条有效序列,最短为285 bp,最长为571 bp,平均长度为409.67 bp。在97%相似度下聚类得到4 003个OTU。样品稀释曲线(图 2)显示,当所测序列小于1 000条时,OTU数量随序列数增加而急剧增加,随后逐渐趋于平缓。

图 2 小鼠结肠样本测序序列稀释曲线(相似度:97%) Figure 2 Rarefaction curve of sequenced reads in feces of mice (similarity: 97%)

表 4可知,OTU数量、覆盖率和Chao1指数在3个组间均无显著差异(P > 0.05),但是Shannon指数存在显著差异(P < 0.05),其中G组Shannon指数值最低。Anosim分析显示,3个组小鼠结肠菌群β-多样性指数差异显著(图 3R=0.391,P=0.035)。与G组和M组相比,对照组组内差异较大,3组的UniFrac距离的秩分别为4.0、16.5和29.5。

表 4 不同处理组小鼠结肠细菌α-多样性 Table 4 The α-diversity of bacteria in the colonic digesta of mice in different groups
组别
Group
OTU数量
OTUs number
覆盖率
Coverage rate (%)
Chao1指数
Chao1 index
Shannon指数
Shannon index
Group C 1 335.00±312.75 99.32±0.12 1 800.90±271.93 7.58±0.64
Group G 1 149.67±153.55 99.50±0.01 1 665.67±270.81 6.30±0.25
Group M 1 251.67±114.36 99.35±0.11 1 854.17±111.79 7.25±0.53
P-value 0.590 0.127 0.613 0.047

图 3 样本间细菌群落Anosim分析 Figure 3 Anosim analysis of unweighted UniFrac diatance

高通量分析显示,所有样本中共包含拟杆菌门(Bacteroidetes)、厚壁菌门(Firmicutes)、变形菌门(Proteobacteria)、脱铁杆菌门(Deferribacteres)、梭杆菌门(Fusobacteria)、软壁菌门(Tenericutes)、放线菌门(Actinobacteria)、酸杆菌门(Acidobacteria)、绿菌门(Chlorobi)、绿弯菌门(Chloroflexi)、蓝菌门(Cyanobacteria)、纤维杆菌门(Fibrobacteres)、芽单胞菌门(Gemmatimonadetes)、硝化螺旋菌门(Nitrospirae)、浮霉菌门(Planctomycetes)、螺旋体门(Spirochaetes)和疣微菌门(Verrucomicrobia)等17个已知菌门(图 4),其中相对丰度0.1%以上的门类占各样品群落99.75%以上(表 5),而Bacteroidetes、Firmicutes和Proteobacteria为主要优势菌,在所有小鼠中约占95.9%−99.4%。

图 4 各组小鼠结肠细菌门水平群落组成 Figure 4 The composition of bacterial phyla in the colonic digesta of mice in different groups

表 5 不同处理组小鼠结肠主要细菌门水平相对丰度(> 0.1%) Table 5 The relative abundance of main bacterial taxa at phylum level in the colonic digesta of mice in different groups (> 0.1%)
类别 Taxon C组 Group C G组 Group G M组 Group M P值 P-value
Unassigned. Other 0.60±0.73 0.08±0.06 0.42±0.12 0.061
Actinobacteria 0.42±0.20 0.14±0.22 0.17±0.15 0.193
Bacteroidetes 28.75±15.29 55.53±5.49 13.13±1.28 0.039
Deferribacteres 0.73±0.99 1.09±0.88 0.39±0.53 0.393
Firmicutes 62.64±12.58 33.65±2.19 78.46±2.42 0.027
Fusobacteria 0.27±0.33 0.03±0.03 0.16±0.06 0.236
Proteobacteria 6.21±1.39 9.34±4.36 6.62±1.09 0.733
Tenericutes 0.17±0.16 0.09±0.08 0.40±0.40 0.733

3个组小鼠结肠Bacteroidetes和Firmicutes相对丰度存在显著差异(P=0.039,0.027)。与对照组相比,G组小鼠结肠Bacteroidetes相对丰度升高26.78%,M组降低15.62%;G组小鼠结肠Firmicutes相对丰度较对照组降低28.99%,而M组比对照组高15.82%。计算3个处理组样品的Bacteroidetes/Firmicutes发现,该比率在3个处理组样品中差异显著(P=0.039),G组比率范围为1.41−1.83,M组比率为0.15−0.19,C组则为0.19−0.91。

在属水平,所测的9个样品共检测到163个属,其中对照组小鼠结肠样品检测到71−75个属,G组样品检测到63−69个属,M组样品检测到62−72个属。共有22个属为所有样品共有。对丰度大于0.1%的属进行统计,发现不同处理组小鼠结肠细菌优势种属的相对丰度差异很大(表 6图 5)。其中,对照组小鼠结肠食糜中Clostridiales. Other. Other (34.19%)、S24-7. Other (21.06%)、Ruminococcaceae. Other (10.60%)、Lachnospiraceae. Other (7.42%)和Oscillospira (4.66%)的相对丰度最高,占总数的77.93%;S24-7. Other (43.37%)、Clostridiales. Other. Other (15.59%)、Bacteroides (6.37%)、Oscillospira (5.59%)和Lachnospiraceae. Other (5.55%)是G组小鼠结肠食糜中丰度最高的5个菌属,占总数的76.47%;M组小鼠结肠食糜中Clostridiales. Other. Other (49.04%)、Lachnospiraceae.Other (9.51%)、Ruminococcaceae. Other (7.87%)、S24-7. Other (5.73%)和Oscillospira (4.36%)占总数的76.51%。

表 6 不同处理组小鼠结肠主要细菌属水平相对丰度(> 0.1%) Table 6 The relative abundance of main bacterial taxa at genus level in the colonic digesta of mice in the different groups (> 0.1%)
类别 Taxon C组 Group C G组 Group G M组 Group M P值 P-value
Clostridiales. Other. Other 34.19±5.11 15.59±4.66 49.04±6.34 0.027
Lachnospiraceae. Other 7.42±2.17 5.55±1.12 9.51±0.85 0.113
Ruminococcaceae. Other 10.60±6.08 3.08±0.42 7.87±1.40 0.061
Ruminococcus* 2.58±1.79 1.55±0.26 3.73±2.69 0.329
Oscillospira 4.66±1.10 5.59±4.43 4.36±1.82 0.875
S24-7. Other 21.06±17.32 43.37±7.91 5.73±0.06 0.099
Lactobacillus 0.22±0.17 0.07±0.09 1.35±1.48 0.079
Rikenellaceae. Other 2.28±1.24 2.62±1.98 2.88±0.90 0.875
Enterobacteriaceae. Other 1.25±1.06 1.92±1.97 1.51±0.29 0.957
Bacteroides 0.89±0.21 6.37±5.61 1.05±0.29 0.051
Desulfovibrio 1.28±0.97 0.41±0.08 1.47±0.41 0.252
Bacteroidales. Other. Other 1.80±0.97 1.05±0.39 0.87±0.46 0.491
Odoribacter 1.21±0.14 0.44±0.40 1.21±0.59 0.099
Desulfovibrionaceae. Other 0.69±0.21 0.61±0.49 1.23±0.46 0.288
[Ruminococcus]* 0.43±0.01 1.26±1.10 1.00±0.43 0.288
Helicobacteraceae. Other 0.48±0.51 2.67±4.03 0.62±0.08 0.875
Mucispirillum 0.74±1.00 1.09±0.88 0.39±0.53 0.393
Flexispira 1.30±1.63 2.76±2.50 0.22±0.28 0.177
注:*Ruminococcus与[Ruminococcus]分别属于相同的门不同的科.
Note: *: Ruminococcus and [Ruminococcus] belong to the same phylum but different families.

图 5 各组小鼠结肠细菌属水平组成 Figure 5 The composition of bacterial genera in the colonic digesta of mice in different groups (> 0.1%)

所有菌属中,Clostridiales. Other. Other的相对丰度在3个组间差异显著(P < 0.05),与对照组相比,G组降低了18.6%,M组升高了14.85%;另外,Bacteroides、Ruminococcaceae. Other、Lactobacillus、S24-7. Other和Odoribacter的相对丰度在3组样品间的差异具有显著趋势(P < 0.1),Bacteroides和S24-7. Other在G组样品中相对丰度最高,而Odoribacter在该组样品中相对丰度最低;Lactobacillus的相对丰度在M组样品中最高;Ruminococcaceae. Other丰度则在对照组样品中最高,而在G组样品中最低。

3 讨论

膳食纤维的类型是影响动物肠道微生物结构的重要因素之一[14]。不同细菌对发酵底物具有选择性,在单胃动物后肠中复杂碳水化合物的利用并非单一菌的作用,而属于多种细菌“交互饲喂”的复杂过程[15-16]。微生物发酵/代谢产物通常被认为是维持肠道稳态的重要因素[17]。微生物群落结构的变化直接影响其发酵模式,因此对微生物群落结构变化的研究具有重要意义。Pieper等[18]在断奶仔猪上的研究表明,与低水平β-葡聚糖相比,含高水平β-葡聚糖的大麦或燕麦麸可降低仔猪后肠微生物多样性。本研究采用PCR-DGGE和高通量测序分析同样发现,采食含燕麦β-葡聚糖饲粮的小鼠结肠细菌α-多样性降低,提示饲粮中添加高水平SDF (如燕麦β-葡聚糖)很可能较IDF (如MCC)降低了单胃动物后肠细菌的多样性。此外,PCR-DGGE聚类分析表明,3组小鼠结肠细菌群落结构受膳食纤维类型和宿主本身共同影响,3个样品各有2个聚于一簇,说明虽然菌群结构具有一定的个体差异(可能由于样本量较小造成),但总体上仍表现出较明显的组间特异性。高通量测序分析也同时证明3组小鼠结肠细菌群落β-多样性存在显著差异,说明SDF (燕麦β-葡聚糖)和IDF (MCC)两种膳食纤维对小鼠结肠细菌的群落结构产生不同影响。我们还发现,与饲喂两种类型膳食纤维的小鼠相比,对照组小鼠结肠菌群个体差异更大,提示日粮纤维对结肠细菌群落结构可能具有重塑作用。

通过分析结肠细菌组成,发现小鼠结肠中存在特异性利用两种类型膳食纤维的菌群,其中与MCC利用有关的菌群以Clostridiales. Other. Other、Lachnospiraceae. Other、Lactobacillus和Desulfovibrionaceae. Other为代表;与β-葡聚糖利用相关的菌群以S24-7. Other、Bacteroides、Helicobacteraceae. Other、MucispirillumFlexispira为代表。

从门水平上看,Bacteroidetes、Firmicutes 和 Proteobacteria在所有小鼠中占95.9%−99.4%,为小鼠结肠中的绝对优势菌门,这与前人研究结果一致[19]。本研究中,3组小鼠结肠细菌组成的差异主要表现在 Bacteroidetes 和 Firmicutes 门。Bacteroidetes 与 Firmicutes 的比率高低被认为与动物机体的能量代谢相关。研究发现,肥胖人群减重成功后其肠道中 Bacteroidetes/Firmicutes 比率由低变高[20],同时膳食结构也会影响该比率,典型的西方饮食可使Bacteroidetes/Firmicutes[21]比率降低。但 Bacteroidetes/Firmicutes 比率的高低是否反映宿主吸收能量的多寡尚存在争议。本研究中,摄食外源纤维的小鼠体增重均高于对照组小鼠,然而摄食含燕麦β-葡聚糖小鼠结肠中 Bacteroidetes/Firmicutes 比率呈现升高,饲喂含MCC日粮小鼠则呈相反趋势,与上述研究结果存在差异,具体原因仍待进一步研究。G组小鼠 Bacteroidetes 相对丰度升高,Firmicutes 相对丰度降低,提示燕麦β-葡聚糖可能促进小鼠后肠中 Bacteroidetes 的增殖,进而或与宿主能量代谢有关。进一步分析发现,S27_4科某属细菌相对丰度的增加是造成 Bacteroidetes 增加的主要原因,由于对照组小鼠该属细菌表现出明显的组内差异,秩和检验并未发现组间差异,但采食含燕麦β-葡聚糖饲粮的小鼠结肠中该属细菌约为采食含MCC饲粮小鼠的7.5倍。最新研究发现,恒温动物S27_4科的多种细菌具有可编码降解多种碳水化合物的酶基因[22]。因此本研究结果提示,与IDF (MCC)相比,该科细菌可能更偏好于利用可发酵程度更高的SDF (燕麦β-葡聚糖)。同时,采食含燕麦β-葡聚糖饲粮的小鼠结肠中 Bacteroides 所占比例约为采食含MCC饲粮小鼠的6倍,可能原因是该属细菌在体外发酵时只可利用天然的而非晶格化的纤维素[23]。研究发现,Clostridiales目含有大量可降解纤维素的细菌种类[24]。本研究同样发现,采食含MCC饲粮的小鼠结肠中属于 Clostridiales 目的某菌属和 Ruminococcaceae 科的某菌属相对丰度较高,提示这两种菌属中可能存在特异利用MCC的菌株,但仍有待进一步研究。此外,MCC具有提高小鼠结肠中 Lactobacillus 相对丰度的趋势,猜测其原因可能与MCC可促进小鼠排便和菌群更新、不利于致病菌附着、间接提高有益菌的丰度有关,但其具体机制尚不清楚。与此相反,燕麦β-葡聚糖的添加反而使小鼠结肠中 Lactobacillus 相对丰度降低,这与现有报道中β-葡聚糖可促进该属细菌生长的结论并不一致[25],造成该结果的原因尚不清楚。

4 结论

(1) 饲粮中添加两种类型膳食纤维均对小鼠结肠细菌群落结构产生影响,高水平燕麦β-葡聚糖降低了小鼠结肠细菌群落的多样性;

(2) 小鼠结肠中存在特异性利用两种类型膳食纤维的菌群;

(3) S27_4科细菌更偏好于利用以燕麦β-葡聚糖为代表的SDF,Clostridiales目可能存在特异性利用MCC的菌株。

参考文献
[1]
Codex Alimentarius Commission. Report of the 30th session of the codex committee on nutrition and foods for special dietary uses[C]. Cope Town, South Africa: ALINORM, 2008
[2]
den Besten G, van Eunen K, Groen AK, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism[J]. Journal of Lipid Research, 2013, 54(9): 2325-2340.
[3]
Scott KP, Gratz SW, Sheridan PO, et al. The influence of diet on the gut microbiota[J]. Pharmacological Research, 2013, 69(1): 52-60. DOI:10.1016/j.phrs.2012.10.020
[4]
Schneeman BO. Soluble vs insoluble fiber: different physiological responses[J]. Food Technology, 1987, 41(2): 81-82.
[5]
Slavin J. Fiber and prebiotics: mechanisms and health benefits[J]. Nutrients, 2013, 5(4): 1417-1435.
[6]
Freire JPB, Guerreiro AJG, Cunha LF, et al. Effect of dietary fibre source on total tract digestibility, caecum volatile fatty acids and digestive transit time in the weaned piglet[J]. Animal Feed Science and Technology, 2000, 87(1/2): 71-83.
[7]
Pituch-Zdanowska A, Banaszkiewicz A, Albrecht P. The role of dietary fibre in inflammatory bowel disease[J]. Przeglad Gastroenterologiczny, 2015, 10(3): 135-141.
[8]
CHO SS. Handbook of dietary fiber[M]. Boca Raton, USA: CRC Press, 2001, 2-4.
[9]
Benítez-Páez A, Del Pulgar EMG, Kj lb k L, et al. Impact of dietary fiber and fat on gut microbiota re-modeling and metabolic health[J]. Trends in Food Science & Technology, 2016, 57: 201-212.
[10]
Wang Q, Ellis PR. Oat β-glucan: physico-chemical characteristics in relation to its blood-glucose and cholesterol-lowering properties[J]. British Journal of Nutrition, 2014, 112(S2): S4-S13. DOI:10.1017/S0007114514002256
[11]
Bauer MW, Driskill LE, Callen W, et al. An endoglucanase, EglA, from the hyperthermophilic archaeon pyrococcus furiosus hydrolyzes β-1, 4 bonds in mixed-linkage (1→3), (1→4)-β-d-glucans and cellulose[J]. Journal of Bacteriology, 1999, 181(1): 284-290.
[12]
Magurran AE. Measuring Biological Diversity[M]. Hoboken, USA: John Wiley & Sons, 2013, 100-130.
[13]
Lozupone CA, Hamady M, Kelley ST, et al. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities[J]. Applied and Environmental Microbiology, 2007, 73(5): 1576-1585. DOI:10.1128/AEM.01996-06
[14]
Trompette A, Gollwitzer ES, Yadava K, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis[J]. Nature Medicine, 2014, 20(2): 159-166. DOI:10.1038/nm.3444
[15]
Belenguer A, Duncan SH, Calder AG, et al. Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut[J]. Applied and Environmental Microbiology, 2006, 72(5): 3593-3599. DOI:10.1128/AEM.72.5.3593-3599.2006
[16]
Mahowald MA, Rey FE, Seedorf H, et al. Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(14): 5859-5864. DOI:10.1073/pnas.0901529106
[17]
Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides[J]. Physiological Reviews, 2001, 81(3): 1031-1064. DOI:10.1152/physrev.2001.81.3.1031
[18]
Pieper R, Jha R, Rossnagel B, et al. Effect of barley and oat cultivars with different carbohydrate compositions on the intestinal bacterial communities in weaned piglets[J]. FEMS Microbiology Ecology, 2008, 66(3): 556-566.
[19]
Ericsson AC, Davis JW, Spollen W, et al. Effects of vendor and genetic background on the composition of the fecal microbiota of inbred mice[J]. PLoS One, 2015, 10(2): e0116704. DOI:10.1371/journal.pone.0116704
[20]
Ley RE, Turnbaugh PJ, Klein S, et al. Microbial ecology: human gut microbes associated with obesity[J]. Nature, 2006, 444(7122): 1022-1023. DOI:10.1038/4441022a
[21]
Li M, Wang B, Zhang M, et al. Symbiotic gut microbes modulate human metabolic phenotypes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(6): 2117-2122. DOI:10.1073/pnas.0712038105
[22]
Ormerod KL, Wood DLA, Lachner N, et al. Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals[J]. Microbiome, 2016, 4: 36. DOI:10.1186/s40168-016-0181-2
[23]
Chassard C, Delmas E, Robert C, et al. The cellulose-degrading microbial community of the human gut varies according to the presence or absence of methanogens[J]. FEMS Microbiology Ecology, 2010, 74(1): 205-213.
[24]
Lynd LR, Weimer PJ, Van Zyl WH, et al. Microbial cellulose utilization: fundamentals and biotechnology[J]. Microbiology and Molecular Biology Reviews, 2002, 66(3): 506-577. DOI:10.1128/MMBR.66.3.506-577.2002
[25]
Arena MP, Caggianiello G, Fiocco D, et al. Barley β-glucans-containing food enhances probiotic performances of beneficial bacteria[J]. International Journal of Molecular Sciences, 2014, 15(2): 3025-3039.