微生物学通报  2018, Vol. 45 Issue (2): 368−375

扩展功能

文章信息

郭睿, 李汶东, 陈大福, 熊翠玲, 郑燕珍, 付中民, 徐细建, 黄枳腱, 骆群
GUO Rui, LI Wen-Dong, CHEN Da-Fu, XIONG Cui-Ling, ZHENG Yan-Zhen, FU Zhong-Min, XU Xi-Jian, HUANG Zhi-Jian, LUO Qun
意大利蜜蜂幼虫肠道内球囊菌及其纯培养的高表达基因差异分析
Highly-expressed gene differences between Ascosphaera apis stressing the larval gut of Apis mellifera ligustica and the pure culture of Ascosphaera apis
微生物学通报, 2018, 45(2): 368-375
Microbiology China, 2018, 45(2): 368-375
DOI: 10.13344/j.microbiol.china.170228

文章历史

收稿日期: 2017-03-19
接受日期: 2017-05-22
网络首发日期(www.cnki.net): 2017-05-31
意大利蜜蜂幼虫肠道内球囊菌及其纯培养的高表达基因差异分析
郭睿1 Δ, 李汶东1 Δ, 陈大福1 , 熊翠玲1 , 郑燕珍1 , 付中民1 , 徐细建1 , 黄枳腱1 , 骆群2     
1. 福建农林大学蜂学学院    福建 福州    350002;
2. 江西省养蜂研究所    江西 南昌    330201
摘要【背景】 球囊菌是一种典型的蜜蜂真菌性病原,特异性地侵染蜜蜂幼虫。目前,有关球囊菌在侵染过程中的基因表达规律的信息极为有限。【目的】 通过深入分析胁迫意大利蜜蜂(意蜂)幼虫肠道的球囊菌及其纯培养的高表达基因(HEGs)差异,探索球囊菌在胁迫意蜂幼虫肠道后期与胁迫前的基因表达规律。【方法】 利用RNA-Seq技术对球囊菌胁迫的意蜂6日龄幼虫肠道(AamT)及球囊菌纯培养(AaCK)进行深度测序,根据FPKM值筛选得到球囊菌的HEGs,进而通过GO (Gene ontology)及KEGG (Kyoto Encyclopedia of Genes and Genomes)富集分析、Venn分析对上述HEGs进行功能预测和生物学意义挖掘。【结果】 AaCK与AamT的转录组测序共得到105 447 578条原始读段(Raw reads),经过滤得到88 466 344条有效读段(Clean reads),两端平均Q20为97.50%,平均Q30为93.81%。GO富集分析结果显示,AaCK的HEGs富集于26个GO terms,基因富集数最多的是细胞(22 Unigenes),其次是细胞组件(22 Unigenes)和代谢过程(21 Unigenes);AamT的HEGs富集于22个GO terms,基因富集数最多的是催化活性(23 Unigenes),其次是细胞进程(18 Unigenes)和代谢过程(18 Unigenes)。KEGG代谢通路(Pathway)富集分析显示,AaCK的HEGs富集在109个Pathways上,基因富集数最多的是核糖体(179 Unigenes),其次是氨基酸生物合成(70 Unigenes)和碳代谢(62 Unigenes);AamT的HEGs富集在114个Pathways上,基因富集数量最多的是核糖体(178 Unigenes),其次是碳代谢(116 Unigenes)和氧化磷酸化(112 Unigenes)。Venn分析结果显示,AaCK与AamT共有的HEGs有260个,二者特有的HEGs分别为2 161个和4 445个。【结论】 提供了胁迫意蜂6日龄幼虫肠道的球囊菌及其纯培养的HEGs表达谱,揭示了球囊菌在胁迫前和胁迫后期的基因表达规律,也为阐明球囊菌致病的分子机理提供了有益的信息和线索。
关键词RNA-Seq     意大利蜜蜂     幼虫肠道     球囊菌     高表达基因    
Highly-expressed gene differences between Ascosphaera apis stressing the larval gut of Apis mellifera ligustica and the pure culture of Ascosphaera apis
GUO Rui1Δ, LI Wen-Dong1Δ, CHEN Da-Fu1, XIONG Cui-Ling1, ZHENG Yan-Zhen1, FU Zhong-Min1, XU Xi-Jian1, HUANG Zhi-Jian1, LUO Qun2     
1. College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China;
2. Jiangxi Province Institute of Apiculture, Nanchang, Jiangxi 330201, China
Received: March 19, 2017; Accepted: May 22, 2017; Published online (www.cnki.net): May 31, 2017
Foundation item: The Earmarked Fund for China Agriculture Research System (CARS-44-KXJ7); Science and Technology Development Fund of Fujian Agriculture and Forestry University (KF2015123); National Undergraduate Innovation and Entrepreneurship Training Program (201610389016)
ΔThese authors equally contributed to this work
*Corresponding author: CHEN Da-Fu, Tel:86-591-83726835;E-mail:dfchen826@fafu.edu.cn.
Abstract: [Background] Ascosphaera apis is a special fungal pathogen that specially infect honeybee larvae. Currently, information related to gene expression of A. apis during the infection process is limited. [Objective] This study was designed to analyze highly-expressed genes (HEGs) differences between A. apis stressing the 6-day-old larval gut of Apis mellifera ligustica and the pure culture of A. apis, and to explore the gene expression of A. apis during the late stage of stress and the pure culture of A. apis. [Methods] In our study, the 6-day-old larval gut of A. m. ligustica under the stress of A. apis and the pure culture of A. apis were sequenced using RNA-Seq, and the HEGs were obtained based on FPKM value, followed by function prediction and exploration of biological significance via GO (Gene ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment as well as Venn analyses. [Results] A total of 105 447 578 raw reads were produced from RNA-Seq, and 88 466 344 clean reads with a mean Q20 of 97.50% and a mean Q30 of 93.81% were obtained after filtration. GO enrichment analysis showed that the HEGs of AaCK were enriched in 26 GO terms, among them the cell (22 unigenes), cell part (22 unigenes) and metabolism (21 unigenes) were mostly enriched; the HEGs of AamT were enriched in 22 GO terms, and the mostly enriched ones were the catalytic activity (23 unigenes), cell processes (18 unigenes) and metabolic processes (18 unigenes). KEGG pathway enrichment analysis showed that the HEGs of AaCK were involved in 109 pathways, among them the largest group was ribosome (179 unigenes) followed by biosynthesis of amino acids (70 unigenes) and carbon metabolism (62 unigenes); the HEGs of AaCK were involved in 114 pathways, and the mostly enriched one was ribosome (178 unigenes) followed by carbon metabolism (116 unigenes) and oxidative phosphorylation (112 unigenes). Furthermore, Venn analysis suggested that there are 260 shared HEGs, while 2 161 and 4 445 HEGs were specially expressed in AaCK and AamT, respectively. [Conclusion] Findings in the present study can offer the expression profiles of HEGs of A. apis stressing the 6-day-old larval gut of A. m. ligustica and the pure culture of A. apis, reveal the gene expression rules of A. apis before stress and A. apis during the late stage of stress, and provide helpful information for uncovering molecular mechanisms regulating the pathogenesis of A. apis.
Key words: RNA-Seq     Apis mellifera ligustica     Larval gut     Ascosphaera apis     Highly expressed gene    

蜜蜂作为重要的社会学模式昆虫,在发育学、神经生物学、行为学和病原-宿主互作研究中发挥重要作用[1-5]。蜜蜂也是重要的授粉昆虫,在农业生产和生态维持中的作用不可替代[6]。据报道,蜜蜂为全球70%的作物和野生植物授粉[7-8]。蜜蜂因其群居性而易遭受细菌、真菌及病毒等病原微生物的侵袭。其中,蜜蜂白垩病是最具代表性的致死性真菌病。白垩病于1913年在德国首次被发现[9],于1990年在中国大陆发生[10]。近年来,随着养蜂活动及蜂产品贸易的快速发展,白垩病发病率逐年上升[11]。白垩病是由蜜蜂球囊菌(Ascosphaera apis,简称球囊菌)特异性侵染蜜蜂幼虫而导致,可造成蜜蜂群势的大幅下降,从而严重影响蜂蜜等产品的产量[12]。据报道,白垩病可造成蜂蜜产量下降5%−37%[13]。近二十年来,国内外研究者在病原分类鉴定、形态学、病理学、流行病学、侵染过程、蜜蜂防御以及疾病防治等方面对白垩病开展了一系列研究。本课题组也在球囊菌的生化、检测及侵染过程等方面开展了较多研究,如郑志阳等[14]对健康和患病蜜蜂幼虫血淋巴进行SDS-PAGE电泳和蛋白酶、酯酶的活性染色,发现健康蜜蜂幼虫血淋巴中的蛋白含量丰富,主要由4种高分子质量的蛋白组成,而患病幼虫血淋巴中的蛋白含量很少,主要蛋白组分被降解,多种蛋白酶和酯酶的活性在患病幼虫血淋巴中检测到,但在健康幼虫中检测不到。

胁迫分为生物胁迫和非生物胁迫,其中生物胁迫是指在特定环境下由生物因素(如病害和虫害)所施加的不利影响[15]。本研究利用RNA-Seq技术对球囊菌胁迫的意蜂6日龄幼虫肠道的球囊菌及其纯培养进行深度测序,进而对球囊菌的HEGs进行Gene ontology (GO)和KEGG代谢通路(Pathway)分析,研究结果揭示了球囊菌在胁迫意蜂幼虫肠道后期和胁迫前的基因表达规律,也为阐明球囊菌的致病机理奠定了初步基础。

1 材料与方法 1.1 生物材料

本研究中使用的意蜂幼虫取自福建农林大学蜂学学院教学蜂场,球囊菌菌株由福建农林大学蜂学学院蜜蜂保护学实验室保存并活化。

1.2 主要试剂和仪器

DNase Ⅰ和Oligotex mRNA Midi Kit,德国QIAGEN公司;Dynal M280磁珠,Invitrogen公司;DNA Ligase,美国Thermo公司;RNAiso Reagent抽提试剂盒、ExTaq Polymerase及SuperScript Ⅱ Reverse Transcriptase,日本TaKaRa公司;纯化cDNA的Acpure beads,美国Agencourt公司;cDNA文库构建试剂盒TruSeqTM DNA Sample Prep Kit-Set A,美国Illumina公司;紫外可见分光光度计,美国NanoDrop公司;其他试剂均为国产分析纯。

倒置显微镜,中国上海光学仪器五厂;超净工作台,中国苏州安泰空气技术有限公司;恒温恒湿气候箱,中国宁波江南仪器厂;超低温冰箱,中国中科美菱公司;凝胶成像系统,中国上海培清科技有限公司;PCR仪,美国Bio-Rad公司。

1.3 球囊菌活化、孢子纯化及计数

按照本实验室已建立的方法[16]对球囊菌进行活化。按照Jensen等[17]的方法纯化球囊菌孢子,将高浓度孢子溶液梯度稀释后用血球计数板对孢子进行计数。

1.4 意蜂幼虫的人工饲养及测序样品准备

本实验室前期已建立意蜂幼虫的人工饲养方法[18]。从学院蜂场选择群势较强且无白垩病症状的意蜂蜂群20群,用球囊菌的特异性引物进行PCR检测,鉴定结果阴性的蜂群作为实验蜂群。将实验蜂群的2日龄幼虫移入无菌的24孔细胞培养板,每孔对应1只幼虫(孔内加有35 ℃预温的幼虫饲料),置于35 ℃,70%相对湿度(RH)条件下饲养。每隔24 h更换饲料。预先配制添球囊菌孢子的人工饲料,混匀后调整孢子终浓度至为1×107孢子/mL,饲喂3日龄幼虫。本次实验进行3次生物学重复。

剖取上述意蜂6日龄幼虫肠道(AamT),每剖取一只幼虫肠道,迅速将肠道移至RNA Free的EP管,液氮速冻,待一组肠道样品(7只幼虫肠道)集齐后,转移至−80 ℃保存备用。将球囊菌纯化孢子(AaCK)投入液氮速冻后立即转移至−80 ℃保存备用。AaCK与AamT的3个生物学重复分别为AaCK-1、AaCK-2、AaCK-3和AamT-1、AamT-2、AamT-3。

1.5 cDNA文库构建及Illumina测序

首先抽提上述球囊菌孢子与幼虫肠道样品的总RNA,然后用RNase-free DNase Ⅰ去除基因组DNA残留。RNA的质量通过琼脂糖凝胶电泳和NanoDrop ND-1000进行检测。cDNA文库构建参照张曌楠等的建库方法[16]。委托广州基迪奥生物科技有限公司对上述6个样品进行双端测序(PE125),测序平台为Illumina HiSeq 2500。

1.6 数据分析

对于下机的原始读段(Raw reads),利用Perl脚本去除含有Adaptor、未知核苷酸比例大于5%和低质量读段(Reads),获得有效读段(Clean reads)。利用R软件(Version 2.16.2)进行测序饱和度分析。对于AaCK,利用短Reads比对工具Bowtie[19]将Clean reads映射(Mapping)到核糖体数据库(最多允许5个错配),再利用SOAP aligner/ soap2软件(Hurgobin B,2016)将未Mapping上核糖体的Reads mapping到球囊菌参考转录组[16];对于AamT,将Clean reads mapping到核糖体数据库、意蜂参考基因组(Amel_4.5,http://www.ncbi.nlm.nih.gov/genome/48?genome_assembly_id=22683),进而Mapping到球囊菌参考转录组[16]

利用FPKM (Fragments Per Kilobase of Transcript Per Million Mapped Reads)法计算基因表达量。利用R软件(Version 2.16.2)计算各样品之间的相关性系数。利用在线分析工具OmicShare (http://www.omicshare.com/tools/index.php/Home/Index/index.html)对AaCK与AamT中FPKM值大于15的高表达基因进行GO及KEGG pathway富集分析。

2 结果与分析 2.1 Illumina测序数据质控与评估

本研究6个样品的转录组测序共测得105 447 578条Raw reads,经过滤得到88 466 344条Clean reads,各样品Clean reads数均在27 141 980以上。两端平均Q20为97.50%,两端平均Q30为93.81% (表 1)。随着测序量的增多,检测到的基因数也随之上升,增长速度趋于平缓说明本研究的测序深度检测到的基因数趋于饱和(图 1)。AaCK与AamT的组内各生物学重复之间的相关性均在0.80以上,说明样本的重复性高(图 2)。将Clean reads mapping到核糖体数据库和球囊菌参考转录组,各样品Mapping率均在87%以上。上述结果说明本研究的转录组数据质量良好,可用于进一步分析。

图 1 AamT与AaCK的主成分分析 Figure 1 PCA of AamT and AaCK

图 2 HEGs的GO富集分析 Figure 2 GO enrichment analysis of HEGs 注:A:AaCK中HEGs的GO富集分析;1:生物调控;2:细胞成分的组织与生物合成;3:细胞进程;4:发育进程;5:生长;6:定位;7:代谢过程;8:应激反应;9:信号;10:单组织进程;11:细胞;12:细胞组件;13:大分子复合物;14:细胞膜;15:细胞膜组分;16:细胞器;17:细胞器组件;18:病毒;19:病毒组件;20:结合;21:催化活性;22:分子转导活性;23:信号转导活性;24:结构分子活性;25:转录因子活性;26:转运活性. B:AamT中HEGs的GO富集分析;1:生物调控;2:细胞成分的组织与生物合成;3:细胞进程;4:发育进程;5:生长;6:定位;7:代谢过程;8:多组织进程;9:应激反应;10:信号;11:单组织进程;12:细胞;13:细胞组件;14:大分子复合物;15:细胞膜;16:细胞膜组件;17:细胞器;18:细胞器组件;19:结合;20:催化活性;21:结构分子活性;22:转运活性. Note: A: GO enrichment analysis of HEGs in AaCK; 1: Biological regulation; 2: Cellular component organization or biogenesis; 3: Cellular process; 4: Developmental process; 5: Growth; 6: Localization; 7: Metabolic process; 8: Response to stimulus; 9: Signaling; 10: Single-organism process; 11: Cell; 12: Cell part; 13: Macromolecular complex; 14: Membrane; 15: Membrane part; 16: Organelle; 17: Organelle part; 18: Virion; 19: Virion part; 20: Binding; 21: Catalytic activity; 22: Molecular transducer activity; 23: Signal transducer activity; 24: Structural molecule activity; 25: Transcription factor activity; 26: Transporter activity. B: GO enrichment analysis of HEGs in AamT; 1: Biological regulation; 2: Cellular component organization or biogenesis; 3: Cellular process; 4: Developmental process; 5: Growth; 6: Localization; 7: Metabolic process; 8: Multi-organism process; 9: Response to stimulus; 10: Signaling; 11: Single-organism process; 12: Cell; 13: Cell part; 14: Macromolecular complex; 15: Membrane; 16: Membrane part; 17: Organelle; 18: Organelle part; 19: Binding; 20: Catalytic activity; 21: Structural molecule activity; 22: Transporter activity.

表 1 RNA-Seq数据统计 Table 1 Overview of RNA-Seq data
Samples Raw reads Clean reads (%) Q20 (%) Q30 (%)
AaCK-1 27 346 616 25 880 356 (94.64) 3 141 471 373 (97.11) 2 998 660 797 (92.69)
AaCK-2 28 762 462 27 141 980 (94.37) 3 292 721 137 (97.05) 3 139 851 346 (92.55)
AaCK-3 28 615 498 27 069 220 (94.60) 3 287 257 287 (97.15) 3 138 887 961 (92.77)
AamT-1 9 455 236 3 178 978 (98.43) 1 158 489 428 (98.02) 1 122 984 422 (95.01)
AamT-2 4 398 766 2 253 412 (96.08) 537 205 684 (97.70) 520 643 109 (94.69)
AamT-3 6 869 000 2 942 398 (96.46) 841 027 167 (97.95) 816 721 210 (95.12)

进一步对各样品进行主成分分析(PCA),结果显示第1主成分(PC1)与第2主成分(PC2)可分别解释样品基因表达总体方差的93.6%和4.6% (图 1),表明AaCK与AamT的基因表达模式差异明显,各样品的组内重复聚类良好。

2.2 HEGs的GO富集分析

一般认为FPKM值在0.10−3.75之间的是低表达基因,在3.75−15.00之间为中度表达基因,大于15.00的为HEGs[20],根据FPKM值对各样品基因进行筛选得到HEGs。

GO富集分析结果显示,AaCK中HEGs主要富集在生物学进程、细胞组分和分子功能3个大类26个GO terms,其中基因富集数最多的是细胞(22 Unigenes),其次是细胞组件(22 Unigenes)和代谢过程(21 Unigenes) (图 2A)。AamT的HEGs富集在22个GO terms,其中基因富集数最多的是催化活性(23 Unigenes),其次是细胞进程(18 Unigenes)和代谢过程(18 Unigenes) (图 2B)。意蜂6日龄幼虫肠道内球囊菌较之纯培养球囊菌,HEGs富集的GO term数有所减少。

2.3 HEGs的KEGG pathway富集分析

KEGG pathway富集分析结果显示,AaCK的HEGs富集在109个Pathways上,其中基因富集数最多的是核糖体(179 Unigenes),其次是氨基酸生物合成(70 Unigenes)和碳代谢(62 Unigenes) (图 3A)。AamT的HEGs富集在114个Pathway上,其中基因富集数最多的是核糖体(178 Unigenes),其次是碳代谢(116 Unigenes)和氧化磷酸化(112 Unigenes) (图 3B)。

图 3 HEGs的KEGG pathway富集分析 Figure 3 KEGG pathway enrichment analysis of HEGs 注:A:AaCK中HEGs的KEGG pathway富集分析;e:人类疾病;20:内分泌代谢疾病. B:AamT中HEGs的KEGG pathway富集分析;e:生物系统;20:衰老. a:代谢;1:碳水化合物代谢;2:代谢总览;3:氨基酸代谢;4:能量代谢;5:核苷酸代谢;6:脂质代谢;7:共同因子和维生素代谢;8:其他氨基酸代谢;9:糖链的生物合成与代谢;10:萜类和酮类化合物代谢;11:其他次生代谢产物的生物合成;b:遗传信息处理;12:翻译;13:折叠、分选和降解;14:转录;15:复制和修复;c:环境信息处理;16:信号转导;17:膜转运;d:细胞过程;18:运输和代谢;19:细胞生长与死亡;f:人类疾病;21:内分泌代谢疾病. Note: A: KEGG enrichment analysis of HEGs in AaCK; e: Human diseases; 20: Endocrine and metabolic diseases. B: KEGG enrichment analysis of HEGs in AamT; e: Organismal systems; 20: Aging. a: Metabolism; 1: Carbohydrate metabolism; 2: Global and overview; 3: Amino acid metabolism; 4: Energy metabolism; 5: Nucleotide metabolism; 6: Lipid metabolism; 7: Metabolism of cofactors and vitamins; 8: Metabolism of other amino acids; 9: Glycan biosynthesis and metabolism; 10: Metabolism of terpenoids and polyketides; 11: Biosynthesis of other secondary metabolites; b: Genetic information processing; 12: Translation; 13: Folding, sorting and degradation; 14: Transcription; 15: Replication and repair; c: Environmental information processing; 16: Signal transduction; 17: Membrane transport; d: Cellular processes; 18: Transport and catabolism; 19: Cell growth and death; f: Human diseases; 21: Endocrine and metabolic diseases.
2.4 HEGs的Venn分析

AaCK和AamT中HEGs的Venn分析结果显示,260个HEGs为AmcK和AamT所共有,二者的特有HEGs分别为2 161个和4 445个(图 4)。推测这些共有HEGs对球囊菌的生命活动至关重要,而AamT特有的HEGs则在球囊菌侵染意蜂幼虫肠道的后期过程中发挥特殊作用。对这些共有与特有HEGs的深入研究将有助于揭示球囊菌致病的分子机理。

图 4 HEGs的Venn分析 Figure 4 Venn analysis of HEGs
3 讨论与结论

为了对球囊菌进行深入的转录组学研究,本课题组前期已组装并注释球囊菌的参考转录组[16],在此基础上,本研究对球囊菌胁迫的意蜂6日龄幼虫肠道及其纯培养进行测序,进而对不同状态下的球囊菌进行HEGs分析。6日龄幼虫肠道内的球囊菌处于侵染后期,此时中肠与后肠接通,球囊菌孢子因氧气刺激而迅速萌发生长,形成大量菌丝并开始穿透肠壁[18],因而无法将病原与肠道完全分离,我们采取的策略是对球囊菌胁迫的幼虫肠道进行测序,得到病原和宿主的混合数据,通过Mapping意蜂参考基因组将能够比对上的数据去除,再将剩余数据Mapping前期组装并注释的球囊菌转录组,平均Mapping率达到89.50%,注释结果良好。在Cornman等[21]的研究中,测序对象是来自培养基的球囊菌菌丝和来自蜜蜂幼虫感染组织的球囊菌菌丝,其中后者是感染幼虫肠道内萌发的菌丝突破肠壁后继续生长最后突破体表的菌丝,而此时的菌丝已不再与宿主互作,菌丝的转录组变化无法真实反映球囊菌在侵染过程中的基因表达谱。本研究的测序对象是纯培养的球囊菌和球囊菌胁迫的意蜂幼虫肠道,前者尚未与宿主发生互作,而后者因处于中蜂幼虫肠道内而与宿主发生复杂的互作,因此,本研究中的转录组分析可更真实地反映球囊菌在侵染过程中的基因表达谱。

本研究中,AamT有63.90%的HEGs(1 549 Unigenes)富集在新陈代谢,包括碳代谢(ko01200)、氧化磷酸化(ko00190)和氨基酸生物合成(ko01230)等77个物质代谢通路,还包括氧化磷酸化(ko00190)、氮代谢(ko00910)、硫代谢(ko00920)以及甲烷代谢(ko00680)等4个能量代谢通路。AaCK只有55.18%的HEGs (858 Unigenes)富集在新陈代谢,表明球囊菌在胁迫意蜂幼虫肠道的后期,通过提高自身的物质和能量代谢满足增殖需求。AaCK与AamT中均有HEGs富集在氨基酸生物合成与内质网蛋白加工,但相比于前者,后者富集在此2条Pathways的HEGs数(70 Unigenes,43 Unigenes)均有较大幅度的提高;AamT中富集在氧化磷酸化的HEGs数(112 Unigenes)也远多于AaCK (58 Unigenes),此外,AamT中有多达55个HEGs富集在糖酵解。上述结果进一步说明球囊菌在胁迫后期通过增强蛋白代谢与能量代谢满足孢子萌发与菌丝生长,从而促进侵染过程。

球囊菌在胁迫后期,其孢子在氧气的刺激下迅速萌发,菌丝大量生长,此时球囊菌通过释放脂酶、蛋白酶等降解围食膜和表皮[22]。球囊菌可分泌十几种酶类,其中多数为其生长所必需[23-24]。与球囊菌的致病性密切相关的有几丁质酶和蛋白酶[22]。本研究发现在胁迫后期,8个球囊菌HEGs (Unigene0039428、Unigene0012137、Unigene0013957、Unigene0018355、Unigene0041463、Unigene0018102、Unigene0012138和Unigene0001669)涉及编码几丁质酶;另发现有26个球囊菌HEGs涉及编码蛋白酶,包括KEX1蛋白酶编码基因(Unigene0015155)、类胰蛋白酶的丝氨酸蛋白酶编码基因(Unigene0002259、Unigene0006007、Unigene0014184)和碱性蛋白酶2编码基因(Unigene0016156)等。推测上述几丁质酶和蛋白酶编码基因在球囊菌胁迫后期大量表达,协助病原突破肠壁和体壁。此外,本研究还发现AamT中有多达58个HEGs编码水解酶,如配糖水解酶家族16编码基因(Unigene0013642)、AB水解酶YheT编码基因(Unigene0014731)及碳氮水解酶编码基因(Unigene0015168)等,推测球囊菌在胁迫后期通过合成分泌大量水解酶催化降解宿主肠壁和体壁的糖类、脂类以及蛋白质,从而促进侵染过程。

本研究只对意蜂6日龄幼虫肠道内的球囊菌及其纯培养进行HEGs差异分析,这是从基因表达量的角度分析球囊菌的基因表达谱,若要全面解析球囊菌致病的分子机理,则需要从基因表达水平相对变化倍数的角度进一步挖掘球囊菌在胁迫中蜂幼虫肠道过程中的转录组信息,本课题组目前正在对胁迫意蜂6日龄幼虫肠道的球囊菌及其纯培养进行差异表达基因(DEGs)分析,接下来将对球囊菌胁迫的其他日龄幼虫肠道进行转录组测序,并通过趋势分析或基因权重共表达分析(WGCNA)从全局水平对球囊菌进行深入分析。

本研究利用RNA-Seq技术对胁迫意蜂幼虫肠道的球囊菌及其纯培养进行深度测序,通过GO及KEGG pathway富集分析对不同状态下球囊菌的HEGs进行深入分析,研究结果揭示了球囊菌在胁迫意蜂幼虫肠道后期与胁迫前的基因表达规律,也为阐明球囊菌致病的分子机理奠定了初步基础。

参考文献
[1]
Galizia CG, Eisenhardt D, Giurfa M. Honeybee Neurobiology and Behavior: A Tribute to Randolf Menzel[M]. Dordrecht Netherlands, New York: Springer, 2012.
[2]
Begna D, Han B, Feng M, et al. Differential expressions of nuclear proteomes between honeybee (Apis mellifera L.) queen and worker larvae: a deep insight into caste pathway decisions[J]. Journal of Proteome Research, 2012, 11(2): 1317-1329. DOI:10.1021/pr200974a
[3]
Zayed A, Robinson GE. Understanding the relationship between brain gene expression and social behavior: lessons from the honey bee[J]. Annual Review of Genetics, 2012, 46: 591-615. DOI:10.1146/annurev-genet-110711-155517
[4]
Foret S, Kucharski R, Pellegrini M, et al. DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(13): 4968-4973. DOI:10.1073/pnas.1202392109
[5]
Kurze C, Routtu J, Moritz RFA. Parasite resistance and tolerance in honeybees at the individual and social level[J]. Zoology, 2016, 119(4): 290-297. DOI:10.1016/j.zool.2016.03.007
[6]
Committee on the status of pollinators in North America. Status of Pollinators in North America[M]. Washington, D.C.: National Academies Press, 2007.
[7]
Klein AC, Vaissière BE, Cane JH, et al. Importance of pollinators in changing landscapes for world crops[J]. Proceedings of the Royal Society B-Biological Sciences, 2007, 274(1608): 303-313. DOI:10.1098/rspb.2006.3721
[8]
Genersch E. Honey bee pathology: current threats to honey bees and beekeeping[J]. Applied Microbiology and Biotechnology, 2010, 87(1): 87-97. DOI:10.1007/s00253-010-2573-8
[9]
Aronstein KA, Murray KD. Chalkbrood disease in honey bees[J]. Journal of Invertebrate Pathology, 2010, 103(S): S20-S29.
[10]
Liang Q, Chen DF. Honeybee Protection[M]. Beijing: China Agriculture Press, 2009, 2nd ed.
梁勤, 陈大福. 蜜蜂保护学[M]. 北京: 中国农业出版社, 2009, 2版.
[11]
Aizen MA, Garibaldi LA, Cunningham SA, et al. How much does agriculture depend on pollinators? Lessons from long-term trends in crop production[J]. Annals of Botany, 2009, 103(9): 1579-1588. DOI:10.1093/aob/mcp076
[12]
Bailey L. Infectious Diseases of the Honey-Bee[M]. London, UK: Land Books, 1963.
[13]
Zaghloul OA, Mourad AK, El Kady MB, et al. Assessment of losses in honey yield due to the chalkbrood disease, with reference to the determination of its economic injury levels in Egypt[J]. Communications in Agricultural and Applied Biological Sciences, 2005, 70(4): 703-714.
[14]
Zheng ZY, Li JH, Liang Q, et al. Ascosphaera apis secretes multiple extracellular enzymes to infect honeybee larvae[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2011, 40(3): 280-284.
郑志阳, 李江红, 梁勤, 等. 蜜蜂球囊菌分泌多种胞外酶侵染蜜蜂幼虫[J]. 福建农林大学学报:自然科学版, 2011, 40(3): 280-284.
[15]
Fan HY, Li N, Miao Q, et al. Research progress on proteomics to uncover biotic stress tolerance mechanisms in plant[J]. Hubei Agricultural Sciences, 2009, 48(12): 3167-3171.
范海延, 李楠, 苗青, 等. 植物应答生物胁迫的蛋白质组学研究进展[J]. 湖北农业科学, 2009, 48(12): 3167-3171. DOI:10.3969/j.issn.0439-8114.2009.12.082
[16]
Zhang ZN, Xiong CL, Xu XJ, et al. De novo assembly of a reference transcriptome and development of SSR markers for Ascosphaera apis[J]. Acta Entomologica Sinica, 2017, 60(1): 34-44.
张曌楠, 熊翠玲, 徐细建, 等. 蜜蜂球囊菌的参考转录组de novo组装及SSR分子标记开发[J]. 昆虫学报, 2017, 60(1): 34-44.
[17]
Jensen AB, Aronstein K, Flores JM, et al. Standard methods for fungal brood disease research[J]. Methods, 2013, 52(1): 1-20.
[18]
Li JH, Zheng ZY, Chen DF, et al. Factors influencing Ascosphaera apis infection on honeybee larvae and observation on the infection process[J]. Acta Entomologica Sinica, 2012, 55(7): 790-797.
李江红, 郑志阳, 陈大福, 等. 影响蜜蜂球囊菌侵染蜜蜂幼虫的因素及侵染过程观察[J]. 昆虫学报, 2012, 55(7): 790-797.
[19]
Langmead B, Schatz MC, Lin J, et al. Searching for SNPs with cloud computing[J]. Genome Biology, 2009, 10(11): R134. DOI:10.1186/gb-2009-10-11-r134
[20]
Mortazavi A, Williams BA, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq[J]. Nature Methods, 2008, 5(7): 621-628. DOI:10.1038/nmeth.1226
[21]
Cornman RS, Bennett AK, Murray KD, et al. Transcriptome analysis of the honey bee fungal pathogen, Ascosphaera apis: implications for host pathogenesis[J]. BMC Genomics, 2012, 13: 285. DOI:10.1186/1471-2164-13-285
[22]
Li FX, Li JH, Liang Q, et al. Characteristics of Ascospheare apis extracellular proteinase[J]. Scientia Agricultura Sinica, 2011, 44(6): 1247-1254.
李飞雄, 李江红, 梁勤, 等. 蜜蜂球囊菌几种胞外蛋白酶的特性[J]. 中国农业科学, 2011, 44(6): 1247-1254.
[23]
Chorbiński P. Enzymatic activity of strains of Ascosphaera apis[J]. Medycyna Weterynaryjna, 2003, 59(11): 1019-1022.
[24]
Theantana T, Chantawannakul P. Protease and β-N-acetylglucosaminidase of honey bee chalkbrood pathogen Ascosphaera apis[J]. Journal of Apicultural Research, 2008, 47(1): 68-76. DOI:10.1080/00218839.2008.11101426