微生物学通报  2018, Vol. 45 Issue (2): 293−301

扩展功能

文章信息

唐凯, 高晓丹, 贾丽娟, 徐慧欣, 李蘅, 孟建宇, 陶羽, 冯福应
TANG Kai, GAO Xiao-Dan, JIA Li-Juan, XU Hui-Xin, LI Heng, MENG Jian-Yu, TAO Yu, FENG Fu-Ying
浑善达克沙地生物土壤结皮及其下层土壤中固氮细菌群落结构和多样性
Community structure and diversity of diazotrophs in biological soil crusts and soil underneath crust of Hunshandake deserts
微生物学通报, 2018, 45(2): 293-301
Microbiology China, 2018, 45(2): 293-301
DOI: 10.13344/j.microbiol.china.170227

文章历史

收稿日期: 2017-03-19
接受日期: 2017-06-05
网络首发日期(www.cnki.net): 2017-06-13
浑善达克沙地生物土壤结皮及其下层土壤中固氮细菌群落结构和多样性
唐凯 , 高晓丹 , 贾丽娟 , 徐慧欣 , 李蘅 , 孟建宇 , 陶羽 , 冯福应     
内蒙古农业大学生命科学学院 应用与环境微生物研究所    内蒙古 呼和浩特    010018
摘要【背景】 荒漠化是一个重大环境问题,生物土壤结皮(Biological soil crusts,BSCs)可遏制荒漠化,其中的固氮微生物对BSCs的形成和发育有重要作用,但目前BSCs中固氮细菌群落结构和多样性尚不十分清楚。【目的】 阐明浑善达克沙地中不同类型生物土壤结皮及其下层土壤固氮细菌的群落结构、多样性及其影响因素。【方法】 利用稀释热法和碱解扩散法检测土壤的有机质(Organic matter,OM)和速效氮(Available nitrogen,AN)含量;利用高通量测序对nifH基因进行测序,基于nifH序列比较分析固氮细菌群落结构和多样性;利用典范对应分析(Canonical correlation analysis,CCA)分析群落、样品和土壤理化参数的相关性。【结果】 固氮细菌优势菌门除在苔藓结皮(HSM)中为Cyanobacteria和Proteobacteria外,在其他类型BSCs中均只为Cyanobacteria;苔藓结皮下层土壤(HSMs) (下层土壤中只有HSMs检测到了nifH)(HSA)中优势菌门为Proteobacteria,优势菌纲为Alphaproteobacteria和Betaproteobacteria;优势菌属差异较大,藻结皮Unclassified_f_ Nostocaceae占90.99%;地衣结皮(HSL)中Scytonema和Unclassified_f_Nostocaceae分别占45.85%和44.14%;HSM中Unclassified_f_Nostocaceae、ScytonemaNostocSkermanella、Unclassified_o_Nostocales分别占29.21%、22.57%、15.34%、14.74%和10.60%;HSMs中SkermanellaAzohydromonas、Unclassified_p_Proteobacteria、Unclassified_c_Alphaproteobacteria分别占33.80%、25.66%、18.20%和10.62%;固氮细菌多样性随结皮的发育逐渐提高;OM和AN对结皮的发育起促进作用。【结论】 藻结皮、地衣结皮和苔藓结皮及其紧邻下层土壤中的固氮细菌群落结构和多样性差异明显,且固氮细菌类群和多样性指数随BSCs发育阶段的提高而增加。本研究为认识和利用生物土壤结皮相关固氮细菌提供了基础依据。
关键词BSCs     固氮细菌     nifH     高通量     多样性    
Community structure and diversity of diazotrophs in biological soil crusts and soil underneath crust of Hunshandake deserts
TANG Kai, GAO Xiao-Dan, JIA Li-Juan, XU Hui-Xin, LI Heng, MENG Jian-Yu, TAO Yu, FENG Fu-Ying     
Institute for Applied & Environmental Microbiology, College of Life Sciences, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia 010018, China
Received: March 19, 2017; Accepted: June 05, 2017; Published online (www.cnki.net): June 13, 2017
Foundation item: National Natural Science Foundation of China (31560030); The Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (NJYT-14-A05); Collaborative Innovation Team Project for Teachers and Students of College of Life Science of Inner Mongolia Agricultural University (KJCX2016011)
*Corresponding author: FENG Fu-Yin, Tel: 86-471-4309240; E-mail: foyefeng@hotmail.com.
Abstract: [Background] Desertification is a major environmental problem, biological soil crusts (BSCs) can inhibit desertification, and the diazotrophs play an important role in the formation and development of BSCs. However, the community structure and diversity of diazotrophs in BSCs are not clear enough. [Objective] To clarify the community structure and diversity of diazotrophs in different types of biological soil crusts (BSCs) and soils under them and the effectors of soil environmental factors. [Methods] Using dilution heat method and alkali solution diffusion to measure the content of organic matter (OM) and the available nitrogen (AN) of soil, respectively; nifH gene was sequenced via the high-throughput sequencing platform, and the community structure, diversity and the variance analysis of diazotrophs were analyzed by bioinformatics analysis; Canonical Correlation Analysis (CCA) were used to analyze the correlation among the community structure, samples and the physico-chemical parameters of soil. [Results] Dominant phylum were Proteobacteria and Cyanobacteria in moss crusts (HSM), Cyanobacteria in the other types of BSCs; the class of Alphaproteobacteria and Betaproteobacteria accounted for the most fraction in the soil underneath moss crusts (nifH was only detected in soil underneath moss crusts, HSMs); significant differences existed in community structure at genus level, algae crusts (HSA) was predominated by unclassified_f_Nostocaceae (90.99%), Lichen crusts (HSL) by Scytonema (45.85%) and unclassified_f_Nostocaceae (44.14%), HSM by unclassified_f_Nostocaceae (29.21%), Scytonema (22.57%), Nostoc (15.34%), Skermanella (14.74%), unclassified_o_Nostocales (10.60%), and HSMs by Skermanella (33.80%), Azohydromonas (25.66%), unclassified_p_Proteobacteria (18.20%) and unclassified_c_Alphaproteobacteria (10.62%). [Conclusion] The community structure and diversity of diazotrophs in Algae, Lichen and Moss crusts and soil underneath crusts were markedly different, and the community species and the diversity increased with the development of the BSCs. This study provides a basis for appreciation and utilization of the diazotrophs in the BSCs.
Key words: BSCs     Diazotrophs     nifH     High-throughput sequencing     Diversity    

生物固氮是由固氮酶将N2还原成氨的过程,是自然界中氮营养的主要来源。nifH是编码固氮酶的基因之一,其核酸序列高度保守、系统进化关系和16S rRNA基因较一致,且基因数据库庞大,常用于固氮微生物多样性的研究[1]。目前已知的固氮作用仅局限于原核生物。细菌中能够自生固氮的种属主要包括固氮菌属(Aztobacter)、固氮螺菌(Azospirillum)、拜叶林克氏菌属(Beijerinckia)、着色菌属(Chromotium)、脱硫弧菌(Desulfovibrio)、克氏杆菌(Klebsiella)、类芽孢杆菌属(Paenibacillus)、假单胞菌属(Pseudomonas)、红假单胞菌属(Rhodopseudomonas)、红螺菌属(Rhodosospirillum)和硫杆菌属(Thiobacillus)。此外,一部分放线菌、蓝藻、根瘤菌等也可以进行自生或共生固氮[2]

生物土壤结皮(Biological soil crusts,BSCs)分布广泛,在干旱地区覆盖度能达到40%以上,是由隐花植物如蓝藻、绿藻、地衣、藓类和微生物,以及菌丝体、假根和分泌物构成的;根据其演替阶段可分为藻类结皮、地衣结皮和苔藓结皮[3]。BSCs对干旱半干旱地区土壤中氮营养提高有重要贡献。例如,腾格里荒漠中的藻类结皮、地衣结皮和苔藓结皮的固氮活性分别能达到14-133、20-101、4-28 μmol C2H4/(m2·h)[4]。但目前有关BSCs固氮的研究多集中在影响其固氮能力的因素上,如结皮类型、水分、温度和检测方法[5],而对于固氮作用起关键作用的微生物的研究还较少。并且有限的BSCs中固氮微生物相关研究多基于藻结皮,其结果表明这些BSCs中固氮微生物以Cyanobacteria门细菌为主。而结皮形成早期阶段蓝藻并不是主要固氮者[6],在高山藻结皮中固氮速率与蓝藻生物量不相关[7]。这表明不同类型或地域的BSCs中固氮细菌类群存在差异,BSCs中蓝藻之外的、种类众多的其它细菌可能对BSCs固氮具有重要贡献。但是,不同类型或发育阶段BSCs中固氮细菌群落结构和多样性的异同目前还不清楚、有待明确。

因此,本研究以浑善达克沙地为例,对其中的3种BSCs及其下层土壤为研究对象,利用MiSeq高通量测序技术对nifH基因进行测序分析,揭示不同类型BSCs中固氮细菌群落结构和多样性及其异同,以期为理解BSCs中固氮细菌的生态功能及其对荒漠生态系统环境的修复潜力提供基础依据。

1 材料与方法 1.1 生物土壤结皮的采集和处理

样品于2015年6月中旬采自浑善达克沙地(42°25′35.76″N,116°46′9.48″E)。采用五点采样法(点与点之间至少间隔200 m),使用无菌刀片分别采集藻结皮、地衣结皮和苔藓结皮(表层土1 cm-2 cm)及其相应下层土壤(结皮下层2 cm-5 cm)相应等量混匀,运回实验室于-80 ℃保存、备用。

1.2 土壤理化指标检测

样品:水为1:5 (质量体积比),以pH计测定pH;速效氮使用碱解扩散法[8];有机质使用稀释热法测定机质含量[9]

1.3 土壤总DNA的提取

采集的不同类型土壤分别取0.5 g,依土壤DNA提取试剂盒(E.Z.N.A. Soil DNA Kit,D5625-01)操作手册提取土壤总DNA;将所提取到的DNA溶于50 μL无菌超纯水中;每种类型土壤DNA提取3个不同重复,将每次所得DNA混合均匀,置于-80 ℃保藏、备用。

1.4 高通量测序

分别以各样品总DNA为模板扩增nifH基因,所用正向引物为F:5′-AAAGGYGGWATCGGYAA RTCCACCAC-3′;反向引物R:5′-TTGTTSGCSGCR TACATSGCCATCAT-3′[10]。PCR反应体系(20 μL):5×Fast Pfu Buffer 4 μL,dNTPs (2.5 mmol/L) 2 μL,正、反向引物(5 μmol/L)各8 μL,Fast Pfu Polymerase 0.4 μL,DNA模板10 ng,BSA 0.2 μL。PCR反应条件:95 ℃ 5 min;95 ℃ 30 s,55 ℃ 30 s,72 ℃ 30 s,35个循环;72 ℃ 8 min。以2%琼脂糖凝胶电泳检测PCR产物。委托上海美吉生物医药科技有限公司,采用Illumina MiSeq测序平台对扩增产物进行测序。

1.5 数据分析

以FLASH和Trimmomatic软件对测序所得序列进行去接头拼接和序列优化去杂;利用Mothur和R语言工具进行稀释性曲线的计算和绘制;以USEARCH软件在Cutoff=0.05下,对设定聚类非重复序列、去除嵌合体、确定每个OTU的代表序列;通过FGR/nifH GeneBank的(Release7.3) (http://fungene.cme.msu.edu/)功能数据库进行OTU注释,并分别在Phylum (门)、Class (纲)和Genus (属)三个分类水平统计各样品的群落组成;以Mothur软件(v 1.30.1) (http://www.mothur.org/wiki/Schloss_SOP#Alpha_diversity)计算Alpha多样性指数;以R语言统计物种并绘制Venn图;典范对应分析(Canonical correlation analysis,CCA)使用R语言Vegan包中的CCA分析和作图;样品层级聚类,先用QIIME计算Beta多样性距离矩阵后再以R语言作图。

2 结果与分析 2.1 土壤理化性质

由土壤的理化性质分析结果(表 1)可知,采集的地衣结皮(HSL) pH最低(6.26),藻结皮(HSA)、地衣结皮(HSL)、苔藓结皮(HSM)和苔藓结皮紧邻下层土壤(HSMs)的pH值接近(6.89-7.07);HSA、HSL和HSM的有机质含量依次递增,甚至发育高级阶段的下层土壤HSMs中的有机质含量与初级阶段的HSA只相差3.36 g/kg;HSM有机质含量是其下层HSMs的4.12倍;HSM速效氮含量最高(172.67 mg/kg),其次为HSMs (145 mg/kg)、HSA (138.83 mg/kg)和HSL (115.50 mg/kg)。

表 1 生物土壤结皮理化参数 Table 1 Physiochemical parameters of biological soil crusts and soil underneath crusts
样品
Samples
pH 有机质
Organic matter (g/kg)
速效氮
Available nitrogen (mg/kg)
HSA 6.89 36.67 138.83
HSL 6.26 113.70 115.50
HSM 6.99 137.49 172.67
HSMs 7.07 33.41 145.83
注:HSA、HSL、HSM和HSMs分别代表藻结皮、地衣结皮和苔藓结皮及其苔藓结皮紧邻下层土壤;仅对扩增出nifH基因的下层土壤测定了理化性质.
Note: HSA, HSL, HSM and HSMs represents algae crusts, lichen crusts, moss crusts and soil underneath moss crusts, respectively; Only determined physico-chemical properties of soils under crusts that amplified the nifH gene.
2.2 BSCs中固氮菌群落结构

对3种类型BSCs及其下层土壤样本nifH基因进行扩增、构建文库和测序分析,其中下层土壤HSAs和HSLs未能检测到nifH基因的存在,可能与该样品nifH基因含量低有关。其余4个样品,即HSA、HSL、HSM及其紧邻下层土壤HSMs均扩增到了nifH,并进行了建库和测序。经过序列拼接、比对分析除去未能分类序列,所有固氮菌类群共划分为3个门6个纲和16个属(表 2)。其中,Cyanobacteria门是HSA、HSL中的绝对优势菌门;Proteobacteria门在HSM和HSMs中是优势菌门,其在HSM中的较在HSA和HSL中的分别增加了21.02%和16.73%;而Actinobacteria门仅在HSMs中检到,但丰度较低(0.11%)。

表 2 BSCs中固氮细菌群落结构 Table 2 The diazotrophs community structure of the BSCs in phylum, class and genus
样品名称
Samples
属水平
Genus level
纲水平
Class level
门水平
Phylum level
属名
Name of Genus
丰度
Abundance (%)
纲名
Name of Class
丰度
Abundance (%)
门名
Name of Phylum
丰度
Abundance (%)
HSA Skermanella 0.06 Alphaproteobacteria 0.09 Proteobacteria 0.09
Unclassified_f_
Rhodospirillaceae
0.02
Unclassified_c_
Alphaproteobacteria
0.01
Unclassified_f_
Nostocaceae
90.99 Norank_p_
Cyanobacteria
99.90 Cyanobacteria 99.90
Scytonema 6.68
Unclassified_o_
Nostocales
1.97
Nostoc 0.21
Trichormus 0.05
Others 0.01
HSL Skermanella 2.00 Alphaproteobacteria 4.12 Proteobacteria 4.38
Unclassified_c_
Alphaproteobacteria
1.26
Unclassified_f_
Rhodospirillaceae
0.68
Rhodopseudomonas 0.15
Unclassified_o_
Rhizobiales
0.02
Rhizobium 0.01
Azohydromonas 0.01 Betaproteobacteria 0.01
Unclassified_p_
Proteobacteria
0.25 Unclassified_p_
Proteobacteria
0.25
Unclassified_f_
Nostocaceae
44.14 Norank_p_Cyanobacteria 95.17 Cyanobacteria 95.17
Scytonema 45.85
Trichormus 3.50
Unclassified_o_
Nostocales
0.94
Nostoc 0.74
Others 0.45
HSM Skermanella 14.74 Alphaproteobacteria 20.05 Proteobacteria 21.11
Unclassified_f_
Rhodospirillaceae
2.23
Unclassified_c_
Alphaproteobacteria
1.69
Bradyrhizobium 1.32
Rhizobium 0.04
Rhodopseudomonas 0.03
Azohydromonas 0.06 Betaproteobacteria 0.06
Klebsiella 0.07 Gammaproteobacteria 0.07
Unclassified_p_
Proteobacteria
0.93 Unclassified_p_
Proteobacteria
0.93
Unclassified_f_
Nostocaceae
29.21 Norank_p_
Cyanobacteria
77.78 Cyanobacteria 77.78
Nostoc 15.34
Scytonema 22.57
Unclassified_o_
Nostocales
10.60
Trichormus 0.06
Others 1.11
HSMs Skermanella 33.80 Alphaproteobacteria 49.59 Proteobacteria 93.92
Unclassified_c_
Alphaproteobacteria
10.62
Unclassified_f_
Rhodospirillaceae
3.42
Unclassified_o_
Rhizobiales
0.93
Rhizobium 0.54
Rhodopseudomonas 0.22
Bradyrhizobium 0.06
Azohydromonas 25.66 Betaproteobacteria 25.66
Klebsiella 0.47 Gammaproteobacteria 0.47
Unclassified_p_
Proteobacteria
18.20 Unclassified_p_
Proteobacteria
18.20
Scytonema 2.78 Norank_p_
Cyanobacteria
4.73 Cyanobacteria 4.73
Nostoc 1.47
Unclassified_o_
Nostocales
0.47
Unclassified_f_
Nostocaceae
0.01
Frankia 0.11 Actinobacteria 0.11 Actinobacteria 0.11
Others 1.24
注:HSA、HSL、HSM和HSMs分别代表藻结皮、地衣结皮和苔藓结皮及苔藓结皮紧邻下层土壤.
Note: HSA, HSL, HSM and HSMs represents algae crusts, lichen crusts, moss crusts and soil underneath moss crusts, respectively.

在纲分类水平上,HSM和HSMs中Alphaproteobacteria、Betaproteobacteria、Gammaprote obacteria/unclassified_p_Proteobacteria的丰度分别为20.05%、0.06%、0.07%、0.93%和49.59%、25.66%、0.47%、18.20%;相比其它样品,少量(0.11%)的Actinobacteria纲只出现HSMs中;而在HSA和HSL中,Cyanobacteria门未能分类纲(Norank_p_ Cyanobacteria)占绝对优势,其丰度分别为99.90%和95.17%;HSA中属于Proterobacteria门的只有丰度极低Alphaproteobacteria,其在HSL中略有增加;HSL比HSA样品中多了极其微量(0.01%)的Betaproteobacteria,而HSM又比HSL多一个Gammaproteobacteria纲(0.07%);结皮层中依发育阶段提高(藻结皮-地衣结皮-苔藓结皮)而依次新出现的纲(Alphaproteobacteria-Betaproteobacteria-Gammaproteobacteria)在HSMs中的丰度明显高于结皮层。

在属分类水平上,在各样品中丰度超过5%的分别是:HSA中的Unclassified_f_Nostocaceae (90.99%)、Scytonema (6.68%);HSL中的Scytonema (45.85%)和Unclassified_f_Nostocaceae (44.14%);HSM中的Unclassified_f_Nostocaceae、ScytonemaNostocSkermanella、Unclassified_o_Nostocale丰度分别为29.21%、22.57%、15.34%、14.74%和10.60%;HSMs中的SkermanellaAzohydromonas、Unclassified_p_ Proteobacteria、Unclassified_c_Alphaproteobacteria丰度分别为33.80%、25.66%、18.20%和10.62%。HSM和HSMs中的Skermanella丰度分别为14.74%和33.80%。Azohydromonas在HSMs中最多(25.66%),而在其它样品中含量极微。

2.3 固氮菌Alpha多样性指数分析

Alpha多样性指数可反映生物群落的丰富度和多样性。其中,Ace和Chaol指数可以反映物种丰富度,其数值越大表示该样品物种丰富度越大;Shannon和Simpson指数则可以反映群落多样性,Shannon指数数值越大表示该样品物种多样性越大,Simpson指数则相反。由表 3可知,样品Ace指数和Chaol指数范围分别是13.53-31.00和13-31,两个指数的最低和最高值均分别来自HSA和HSMs,结皮层样品(HSA、HSL和HSM)随结皮的发育其物种丰富度逐渐上升;Shannon和Simpson指数范围分别是0.42-2.39、0.13-0.83,其中HSMs Shannon指数最大(2.39),Simpson指数最小(0.13);随结皮发育,Shannon指数增大、Simpson指数减小,说明物种多样性随结皮的发育逐渐提高。

表 3 固氮菌群落Alpha多样性指数 Table 3 lpha diversity indexes of diazotrophs community
样品名称
Sample
Ace指数
Ace index
Chaol指数
Chaol index
Shannon指数
Shannon index
Simpson指数
Simpson index
HSA 13.53 13 0.42 0.83
HSL 22.00 22 1.47 0.30
HSM 26.28 26 2.08 0.16
HSMs 31.00 31 2.39 0.13
注:HSA、HSL、HSM和HSMs分别代表藻结皮、地衣结皮和苔藓结皮及苔藓结皮紧邻下层土壤.
Note: HSA, HSL, HSM and HSMs represents algae crusts, lichen crusts, moss crusts and soil underneath moss crusts, respectively.
2.4 基于OTU水平样品差异分析

样品层级聚类分析是基于Beta多样性距离矩阵、对不同环境样品中微生物进化差异程度进行可视化聚类的分析方法。由本研究的聚类结果(图 1A)可见,HSA、HSL和HSM聚在一起,HSL和HSM更近地一起聚在最里层,而HSMs单独分布在最外层的一支。Venn图用于统计多组或多个样品中共有和独有的物种数目,比较直观地表现出样品物种的异同。本研究的Venn图(图 1B)表明,3个结皮层样品(HSA、HSL和HSM)共有10个OTU;HSM和HSMs共有22个OTU,分别占HSM和HSMs中OTU总数的84.62%和70.97%;HSA和HSL样品没有独有OTU;HSM有1个独有OTU,为Rhizobacter sp. Root404;HSMs独有OTU最多,7个独有OTU分别是Bradyrhizobium japonicumLentisphaerae bacterium GWF2-50-93、Desulfovibrio putealisFrankia sp. EUN1f、Paraburkholderia mimosarum和2个未知序列;HSA、HSL、HSM和HSMs共有9个OTU,分别占各自总OTU数的69.23%、40.91%、34.62%和29.03%。说明与HSMs相比,不同类型BSCs的固氮菌群落结构相互更相似。

图 1 样品层级聚类分析图(A)和样品Venn图(B) Figure 1 Hierarchical clustering tree of the samples (A) and the Venn of samples (B)
2.5 CCA分析

典范对应分析(Canonical correlation analysis,CCA),基于单峰模型将对应分析和多元回归分析相结合,主要用于反映群落、样品和环境因子的关系。在CCA图中,样品点或种属点的空间距离代表样品或种属间的距离,样品点或种属点到环境因子向量的投影代表样本或种属受环境因子影响的程度。本研究的CCA分析结果(图 2)表明,第一、二象限分别代表了66.98%和19.66%固氮菌群落和环境因子间的差异;OM和AN对样品HSA、HSL、HSM和种属1-6有促进作用,pH与之负相关;样品HSMs与种属7-16则相反;样品和种属聚为三组,即表明样品HSA与种属1相关;样品HSL、HSM与种属2-6相关,种属2-6之间距离较近;样品HSMs与种属7-16相关,种属7-16之间距离较近。

图 2 样品属水平CCA分析 Figure 2 CCA analysis on genus level of samples Note: 1: Unclassified_f; 2: Trichormus; 3: Scytonema; 4: Unclassified_o; 5: Bradyrhizobium; 6: Nostoc; 7: Unclassified_k; 8: Rhodopseudomonas; 9: Unclassified_f; 10: Skermanell; 11: Unclassified_c; 12: Klebsiella; 13: Rhizobium; 14: Unclassified_p; 15: Azohydromonas; 16: Frankia.
3 讨论

生物土壤结皮(Biological soil crusts,BSCs)对土壤中无机氮的积累有重大贡献,在干旱、半干旱荒漠生态系统氮循环中起到至关重要的作用[11];而固氮微生物对于BSCs的形成和发育有着重要的影响[6]。BSCs不同发育阶段的固氮能力存在明显差异[4],其固氮细菌组成也可能不尽相同。可产生异形胞、能固氮的蓝藻如Nostoc属等在各类型的BSCs中丰度均较高,使得部分研究者一直以来认为BSCs中主要固氮微生物为蓝藻,它发挥着主要的固氮作用[12-14]。浅色的藻类结皮属于BSCs发育早期阶段,其中的微生物以蓝藻Microcoleus spp.为主[15],它们并无固氮功能[16]。Pepe-Ranney等[6]研究认为在形成之前以及早期发育阶段BSCs中的主要固氮微生物为Clostridiaceae和Proteobacteria中的可固氮类群[7]。成熟的各类型BSCs在腾格里沙漠中以Cylindrosperum蓝藻为主[14],S r Rondane山中以Nostoc属蓝藻为主[17]。而本研究表明,浑善达克沙地的成熟藻结皮(HSA)、地衣结皮(HSL)和苔藓结皮(HSM)中均以未能分类的Nostocaceae科和Scytonema属的蓝藻为主;BSCs由低级(藻结皮)、中级(地衣结皮)到高级(苔藓结皮)的发育过程中,固氮菌群落中的Proteobacteria门类群丰度逐渐增加,甚至在苔藓结皮中Proteobacteria门的Skermanella属类群成为了仅次于未分类Nostocaceae科(29.21%)和Scytonema属(22.57%)蓝藻的第三优势固氮菌类群、丰度达到了14.74%;下层土壤中,只有苔藓结皮下层土壤(HSMs)检测到了nifH,其反映出HSMs中固氮菌类群以Skermanella (33.80%)、Azohydromonas (25.66%)和未分类的Proteobacteria类群(18.20%)为主。在营养贫瘠的荒漠生态系统中,生物固氮极其重要,植物通过增加土壤有机质营养控制着这些生态系统中固氮细菌群落组成及其基因多样性[18]。有机质含量也是影响古尔班通古特沙漠[19]和本研究BSCs中固氮菌菌群结构的主要因子。可见,蓝藻可能是早期BSCs中主要的固氮微生物;而随着BSCs的发育,BSCs及其紧邻下层土壤中有机质含量提高,Proteobacteria类群(特别是SkermanellaAzohydromonas等)可能发挥了越来越大的固氮作用、更进一步地促进了BSCs的发育和稳定。

“生态保险”假说认为,生物多样性提供了对环境波动的保险或缓冲,使得群落或生态系统的综合特性是更可预测的[20]。本研究结果表明,随着BSCs的发育固氮菌的多样性明显增加。因此基于“生态保险”理论,固氮菌多样性增加可能是BSCs发育高级和稳定的重要体现。

4 结论

藻结皮、地衣结皮和苔藓结皮及其紧邻下层土壤中的固氮细菌群落结构和多样性差异明显,而且固氮细菌类群和多样性指数随BSCs发育阶段的提高而增加。本研究为认识和利用生物土壤结皮相关固氮细菌提供了基础依据。

参考文献
[1]
Chen QH, Han YL, Ma Y, et al. Research progress on structure and evolution of biological nitrogen-fixation gene cluster[J]. Journal of Agricultural Science and Technology, 2013, 15(4): 129-138.
陈清华, 韩云蕾, 马尧, 等. 生物固氮基因簇结构与进化研究进展[J]. 中国农业科技导报, 2013, 15(4): 129-138.
[2]
Zhang W, Yang L, Wang ZJ. Advance and development trend of biological nitrogen fixation research[J]. Journal of Yunnan Agricultural University (Natural Science), 2015, 30(5): 810-821.
张武, 杨琳, 王紫娟. 生物固氮的研究进展及发展趋势[J]. 云南农业大学学报:自然科学, 2015, 30(5): 810-821.
[3]
Belnap J, Weber B, Büdel B. Biological Soil Crusts as an Organizing Principle in Drylands[M]. Switzerland: Springer International Publishing, 2016, 3-13.
[4]
Li XR, Zhou HY, Wang XP, et al. Ecological restoration and recovery in arid desert regions of China: a review for 60-year research progresses of Shapotou desert research and experiment station, Chinese academy of sciences[J]. Journal of Desert Research, 2016, 36(2): 247-264.
李新荣, 周海燕, 王新平, 等. 中国干旱沙区的生态重建与恢复:沙坡头站60年重要研究进展综述[J]. 中国沙漠, 2016, 36(2): 247-264.
[5]
Zhang P, Li XR, Zhang ZS, et al. Nitrogen fixation potential of biological soil crusts in southeast edge of Tengger Desert, Northwest China[J]. Chinese Journal of Applied Ecology, 2012, 23(8): 2157-2164.
张鹏, 李新荣, 张志山, 等. 腾格里沙漠东南缘生物土壤结皮的固氮潜力[J]. 应用生态学报, 2012, 23(8): 2157-2164.
[6]
Pepe-Ranney C, Koechli C, Potrafka R, et al. Non-cyanobacterial diazotrophs mediate dinitrogen fixation in biological soil crusts during early crust formation[J]. The ISME Journal, 2016, 10(2): 287-298. DOI:10.1038/ismej.2015.106
[7]
Janatková K, Řeháková K, Doležal J, et al. Community structure of soil phototrophs along environmental gradients in arid Himalaya[J]. Environmental Microbiology, 2013, 15(9): 2505-2516. DOI:10.1111/emi.2013.15.issue-9
[8]
Zhang JE. A Common Experimental Study of Methods and Techniques on Ecology[M]. Beijing: Chemical Industry Publishing House, 2007, 225.
章家恩. 生态学常用实验研究方法与技术[M]. 北京: 化学工业出版社, 2007, 225.
[9]
Bao SD. Soil Agrochemical Analysis[M]. Beijing: Agricultural Publishing House, 2000, 34.
鲍士旦. 土壤农化分析[M]. 北京: 农业出版社, 2000, 34.
[10]
Zhou X, Smith H, Silva AG, et al. Differential responses of dinitrogen fixation, diazotrophic cyanobacteria and ammonia oxidetion reveal a potential warming-induced imbalance of the N-Cycle in biological soil crusts[J]. PLoS One, 2016, 11(10): e0164932. DOI:10.1371/journal.pone.0164932
[11]
Johnson SL, Neuer S, Garcia-Pichel F. Export of nitrogenous compounds due to incomplete cycling within biological soil crusts of arid lands[J]. Environmental Microbiology, 2007, 9(3): 680-689. DOI:10.1111/emi.2007.9.issue-3
[12]
Yeager CM, Kornosky JL, Housman DC, et al. Diazotrophic community structure and function in two successional stages of biological soil crusts from the Colorado Plateau and Chihuahuan Desert[J]. Applied and Environmental Microbiology, 2004, 70(2): 973-983. DOI:10.1128/AEM.70.2.973-983.2004
[13]
Yeager CM, Kuske CR, Carney TD, et al. Response of biological soil crust diazotrophs to season, altered summer precipitation, and year-round increased temperature in an arid grassland of the Colorado Plateau, USA[J]. Frontiers in Microbiology, 2012, 3: 358.
[14]
Wang J, Bao JT, Li XR, et al. Molecular ecology of nifH genes and transcripts along a chronosequence in revegetated areas of the Tengger desert[J]. Microbial Ecology, 2016, 71(1): 150-163. DOI:10.1007/s00248-015-0657-9
[15]
Beraldi-Campesi H, Hartnett HE, Anbar A, et al. Effect of biological soil crusts on soil elemental concentrations: implications for biogeochemistry and as traceable biosignatures of ancient life on land[J]. Geobiology, 2009, 7(3): 348-359. DOI:10.1111/gbi.2009.7.issue-3
[16]
Rajeev L, da Rocha UN, Klitgord N, et al. Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust[J]. The ISME Journal, 2013, 7(11): 2178-2191. DOI:10.1038/ismej.2013.83
[17]
Tahon G, Tytgat B, Stragier P, et al. Analysis of cbbL, nifH, and pufLM in soils from the Sør Rondane Mountains, Antarctica, reveals a large diversity of autotrophic and phototrophic bacteria[J]. Microbial Ecology, 2016, 71(1): 131-149. DOI:10.1007/s00248-015-0704-6
[18]
Köberl M, Erlacher A, Ramadan EM, et al. Comparisons of diazotrophic communities in native and agricultural desert ecosystems reveal plants as important drivers in diversity[J]. FEMS Microbiology Ecology, 2016, 92(2): fiv166. DOI:10.1093/femsec/fiv166
[19]
Zhang BC, Kong WD, Wu N, et al. Bacterial diversity and community along the succession of biological soil crusts in the Gurbantunggut Desert, Northern China[J]. Journal of Basic Microbiology, 2016, 56(6): 670-679. DOI:10.1002/jobm.v56.6
[20]
Yachi S, Loreau M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(4): 1463-1468. DOI:10.1073/pnas.96.4.1463