微生物学通报  2018, Vol. 45 Issue (11): 2488−2493

扩展功能

文章信息

李志乾, 胡颖嵩, 张常建, 刘彦希, 韩雪琳, 韩黎
LI Zhi-Qian, HU Ying-Song, ZHANG Chang-Jian, LIU Yan-Xi, HAN Xue-Lin, HAN Li
在大肠杆菌中高效表达可用于检测人源Rap1活性RapBD蛋白方法的建立
Expression of RapBD in Escherichia coli for detecting human Rap1 activity
微生物学通报, 2018, 45(11): 2488-2493
Microbiology China, 2018, 45(11): 2488-2493
DOI: 10.13344/j.microbiol.china.180191

文章历史

收稿日期: 2018-03-13
接受日期: 2018-05-03
网络首发日期(www.cnki.net): 2018-06-04
在大肠杆菌中高效表达可用于检测人源Rap1活性RapBD蛋白方法的建立
李志乾1,2 , 胡颖嵩2 , 张常建1,2 , 刘彦希2 , 韩雪琳2 , 韩黎2     
1. 中国人民解放军军事科学院军事医学研究院    北京    100850;
2. 中国人民解放军疾病预防控制所医院感染监控中心    北京    100071
摘要【背景】 Rap1是一种小GTP酶,其活性的检测方法少,目前主要依赖试剂盒,检测成本太高。而Rap1下游效应蛋白RalGDS具有Rap1结合结构域(Rap binding domain,RapBD),该结构域能与有活性的GTP-Rap1特异性结合。【目的】 利用大肠杆菌外源表达GST-RapBD融合蛋白,建立经济的检测人源Rap1活性的方法。【方法】 合成RapBD基因序列,插入pGEX-4T-1载体,使该质粒表达GST-RapBD融合蛋白,再利用GST亲和树脂结合大肠杆菌中表达的GST-RapBD融合蛋白,最后利用GST-RapBD融合蛋白Pulldown检测GTP-Rap1。【结果】 建立了检测人源Rap1活性的方法。【结论】 序列优化使得pGEX-4T-1载体在大肠杆菌中高效表达能特异性结合人源GTP-Rap1且带有GST标签的RapBD蛋白,提高了Pulldown实验检测GTP-Rap1的效率,降低了检测人源小G蛋白Rap1活性的成本。
关键词Rap1     Rap结合结构域     活性检测    
Expression of RapBD in Escherichia coli for detecting human Rap1 activity
LI Zhi-Qian1,2, HU Ying-Song2, ZHANG Chang-Jian1,2, LIU Yan-Xi2, HAN Xue-Lin2, HAN Li2     
1. Institute of Military Medical Sciences, Academy of Military Sciences of Chinese People's Liberation Army, Beijing 100850, China;
2. Department of Hospital Infection Control and Research, Institute of Disease Control and Prevention of Chinese People's Liberation Army, Beijing 100071, China
Received: March 13, 2018; Accepted: May 03, 2018; Published online (www.cnki.net): June 04, 2018
Foundation item: National Natural Science Foundation of China (81471565)
*Corresponding author: HAN Xue-Lin:Tel:86-10-66948381;E-mail:yilin791228@126.com; HAN Li:Tel:86-10-66948316;E-mail:hanlicdc@163.com.
Abstract: [Background] Rap1 is a kind of small GTPase, and the method of its activity detection is very scanty. At present, the method mainly depends on commercialized kit, resulting in the high cost. RalGDS has the Rap binding domain (RapBD), which can bind to GTP-Rap1 specifically. [Objective] Establish an inexpensive method of detecting human Rap1 activity by exogenous GST-RapBD fusion protein expressed in Escherichia coli. [Methods] We constructed the plasmid with pGEX-4T-1 vector expressing GST-RapBD fusion protein in E. coli, and then combined GST-RapBD with GST affinity resin. Finally, we used GST Pulldown assay to detect Rap1 activity. [Results] The method of detecting human Rap1 activity was established successfully. [Conclusion] Sequence optimization made pGEX-4T-1 highly express the GST tagged RapBD protein in E. coli, which increased the efficiency and decreased the cost of Pulldown assay to detect GTP-Rap1.
Keywords: Rap1     Rap binding domain (RapBD)     Activity detection    

Rap是一种小GTP酶,属于Ras超家族。Rap分为2个亚类:Rap1和Rap2,具有Rap1A、Rap1B、Rap2A、Rap2B和Rap2C 5个家族成员[1]。其中,Rap1被研究最多,它通过各种信号通路参与不同的细胞活动,包括细胞的粘附和增殖以及基因的激活[2]。Rap1不仅可以调控整联蛋白,也可以调控细胞骨架[3]。作为小GTP酶,Rap1通过活性变化来调控这些过程。当Rap1以GDP结合的形式存在时是没有活性的,而以GTP结合的形式存在时是有活性的。GTP酶激活蛋白(GAPs)和鸟嘌呤核苷酸交换因子(GEFs)参与调控小GTP酶Rap1的活性,GAPs促进GTP酶以GDP结合形式存在,而GEFs促进其以GTP结合形式存在[4]。Rap1在细胞中起着分子开关的作用,对于高效的信号转导过程至关重要[5]。鉴于此,Rap1活性的检测显得尤为重要。目前常用的检测Rap1活性的成熟方法是RapBD pulldown实验,其原理是利用Rap1下游效应蛋白RalGDS的RapBD结构域能特异性结合GTP-Rap1[6]。市面上现有的Rap1活性检测试剂盒,如Abcam公司的Rap1 Activation Assay Kit,Cell Signaling Technology公司的Active Rap1 Detection Kit #8818,以及Thermo Fisher Scientific公司的Active Rap1 Pull-Down and Detection Kit也都是利用RapBD pulldown的原理[7-10],它们提供可以直接利用的结合有RapBD的琼脂糖珠子。试剂盒虽然使用方便,但是价格昂贵且生产厂家少。本文将人RalGDS蛋白的RapBD结构域的基因序列优化后构建在pGEX-4T-1质粒载体上,使融合蛋白GST-RapBD在大肠杆菌中大量表达后,固化在谷胱甘肽亲和树脂上[11],再利用融合蛋白Pulldown GTP-Rap1,满足了实验室大批量检测Rap1活性的需求。

1 材料与方法 1.1 细胞和质粒

人肺泡上皮细胞A549、人支气管上皮细胞BEAS-2B、pGEX-4T-1质粒为本实验室保存;大肠杆菌BL21感受态细胞购于北京全式金生物技术有限公司。

1.2 培养基、主要试剂和仪器

LB培养基(g/L):胰蛋白胨10.0,酵母提取物5.0,氯化钠10.0,琼脂15.0−20.0,pH 7.2。

细胞裂解液:25 mmol/L Tris (pH 7.2),150 mmol/L NaCl,5 mmol/L MgCl2,5% Glycerol,1% NP-40。

RPMI medium 1640 basic、Fetal bovine serum购于Gibco公司;谷胱甘肽亲和树脂珠子、异丙基硫代β-D-半乳糖苷(IPTG)购于Promega公司;Rap1抗体购于Cell Signaling Technology公司。

台式高速冷冻离心机,Eppendorf公司;恒温振荡培养箱,天津市欧诺仪器仪表有限公司;脱色摇床,北京六一生物科技有限公司;DNA混合仪,宁波新芝生物科技股份有限公司。

1.3 方法

1.3.1 构建表达GST-RapBD的载体

提交需要合成的人源RalGDS的RapBD氨基酸序列和载体pGEX-4T-1,酶切位点为BamHⅠ和XhoⅠ,华大基因公司合成序列并利用pGEX-4T-1载体构建能表达GST-RapBD的重组质粒,并将重组质粒导入大肠杆菌DH5α感受态细胞中得到亚克隆。

1.3.2 原核表达融合蛋白GST-RapBD

将转化的感受态细胞涂布到含有100 mg/L氨苄青霉素的LB固体培养基上,37 ℃培养过夜。随机挑取单菌落接种至含有100 mg/L氨苄青霉素的100 mL LB液体培养基中,37 ℃、200 r/min培养至OD600为0.5左右,加入终浓度为1 mmol/L的IPTG,16 ℃诱导20 h,对照不加IPTG诱导。将菌液转移至50 mL离心管中,3 600 r/min离心30 min,将得到的菌体沉淀加入PBS缓冲液,在冰水混合物上静置,利用超声破碎仪破碎菌体,每次超声2 s,间歇2 s,共10 min。随后将裂解液转移至1.5 mL离心管,4 ℃、12 000 r/min离心10 min,取上清与600 μL经过预平衡的GST beads在4 ℃进行孵育1 h后,3 600 r/min离心1 min收集Beads,加入预冷的PBS缓冲液冲洗3次,4 ℃保存。

1.3.3 GST-RapBD pulldown实验

用100 mm培养皿培养A549或BEAS-2B细胞,约1×107个细胞/皿。弃去细胞培养基,用PBS缓冲液冲洗3遍后,每皿加入1 mL含有蛋白酶抑制剂的细胞裂解液冰上裂解细胞20 min后收集细胞。4 ℃、14 000 r/min离心15 min,取上清,将上清平均分为2份,一份加入30 μL空载的GST-beads,另一份加入30 μL与细菌裂解液孵育的GST-RapBD beads,在4 ℃进行孵育1 h后,3 600 r/min离心1 min收集Beads。然后加入预冷的500 μL细胞裂解液洗涤Beads,重复3次后加入30 μL 2×Loading buffer,100 ℃金属浴10 min。蛋白样品经SDS-PAGE电泳后,检测GTP-Rap1。

2 结果与分析 2.1 RapBD的氨基酸序列及其原核表达系统中优化后的核苷酸序列

查询NCBI得到人源RapBD的氨基酸序列如图 1所示,共127个氨基酸;原核表达系统中优化后的核苷酸序列见图 2。核苷酸序列两侧的酶切位点为BamHⅠ和XhoⅠ。DNA测序结果表明RapBD序列已正确插入载体,GST-RapBD重组质粒构建成功,质粒图谱见图 3

图 1 人源RapBD的氨基酸序列 Figure 1 The amino acid sequence of human RapBD

图 2 原核表达系统中优化后的核苷酸序列 Figure 2 Nucleotide sequence optimized in prokaryotic expression system

图 3 插入RapBD的pGEX-4T-1质粒图谱 Figure 3 Plasmid profile of inserted RapBD fragment
2.2 GST-RapBD的诱导表达与纯化

图 4所示,蛋白样品经SDS-PAGE电泳分离后,考马斯亮蓝染色结果显示在分子量40 kD可见融合蛋白条带。融合蛋白GST-RapBD在16 ℃、IPTG诱导条件下培养20 h后可在大肠杆菌中大量表达,见第2泳道,而且用GST beads纯化后在相同位置可见融合蛋白条带,见第5、6泳道。蛋白大小符合预期。

图 4 GST-RapBD融合蛋白表达和纯化及其与A549细胞裂解物的结合电泳图 Figure 4 The electropherogram of expression and purification of GST-RapBD fusion protein and its combination with A549 cell lysates 注:M:预染蛋白Marker;1:未经IPTG诱导大肠杆菌,菌体超声破碎后的裂解物;2:IPTG诱导后的大肠杆菌裂解物;3:空的GST beads;4:A549细胞裂解物孵育空的GST beads;5:IPTG诱导后的大肠杆菌裂解物处理后的GST beads;6:A549细胞裂解物孵育IPTG诱导后的大肠杆菌裂解物处理后的GST beads. Note: M: Pre-stained protein marker; 1: Lysates of E. coli without IPTG induction; 2: Lysates of E. coli induced by IPTG; 3: Empty GST beads; 4: Empty GST beads incubated with lysates of A549 cells; 5: GST beads treated with IPTG-induced E. coli lysates; 6: GST beads treated with IPTG-induced E. coli lysates and then incubated with lysates of A549 cells.

除了A549细胞,在BEAS-2B细胞中进行验证的考马斯亮蓝染色结果见图 5

图 5 GST-RapBD融合蛋白表达和纯化及其与BEAS-2B细胞裂解物的结合电泳图 Figure 5 The electropherogram of expression and purification of GST-RapBD fusion protein and its combination with BEAS-2B cell lysates 注:M:预染蛋白Marker;1:IPTG诱导后的大肠杆菌裂解物;2:空的GST beads;3:BEAS-2B细胞裂解物孵育空的GST beads;4:IPTG诱导后的大肠杆菌裂解物处理后的GST beads;5:BEAS-2B细胞裂解物孵育IPTG诱导后的大肠杆菌裂解物处理后的GST beads. Note: M: Pre-stained protein marker; 1: Lysates of E. coli induced by IPTG; 2: Empty GST beads; 3: Empty GST beads incubated with lysates of BEAS-2B cells; 4: GST beads treated with IPTG-induced E. coli lysates; 5: GST beads treated with IPTG-induced E. coli lysates and then incubated with lysates of BEAS-2B cells.
2.3 GST-RapBD融合蛋白特异性结合GTP-Rap1

采用GST pulldown实验检测GST-RapBD融合蛋白能否特异性结合GTP-Rap1。图 6结果显示,第1泳道中A549细胞总蛋白中有Rap1的表达,第2泳道中空的GST beads不能结合GTP-Rap1,而第5泳道中构建的重组质粒表达出来的GST-RapBD融合蛋白能够特异性结合GTP-Rap1。

图 6 GST-RapBD融合蛋白与A549细胞中GTP-Rap1的特异性结合 Figure 6 The binding of GST-RapBD fusion protein and GTP-Rap1 in A549 cells 注:1:A549细胞总蛋白;2:空的GST beads;3:A549细胞裂解物孵育空的GST beads;4:IPTG诱导后的大肠杆菌,菌体超声破碎后的裂解物处理后的GST beads;5:A549细胞裂解物孵育IPTG诱导后的大肠杆菌裂解物处理后的GST beads. Note: 1: Total protein of A549 cells; 2: Empty GST beads; 3: Empty GST beads incubated with lysates of A549 cells; 4: GST beads treated with IPTG-induced E. coli lysates; 5: GST beads treated with IPTG-induced E. coli lysates and then incubated with Lysates of A549 cells.

同样地,构建的重组质粒表达出来的GST-RapBD融合蛋白能够特异性结合BEAS-2B细胞中的GTP-Rap1,如图 7所示。

图 7 GST-RapBD融合蛋白与BEAS-2B细胞中GTP-Rap1的特异性结合 Figure 7 The binding of GST-RapBD fusion protein and GTP-Rap1 in BEAS-2B cells 注:1:BEAS-2B细胞总蛋白;2:BEAS-2B细胞裂解物孵育IPTG诱导后的大肠杆菌裂解物处理后的GST beads. Note: 1: Total protein of BEAS-2B cells; 2: GST beads treated with IPTG-induced E. coli lysates and then incubated with lysates of BEAS-2B cells.
3 讨论与结论

近年来,大量研究表明Rap可以调节细胞粘附和吞噬。在宿主与微生物相互作用的过程中,Rap1不仅可以调控补体受体3介导的吞噬[12],还可以介导Fcγ受体依赖的吞噬[13]。在乙型肝炎病毒的研究中,Rap调控肝部炎症,影响肝硬化和肝癌的发生[14]。此外,Rap也参与人类癌细胞的侵袭和转移,与许多恶性肿瘤的研究密切相关[15-16]。Rap作为小GTP酶,其活性受到RapGEFs和RapGAPs的调控。RapGEFs导致GDP解离,促使GTP与Rap结合,进而激活Rap;而RapGAPs加快Rap上GTP的水解,促进Rap失活[4]。已知的RapGEFs主要有4类,分别是C3G (CrkSH3-domain binding guanine-nucleotide releasing factor)、CD-GEFs (CalDAG-GEF)、PDZ-GEFs和Epacs (Exchange protein directly activated by cAMP);已知的RapGAPs主要包括RapGAPs和SPAR (Spine-associated RapGAP)两类[17]。小GTP酶Rap1的活性变化对于RapGEFs和RapGAPs以及其他上下游蛋白的研究非常重要,这就使得Rap1的活性检测成为了这些研究的关键。

我们研究了在烟曲霉和肺上皮细胞相互作用过程中第二信使cAMP的效应蛋白Epac发挥的功能。Epac是环腺苷酸鸟嘌呤交换因子,可以激活下游小G蛋白酶Rap1和Rap2[18-19]。Epac的活性检测是技术难题,目前主要是通过检测Rap的活性来间接反映。我们构建了能表达人RapBD的重组质粒,操作简单、成本低廉,使Rap1的活性检测不再依赖试剂盒,可以更加方便、经济地检测Rap1活性,为Rap1蛋白功能和作用机制及其相关信号通路的研究提供了便利。

参考文献
[1]
Minato N. Rap G protein signal in normal and disordered lymphohematopoiesis[J]. Experimental Cell Research, 2013, 319(15): 2323-2328. DOI:10.1016/j.yexcr.2013.04.009
[2]
Katagiri K, Maeda A, Shimonaka M, et al. RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1[J]. Nature Immunology, 2003, 4(8): 741-748. DOI:10.1038/ni950
[3]
Jeong HW, Li ZG, Brown MD, et al. IQGAP1 binds Rap1 and modulates its activity[J]. The Journal of Biological Chemistry, 2007, 282(28): 20752-20762. DOI:10.1074/jbc.M700487200
[4]
Vigil D, Cherfils J, Rossman KL, et al. Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy?[J]. Nature Reviews Cancer, 2010, 10(12): 842-857. DOI:10.1038/nrc2960
[5]
Raaijmakers JH, Bos JL. Specificity in Ras and Rap signaling[J]. The Journal of Biological Chemistry, 2009, 284(17): 10995-10999. DOI:10.1074/jbc.R800061200
[6]
Spaargaren M, Bischoff JR. Identification of the guanine nucleotide dissociation stimulator for Ral as a putative effector molecule of R-ras, H-ras, K-ras, and Rap[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(26): 12609-12613. DOI:10.1073/pnas.91.26.12609
[7]
Parker WH, Qu ZC, May JM. Intracellular ascorbate prevents endothelial barrier permeabilization by thrombin[J]. The Journal of Biological Chemistry, 2015, 290(35): 21486-21497. DOI:10.1074/jbc.M115.662098
[8]
Xiong YW, Ye CJ, Yang NQ, et al. Ubc9 binds to ADAP and is required for Rap1 membrane recruitment, Rac1 activation, and integrin-mediated T cell adhesion[J]. Journal of Immunology, 2017, 199(12): 4142-4154. DOI:10.4049/jimmunol.1700572
[9]
Yang ZK, Kirton HM, Al-Owais M, et al. Epac2-Rap1 signaling regulates reactive oxygen species production and susceptibility to cardiac arrhythmias[J]. Antioxidants & Redox Signaling, 2017, 27(3): 117-132.
[10]
Genova T, Grolez GP, Camillo C, et al. TRPM8 inhibits endothelial cell migration via a non-channel function by trapping the small GTPase Rap1[J]. The Journal of Cell Biology, 2017, 216(7): 2107-2130. DOI:10.1083/jcb.201506024
[11]
Zeng T, Cui ZM, Jiang W, et al. Optimization of the method for measurement of the activity of small GTP binding protein RhoA[J]. Journal of Biology, 2016, 33(4): 103-106. (in Chinese)
曾婷, 崔照盟, 蒋维, 等. 小G蛋白RhoA活性检测方法的优化[J]. 生物学杂志, 2016, 33(4): 103-106. DOI:10.3969/j.issn.2095-1736.2016.04.103
[12]
Caron E, Self AJ, Hall A. The GTPase Rap1 controls functional activation of macrophage integrin αMβ2 by LPS and other inflammatory mediators[J]. Current Biology, 2000, 10(16): 974-978. DOI:10.1016/S0960-9822(00)00641-2
[13]
Chung J, Serezani CH, Huang SK, et al. Rap1 activation is required for Fcγ receptor-dependent phagocytosis[J]. The Journal of Immunology, 2008, 181(8): 5501-5509. DOI:10.4049/jimmunol.181.8.5501
[14]
Wu AR, Chen H, Xu CF, et al. miR-203a is involved in HBx-induced inflammation by targeting Rap1a[J]. Experimental Cell Research, 2016, 349(1): 191-197. DOI:10.1016/j.yexcr.2016.10.016
[15]
Pizon V, Lerosey I, Chardin P, et al. Nucleotide sequence of a human cDNA encoding a ras-related protein (rap1B)[J]. Nucleic Acids Research, 1988, 16(15): 7719. DOI:10.1093/nar/16.15.7719
[16]
Minato N, Hattori M. Spa-1 (Sipa1) and Rap signaling in leukemia and cancer metastasis[J]. Cancer Science, 2009, 100(1): 17-23. DOI:10.1111/cas.2009.100.issue-1
[17]
Li SS, Guo XX, An S, et al. Biological function of the small G protein rap[J]. Progress in Physiological Sciences, 2016, 47(1): 14-20. (in Chinese)
李珊珊, 郭晓汐, 安输, 等. 小G蛋白Rap的信号通路与生物学功能[J]. 生理科学进展, 2016, 47(1): 14-20.
[18]
Pizon V, Desjardins M, Bucci C, et al. Association of Rap1a and Rap1b proteins with late endocytic/phagocytic compartments and Rap2a with the Golgi complex[J]. Journal of Cell Science, 1994, 107: 1661-1670.
[19]
Kawasaki H, Springett GM, Mochizuki N, et al. A family of cAMP-binding proteins that directly activate Rap1[J]. Science, 1998, 282(5397): 2275-2279. DOI:10.1126/science.282.5397.2275