微生物学通报  2018, Vol. 45 Issue (11): 2376−2386

扩展功能

文章信息

孙旭, 杨柳燕
SUN Xu, YANG Liu-Yan
蓝藻堆积对河蚬N2O释放通量及其肠道细菌群落结构的影响
Effect of cyanobacterial accumulation on the nitrous oxide emission of Corbicula fluminea and intestinal bacterial community structure
微生物学通报, 2018, 45(11): 2376-2386
Microbiology China, 2018, 45(11): 2376-2386
DOI: 10.13344/j.microbiol.china.170705

文章历史

收稿日期: 2017-09-07
接受日期: 2018-07-20
网络首发日期(www.cnki.net): 2018-08-10
蓝藻堆积对河蚬N2O释放通量及其肠道细菌群落结构的影响
孙旭1,2,3 , 杨柳燕1     
1. 南京大学环境学院    江苏  南京    210023;
2. 南京工程学院环境工程学院    江苏  南京    211167;
3. 环境保护部南京环境科学研究所    江苏  南京    210042
摘要【背景】 底栖动物是湖泊生态环境的重要组成部分,在泥水界面氮迁移转化中扮演着重要的角色,是一个潜在的N2O释放源,其N2O释放量与栖息环境有关。蓝藻堆积区通常是湖泊N2O释放的热点区域,其水质环境不同于无藻区。【目的】 为了解蓝藻堆积与无藻堆积时底栖动物河蚬N2O释放情况。【方法】 采用室内微宇宙实验,以河蚬为研究对象,通过气相色谱和现代分子生物学相结合的技术测定蓝藻堆积区域底栖动物N2O释放特征及其内在微生物学机制。【结果】 蓝藻堆积区河蚬N2O释放通量为447.2 pmol/(ind·h),相比无藻区河蚬减少63%左右。河蚬肠道内总细菌及反硝化细菌对蓝藻堆积有不同的响应。454测序结果显示,无藻区河蚬肠道内细菌以变形菌门(β-和δ-变形菌纲)、绿弯菌门和拟杆菌门为主,三者相对丰度为67.3%,而蓝藻堆积区河蚬肠道细菌优势类群为变形菌门(α-和β-变形菌纲),相对丰度达到85.8%。Chao1和Shannon指数表明,蓝藻堆积区河蚬肠道细菌丰富度和多样性低于无藻区河蚬。对河蚬肠道内具有反硝化功能细菌进一步分析发现,蓝藻堆积区河蚬肠道内反硝化菌相对丰度可达到22.6%,是无藻区河蚬的2.3倍,反硝化作用得到增强。【结论】 蓝藻堆积导致河蚬肠道内细菌丰富度和多样性降低,反硝化功能菌丰度增加,完全反硝化作用得以强化,导致河蚬N2O释放通量降低。研究结果有助于揭示富营养化中湖泊底栖动物的环境效应,为湖泊温室气体控制提供理论支撑,具有重要的理论和现实意义。
关键词一氧化二氮     蓝藻堆积     河蚬     肠道微生物    
Effect of cyanobacterial accumulation on the nitrous oxide emission of Corbicula fluminea and intestinal bacterial community structure
SUN Xu1,2,3, YANG Liu-Yan1     
1. School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China;
2. School of Environmental Engineering, Nanjing Institute of Technology, Nanjing, Jiangsu 211167, China;
3. Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, Jiangsu 210042, China
Received: September 07, 2017; Accepted: July 20, 2018; Published online (www.cnki.net): August 10, 2018
Foundation item: Foundation items: China Postdoctoral Science Foundation (2016M591762); National Water Pollution Control and Treatment Science and Technology Major Project (2017ZX07204002)
*Corresponding author: YANG Liu-Yan, Tel: 86-25-86980573; E-mail: yangly@nju.edu.cn.
Abstract: [Background] Benthic animals are an indispensable constituent of lake eco-environment and play an important role in transformation of nitrogen between sediment and water. There have been showed that benthic animals are the potential source of N2O emission, while the release capability is closely related to habitat environment. The water quality without cyanobacterial accumulation is different from that with cyanobacterial accumulation, which is usually a hot spot of N2O emission. [Objective] To compare the N2O emission of the fresh invertebrates between with and without cyanobacterial accumulation. [Methods] Combing gas chromatography with modern molecular biology techniques, the N2O emission flux and intestinal microbial from Corbicula fluminea were analyzed to extend our knowledge about the microbiology mechanism of N2O emission through laboratory microcosm experiment. [Results] With cyanobacterial accumulation the N2O emission flux of C. fluminea was 447.2 pmol/(ind·h), decreased by about 63% in comparison with control group. The intestinal bacterial and denitrifying bacteria of C. fluminea have different responses to cyanobacterial accumulation. The 454 pyrosequencing revealed that Proteobacteria (β- and δ-), Chloroflexi and Bacteroid were dominant bacteria in control group and occupied about 67.3% of the total bacteria number. While in cyanobacterial accumulation treatment the intestinal microorganism was mainly Proteobacteria (α- and β-), and the relative abundance reached 85.8%. The index of Chao1 and Shannon indicated that the richness and diversity of intestinal bacterial community structure in cyanobacterial accumulation treatment were lower than the intestinal bacterial in control group. Further analysis was conducted on denitrifying bacteria in the intestine of C. fluminea, the result showed that the relative abundance of denitrifying bacteria in cyanobacterial accumulation treatment occupied to 22.6%, which was 2.3 times as much as the control group, thus strengthening the intestinal denitrification. [Conclusion] Cyanobacterial accumulation decreased the richness and diversity of the intestine bacteria from C. fluminea, while increased the abundance of intestinal denitrifying bacteria, probably enhanced the complete denitrification, resulting in decreasing the emissions of N2O from C. fluminea. The data obtained in this study could serve as a valuable resource for the environmental effects of benthic animals, which has a great theoretical and practical significance in greenhouse-gas control.
Keywords: Nitrous oxide     Cyanobacterial accumulation     Corbicula fluminea     Intestinal microbial    

一氧化二氮(N2O)作为一种温室气体,其在大气中的浓度仅为二氧化碳(CO2)的千分之一,但温室效应是CO2的296倍,所导致的全球性气候变化和生态环境问题已经成为21世纪人类面临的一个严重威胁[1]。随着城市化和工业化水平的提高,人类活动对湖泊的影响也越来越大,大量的污染物输入湖泊水体,引起一系列不可逆的生态环境问题,加速湖泊的富营养化进程。富营养化湖泊硝化反硝化作用强度随之加强,导致湖泊成为继稻田、湿地等传统N2O释放源之外的另一个重要的释放源[2-3]。蓝藻堆积区通常是湖泊N2O释放源的热点区域,水气界面N2O释放通量可达到3.9-85.8 μg N2O/(m·h)[4-6]

湖泊沉积物中存在大量的底栖动物和氮转化微生物,其中底栖动物在活性氮迁移转化过程中起着重要的媒介作用。近年来研究表明底栖动物不仅能促进沉积物释放N2O,其肠道也能释放N2O,释放通量在0-93.1 nmol/(g·h)[7]。底栖动物自身不能产生N2O,主要是通过两种途径产生N2O,一方面底栖动物肠道内的反硝化微生物经不完全反硝化作用产生N2O,这部分N2O约占底栖动物N2O释放量的30%-68%,是底栖动物N2O释放的主要来源;另一方面底栖动物表面粘附的生物膜也是N2O释放的场所,硝化作用产生的N2O最高可达底栖动物释放量的1/3[8-9]。底栖动物N2O释放能力与其栖息环境密切相关,在4-10 ℃的环境下,摇蚊幼虫(Chironomus plumosus) N2O释放速率与上覆水中硝态氮含量呈显著的正相关[10]

为了研究富营养化湖泊底栖动物N2O释放规律,本实验以太湖梅梁湾为研究区域,河蚬为研究对象,采用室内微宇宙实验研究蓝藻堆积对底栖动物N2O释放通量的影响,揭示富营养化湖泊底栖动物的环境效应,为湖泊温室气体控制提供理论支撑。

1 材料与方法 1.1 实验材料及设置

于2013年9月用彼得森采泥器采集太湖梅梁湾(31.42′65.5′′N,120.20′95.2′′E)沉积物,过0.5 mm筛网后收集筛网上的河蚬;并用64 μm的筛网收集水中的蓝藻,将采集的沉积物、河蚬以及蓝藻带回实验室备用。

将混匀的2 L沉积物装入直径0.20 m、高0.15 m的有机玻璃容器,沿壁采用点滴的方式缓慢加入含NO3--N (2 mg/L)和NH4+-N (2 mg/L)的灭菌自来水(泥水体积比2:1),室温培养2周,每天更换上覆水。预培养结束后,引入3个大小一致的河蚬(密度为500 ind/m2),设置2个实验组,每组5个平行,一组为不加藻的对照组(CK),另一组为添加蓝藻的处理组(T),冻干蓝藻的添加量由梅梁湾上覆水叶绿素a浓度(500 μg/L)换算而来[11],文献记录该区域蓝藻优势种属为Microcystis,相对丰度为95%-98%[12-13]。所有实验组在25 ℃避光培养2周,用0.5 mm的筛网收集存活的河蚬。

1.2 河蚬N2O释放通量的测定

各组分别取3个河蚬,用无菌水清洗河蚬表面3次,沥干表面的水分后放入含200 μL NaNO3 (0.5 mmol/L)的50 mL锥形瓶,丁基橡胶密封瓶口后21 ℃避光培养2 h,收集锥形瓶顶空气体测定N2O含量,作为河蚬活体N2O释放通量[8]

1.3 河蚬肠道细菌基因组的提取

分别取培养前(G0)、对照组(GN)和处理组(GA)培养河蚬5个,参照Horn等的方法提取河蚬肠道基因组DNA[14]。用50 μL无菌水洗脱后,0.8%琼脂糖凝胶电泳验证目的条带,并测定230、260、280 nm吸光值检验提取效率和纯度。

1.4 高通量测序及数据分析

1.4.1 454高通量测序

将提取的肠道基因组DNA用带有不同TAG标签的通用引物B-27F (5′-AGAGTTTGATCCTGGCT CAG-3′)和A-533R (5′-TTACCGCGGCTGCTGGCA C-3′)对16S rRNA基因进行PCR扩增,A为测序端接头,B为引物共用端接头[15]。PCR反应体系:5×FastPfu缓冲液4 μL,dNTPs (2.5 mmol/L) 2 μL,引物(5 μmol/L)各0.4 μL,FastPfu聚合酶(500 U) 0.4 μL,模板DNA (10 ng/μL) 1 μL,灭菌超纯水补至20 μL。PCR反应条件:95 ℃ 2 min;95 ℃ 30 s,55 ℃ 30 s,72 ℃ 30 s,27个循环;72 ℃ 10 min。扩增产物经2%琼脂糖凝胶电泳检测,切胶回收纯化后送上海美吉生物公司进行454 FLX Titanium测序。

1.4.2 序列处理

454测序序列采用Mothur软件进行降噪处理,去掉长度小于300 bp、模糊碱基和引物碱基错配2个以上、质量分数低于25、单碱基重复超过6个不确定碱基的序列,并通过UCHIME的方法去除嵌合体序列,得到的高质量序列用于后续数据分析。

1.4.3 OTU聚类注释及多样性分析

使用QIIME软件中pick_de_novo_otus.py命令,通过Uclust方法对获得的高质量序列按97%相似度进行OTU (Operational taxonomic unit)聚类,选取每个OTU中数量最多的序列作为代表性序列进行注释,比对数据库为Greengene,获得每个OTU代表序列的物种分类信息。为减少低丰度物种对数据分析的影响,去掉相对丰度小于总序列条数万分之一的OTU,得到的OTU表用于下游数据分析。根据OTU表中的各样品物种丰度情况,应用QIIME软件计算各样品稀释曲线、种群丰富度(Chao1指数)和多样性(Shannon、Simpson指数),并生成不同分类水平上的物种丰度表和多样品物种分布图。本研究中454测序获得的序列在NCBI Sequence Read Archive (SRA)上的登录号为SRX502686。

2 结果与分析 2.1 蓝藻堆积时河蚬N2O释放特征

对照组河蚬在引入到微宇宙后逐渐进入沉积物中,处理组河蚬位于泥水界面,外壳呈半张开状态。经2周培养对照组和处理组河蚬总存活数分别为13个和10个,存活率分别达到86%和66%。不同处理组河蚬的N2O释放通量存在显著差异,如图 1所示,2 h内对照组和处理组河蚬N2O释放通量分别为1 335.6 pmol/ind和894.5 pmol/ind (P < 0.01),N2O释放速率分别为667.8 pmol/(ind·h)和447.2 pmol/(ind·h),蓝藻水华颗粒使河蚬N2O释放通量和释放速率分别降低33%和37%,表明蓝藻的堆积减缓了河蚬N2O的释放。

图 1 蓝藻堆积对河蚬N2O释放的影响 Figure 1 Effect of cyanobacterial accumulation on N2O emission from C. fluminea
2.2 蓝藻堆积对河蚬肠道细菌群落结构的影响

利用高通量测序技术,经序列过滤和去除嵌合体后,3个肠道样品共得到9 661条高质量序列,长度分布在300-548 bp,其中以序列428 bp居多。如表 1所示,97%的相似度下共获得1 043个OTU,G0、GN、GA 3个样品的OTU数目分别为562、619、65,大多数OTU分布在其中一个或两个样品中(图 2),经2周的培养,对照组河蚬肠道OTU数目有所增加,处理组河蚬肠道OTU数目大幅降低,预示蓝藻水华暴发时河蚬肠道细菌种类急剧减少。从图 3表 1看出,3个样品的稀释曲线在97%的相似度下趋于平缓并达到饱和,同时样品的覆盖度在96%-99%,说明统一测序深度至2 769时3个样品获取的细菌信息基本能反映河蚬肠道细菌的群落组成。

图 2 河蚬肠道16S rRNA基因Venn图 Figure 2 Venn diagram of the intestinal 16S rRNA gene from C. fluminea 注:G0:预培养后河蚬;GN:对照组河蚬肠道样品;GA:处理组河蚬肠道样品. Note: G0: Gut before incubation; GN: Gut sample from the control; GA: Gut sample from the treatment.

图 3 稀释曲线 Figure 3 Rarefaction curves

表 1 河蚬肠道细菌丰富度和多样性指数 Table 1 Richness and biodiversity indexes in intestinal bacterial
Name Coverage(%) OTUs Chao1 Shannon Simpson
G0 97.03 562 579.21 8.15 0.99
GN 96.59 619 639.43 8.45 0.99
GA 99.06 65 85.31 2.70 0.72

通过Chao1、香浓指数以及辛普森指数来表征河蚬肠道细菌丰富度和多样性,如表 1所示,处理组河蚬肠道细菌多样性和丰富度均低于对照组,这与稀释曲线的趋势一致,表明蓝藻的堆积能降低河蚬肠道内细菌多样性。

2.3 蓝藻对河蚬肠道细菌群落结构的影响

2.3.1 门和纲水平优势菌分布特征

在门分类水平3组河蚬肠道样品细菌群落组成如图 4所示,覆盖了30个细菌门类,包括变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)、放线菌门(Actinobacteria)、绿弯菌门(Chloroflexi)、厚壁菌门(Firmicutes)、酸杆菌门(Acidobacteria)等,其中以变形菌门、拟杆菌门、放线菌门、绿弯菌门和厚壁菌门的微生物为主要类群,这5种优势菌群的相对丰度为84.3%-90.1%。不同处理组河蚬肠道细菌群落组成在门分类水平上存在一定的差异,培养前河蚬肠道细菌相对丰度由高到低为变形菌门(50.2%) > 拟杆菌门(13.1%) > 放线菌门(8.64%) > 绿弯菌门(6.5%),经2周培养后对照组(GN)河蚬肠道细菌相对丰度由高到低为变形菌门(34.3%) > 绿弯菌门(22.4%) > 拟杆菌门(10.5%) > 放线菌门(9.9%),而处理组(GA)则主要以变形菌门为优势菌(85.8%)。纵向而言,变形菌门在各组肠道中相对丰度高低为GA > G0 > GN,拟杆菌门为G0 > GA > GN,绿弯菌门为GN > G0 > GA。

图 4 门(A)和纲(B)分类水平河蚬肠道细菌群落组成 Figure 4 The communities structure of bacterial with phylum (A) and class (B)

针对肠道样品中细菌优势门类变形菌门、拟杆菌门、放线菌门、绿弯菌门在纲分类水平进行分析,结果如图 4所示,不同处理的河蚬肠道细菌群落组成存在明显的差异。变形菌门中以β-、α-、γ-变形菌纲为主,相对丰度分别达到13.7%-36.3%、1.4%-37.5%、1.2%-18.9%,而δ-和ε-变形菌纲相对丰度较低,G0组变形菌门以β-和γ-变形菌纲为主,GN组变形菌门以β-和δ-变形菌纲为主,而GA组以α-和β-变形菌纲为主;拟杆菌门中拟杆菌纲、Flavobacteriia、Saprospirae是主要类群,其相对丰度分别为3.4%-6.6%、0.1%-3.2%、0-3.6%,G0组拟杆菌门以上述3种菌为主,GN组和GA组拟杆菌门均是拟杆菌纲为主;放线菌门和绿弯菌门微生物主要在G0和GN组被检出,放线菌门以放线菌纲为主,其在G0和GN组中相对丰度分别为7.4%和6.4%,Anaerolineae是绿弯菌门的优势菌,其在G0和GN组中相对丰度分别为6.1%和20.5%。

2.3.2 属分类水平优势菌分布特征

在属分类水平3个河蚬肠道样品细菌群落组成如图 5所示,获得的1 043个OTU主要集中在311个属,包括110个已知属和201个未知属,相对丰度分别为18.8%和81.2%。311个属中相对丰度大于1%的属有15个,包括Dechloromonas (7.49%)、Acinetobacter (2.8%)、Propionibacterium (2.5%)、Chromobacterium (1.55%)、Bacteroides (1.44%)及未知属10个。

图 5 河蚬肠道细菌属分类水平群落组成 Figure 5 The bacterial community structure of intestinal bacterial from C. fluminea at genus level

对相对丰度大于1%的未知属菌群进行分析发现,立克次氏体目(Rickettsiales,16.1%)、envOPS12 (3.7%)、红环菌科(Rhodocyclaceae,3.5%)、GCA004 (2.4%)、中华杆菌科(Sinobacteraceae,2.2%)等是主要类群。不同样品的未知菌也存在明显差异,G0组未知菌丰度由高到低为丛毛单胞菌科(Comamonadaceae,5.9%) > 嗜甲基菌科(Methylophilaceae,4.5%) > envOPS12 (2.9%) > ACK-M1 (2.7%);GN组主要的优势未知菌为envOPS12 (8.2%)、GCA004 (5.8%)、拟杆菌科(Bacteroidales,5.4%)和中华杆菌科(Sinobacteraceae,5.4%);而GA组主要以立克次氏体目(Rickettsiales,47.2%)和红环菌科(Rhodocyclaceae,7.9%)为主(图 6)。

图 6 河蚬肠道细菌属分类水平未知菌群落组成 Figure 6 The unclassified community structure of intestinal bacterial from C. fluminea at genus level
2.4 河蚬肠道氮转化细菌群落变化

微生物群落的重要特征之一就是微生物群落的稳定性,主要表现为结构稳定性和功能稳定性,微生物群落结构决定了其微生物功能。

河蚬肠道反硝化细菌组成如表 2所示,3个样品中共获得23种反硝化菌,其相对丰度达到17.7%,主要以脱氮单孢菌属(Dechloromonas,7.5%)、不动杆菌属(Acinetobacter,2.8%)和丙酸杆菌属(Propionibacterium,2.5%)等常见的反硝化菌为主。不同处理的河蚬肠道内反硝化菌组成存在明显的差异,GN组反硝化细菌相对丰度约为10%,以丙酸杆菌属(Propionibacterium,5.3%)、硫化细菌(Thiobacillus,1.2%)和脱氮单孢菌属(Dechloromonas,1.0%)为主;而GA组反硝化菌相对丰度则可达到22.6%,是GN组的2.3倍,脱氮单孢菌属(Dechloromonas,20.9%)是其优势反硝化菌属。

表 2 河蚬肠道反硝化菌群落组成 Table 2 The intestinal denitrify bacterial community structure of C. fluminea
Denitrify bacterial Total (%) G0 (%) GN (%) GA (%)
Corynebacterium[16] 0.30 0.87 0.00 0.04
Mycobacterium[17] 0.10 0.29 0.00 0.00
Propionibacterium[18] 2.50 2.17 5.34 0.00
Streptomyces[19] 0.05 0.14 0.00 0.00
Cytophagaceae[20] 0.07 0.22 0.58 0.00
Flavobacterium[21] 0.78 2.17 0.11 0.07
Hyphomicrobium[22] 0.02 0.00 0.07 0.00
Methylosinus[22] 0.18 0.04 0.43 0.00
Ochrobactrum[23] 0.05 0.04 0.00 0.11
Rhodoplanes[24] 0.04 0.00 0.11 0.00
Rhodobacter[23] 0.10 0.18 0.00 0.00
Rhodospirillaceae[21] 0.05 0.14 0.00 0.00
Achromobacter[25] 0.08 0.22 0.00 0.04
Burkholderia[26] 0.05 0.14 0.00 0.00
Comamonas[21] 0.25 0.76 0.00 0.00
Hydrogenophaga[27] 0.24 0.58 0.07 0.00
Rubrivivax[28] 0.01 0.00 0.04 0.00
Thiobacillus[29] 0.67 0.25 1.77 0.00
Dechloromonas[21] 7.50 0.51 1.01 20.91
Zoogloea[21] 0.29 0.79 0.07 0.00
Arcobacter[21] 0.61 1.05 0.00 0.79
Acinetobacter[30] 2.80 8.34 0.00 0.07
Pseudomonas[31] 0.90 2.09 0.00 0.61
3 讨论

底栖动物广泛地分布在淡水和海洋沉积物中,是水生态系统的重要组成部分,不仅能反映水质的污染状况,还参与水生态系统的碳、氮、磷、硫等物质循环,研究表明底栖动物也是一个潜在的N2O释放源[7, 32]。本研究以太湖梅梁湾为研究区域,河蚬为研究对象,通过室内微宇宙实验模拟蓝藻堆积情况下底栖动物N2O的释放特征,结果显示上覆水中叶绿素a浓度达到500 μg/L时,河蚬N2O释放速率为447.2 pmol/(ind·h),高于已报道的双壳类平均值300 pmol/(ind·h)[8],若按太湖梅梁湾河蚬最高密度500 ind/m2计算[33],蓝藻暴发时河蚬N2O释放通量可达9.8 μg N2O/(m2·h),约占沉积物释放量的11.4%[11],表明底栖动物也是富营养化湖泊N2O重要的释放源之一,应引起足够重视。如表 3所示,与其他底栖动物N2O释放情况相比,本研究处理组河蚬N2O释放通量处于一个较高的水平,是摇蚊幼虫(Chironomus plumosus)释放量的34.9倍,仅次于触角豆螺(Bithynia tentaculata)的释放水平,这与底栖动物食性和栖息环境有关[7, 28]。底栖动物自身不会释放N2O,但通过吞噬环境中的硝化反硝化微生物在肠道释放N2O,其中肠道释放的N2O占底栖动物释放量的67%-84%。双壳类的河蚬表面通常会形成一层生物膜,大量的硝化细菌附着在生物膜中,硝化过程释放的N2O量约占总释放量的1/3,而肠道反硝化释放量占2/3,本研究将不同处理组河蚬表面清洗后再进行N2O释放通量测定,并采用相应的功能基因amoA引物对肠道AOA (Ammonia-oxidizing archaea)和AOB (Ammonia- oxidizing bacteria)进行扩增,并未成功扩增出目的条带,表明河蚬肠道里不发生或发生很微弱的硝化过程,以致于不能检测到氨氧化菌,因此河蚬N2O释放量基本由肠道产生[8, 35]

表 3 不同底栖动物N2O释放通量 Table 3 N2O emission by various aquatic invertebrate taxa
底栖动物
Aquatic invertebrate
食性
Habitat type
释放量
N2O emission(pmol/(ind·h))
Bithynia tentaculata[7] Filter-and deposit-feeders 600-900
Mytilus edulis[7] 150-426
Chironomus plumosus[10, 28, 32] 10-128
Ephemera danica[34] 100-351
Corbicula fluminea (this study) 447-667
Anabolia nervosa[7] Shredders 100-200
Asellus aquaticus[7] 20-45
Ecdyonurus sp.[7] Grazers 10-25
Baetis sp.[7] 2.2-8.1
Erpobdella octoculata[7] Predators 5.1-32.0
Orectochilus sp.[7] 4.2-18.4
Sialis lutaria[33] 2.5-12.2

河蚬N2O释放量与其肠道内反硝化底物浓度密切相关,例如NO3--N、DOC及DO等,有研究表明上覆水NO3--N浓度低于15.5 mg/L或DO低于2.9 mg/L时,部分底栖动物肠道内NO3--N和DO浓度与上覆水中相应浓度具有显著的正相关[9-10]。本研究处理组GA组由于堆积蓝藻的降解,释放大量的氨氮及有机酸,上覆水NO3--N和DO浓度分别为3.8 mg/L和1.5 mg/L,明显低于对照组GN的7.6 mg/L和3.7 mg/L,可以推测GA组河蚬肠道内NO3--N和DO均低于对照组GN,而DOC含量高于对照组GN。通常增加可利用碳含量能降低反硝化产物中N2O:N2的比例,且在富含有机质的环境中没有明显的硝氮输入时,会促使更多的N2O转化成N2[36]

作为自然界氮循环的主要驱动者,微生物在湖泊生态系统氮素的迁移转化过程中发挥着重要作用。利用454高通量测序技术研究了蓝藻堆积时河蚬肠道细菌群落演替规律,结果显示,河蚬肠道内细菌覆盖30门75纲118目237科311属,大多数是未知菌属,比DGGE (Denaturing gradient gel electrophoresis)、T-RFLP (Terminal restriction fragment length polymorphism)、克隆文库等传统的微生物群落分析技术获得更多的细菌门类[37]。经2周的培养处理组河蚬肠道优势菌为变形菌门的α-和β-变形菌,相对丰度高达85%,而对照组河蚬肠道则为变形菌门的β-、γ-变形菌和拟杆菌门,同时处理组河蚬肠道细菌丰富度和多样性均低于对照组。这可能与河蚬在不同栖息环境的习性及肠道对细菌的选择性有关,无蓝藻堆积环境下河蚬在沉积物中掘穴而居,主要以沉积物颗粒为食,导致对照组河蚬肠道细菌与沉积物细菌较为接近;在有蓝藻堆积环境下河蚬栖息在泥水界面之间,双壳敞开,以蓝藻碎屑和沉积物颗粒为食,而在蓝藻暴发时沉积物中以变形菌为主,β-变形菌常常是污染较重湖区沉积物的优势类群[9, 12, 38-39]。进一步对河蚬肠道反硝化细菌进行分析,发现河蚬肠道内反硝化细菌相对丰度为10.0%-22.6%,处理组河蚬肠道反硝化细菌相对丰度是对照组河蚬的2.3倍,主要以Dechloromonas为主,这类反硝化细菌通常在污水处理系统中被检测到,具有完全反硝化能力,可将NO3-转化为N2[40]。这与Svenningsen等[41]研究结果一致,双壳类的斑马贝(Dreissena polymorpha)肠道中nirK型和nirS型反硝化菌多样性较低,nirK型主要以Dechloromonas为主,而nirS型反硝化菌主要是α-变形菌的RhodobacterRhodopseudomonas。值得注意的是基于16S rRNA基因的菌群多样性分析通常会造成对细菌丰度的高估,有研究表明焦磷酸测序的V4-V5区域显示了最低的高估程度(约为3.0%),而V6区域的高估程度最高(约为13%),但也有研究认为V3-V4区域是活性污泥细菌多样性研究的最佳区域,这可能与样本的复杂程度有关,本研究中河蚬肠道细菌多样性明显低于活性污泥,因此采用V3-V4区域进行分析基本能覆盖样品的细菌多样性[42-43]。对于反硝化功能基因而言,由于存在种间转移,且与16S rRNA基因进化速度不同,导致大部分反硝化功能基因与16S rRNA基因的系统发育关系存在较大的差异,因此通过16S rRNA基因对反硝化细菌多样性分析时会引起一定程度的低估,尤其是一些低丰度的反硝化细菌将检测不到[44]

4 结论

通过室内微宇宙实验,模拟蓝藻堆积情况下河蚬N2O释放规律,丰富了N2O释放清单核算,可为全球气候变化控制及湖泊富营养化提供理论支撑,主要结论如下:

(1) 蓝藻的堆积可使河蚬N2O释放通量减少63%;

(2) 蓝藻堆积会降低河蚬肠道内细菌丰富度和多样性,增加肠道内α-和β-变形菌纲相对丰度,降低拟杆菌门和绿弯菌门相对丰度,改变肠道内细菌群落组成;

(3) 蓝藻堆积会增加河蚬肠道内反硝化功能菌的相对丰度,形成特异型的反硝化菌类群(脱氮单孢菌属),相对丰度可达到20.9%左右,进一步强化完全反硝化作用,使更多的N2O转化成N2,减少温室气体N2O的释放,降低湖泊内源氮负荷,是富营养化湖泊生态系统自我调节机制之一。

参考文献
[1]
Jung MY, Well R, Min D, et al. Isotopic signatures of N2O produced by ammonia-oxidizing archaea from soils[J]. The ISME Journal, 2014, 8(5): 1115-1125. DOI:10.1038/ismej.2013.205
[2]
Wang HJ, Wang WD, Yin CQ, et al. Littoral zones as the "hotspots" of nitrous oxide (N2O) emission in a hyper-eutrophic lake in China[J]. Atmospheric Environment, 2006, 40(28): 5522-5527. DOI:10.1016/j.atmosenv.2006.05.032
[3]
Kong Q, Wang ZB, Niu PF, et al. Greenhouse gas emission and microbial community dynamics during simultaneous nitrification and denitrification process[J]. Bioresource Technology, 2016, 210: 94-100. DOI:10.1016/j.biortech.2016.02.051
[4]
Zhong JC, Fan CX, Liu GF, et al. Seasonal variation of potential denitrification rates of surface sediment from Meiliang Bay, Taihu Lake, China[J]. Journal of Environmental Sciences, 2010, 22(7): 961-967. DOI:10.1016/S1001-0742(09)60205-9
[5]
Fagerstone KD, Quinn JC, Bradley TH, et al. Quantitative measurement of direct nitrous oxide emissions from microalgae cultivation[J]. Environmental Science & Technology, 2011, 45(21): 9449-9456.
[6]
Liu YS, Zhu RB, Ma DW, et al. Temporal and spatial variations of nitrous oxide fluxes from the littoral zones of three alga-rich lakes in coastal Antarctica[J]. Atmospheric Environment, 2011, 45(7): 1464-1475. DOI:10.1016/j.atmosenv.2010.12.017
[7]
Stief P, Poulsen M, Nielsen LP, et al. Nitrous oxide emission by aquatic macrofauna[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(11): 4296-4300. DOI:10.1073/pnas.0808228106
[8]
Heisterkamp IM, Schramm A, Larsen LH, et al. Shell biofilm-associated nitrous oxide production in marine molluscs: processes, precursors and relative importance[J]. Environmental Microbiology, 2013, 15(7): 1943-1955. DOI:10.1111/j.1462-2920.2012.02823.x
[9]
Stief P. Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications[J]. Biogeosciences, 2013, 10(12): 7829-7846. DOI:10.5194/bg-10-7829-2013
[10]
Stief P, Polerecky L, Poulsen M, et al. Control of nitrous oxide emission from Chironomus plumosus larvae by nitrate and temperature[J]. Limnology and Oceanography, 2010, 55(2): 872-884. DOI:10.4319/lo.2009.55.2.0872
[11]
Wang HJ, Lu JW, Wang WD, et al. Methane fluxes from the littoral zone of hypereutrophic Taihu Lake, China[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D17): D17109. DOI:10.1029/2005JD006864
[12]
Shao KQ, Zhang L, Wang YP, et al. The responses of the taxa composition of particle-attached bacterial community to the decomposition of Microcystis blooms[J]. Science of the Total Environment, 2014, 488-489: 236-242. DOI:10.1016/j.scitotenv.2014.04.101
[13]
Chen XF, Jiang HY, Sun X, et al. Nitrification and denitrification by algae-attached and free-living microorganisms during a cyanobacterial bloom in Lake Taihu, a shallow Eutrophic Lake in China[J]. Biogeochemistry, 2016, 131(1/2): 135-146.
[14]
Horn MA, Drake HL, Schramm A. Nitrous oxide reductase genes (nosZ) of denitrifying microbial populations in soil and the earthworm gut are phylogenetically similar[J]. Applied and Environmental Microbiology, 2006, 72(2): 1019-1026. DOI:10.1128/AEM.72.2.1019-1026.2006
[15]
Wang AH, Li M, Li CQ, et al. Human colorectal mucosal microbiota correlates with its host niche physiology revealed by endomicroscopy[J]. Scientific Reports, 2016, 6: 21952. DOI:10.1038/srep21952
[16]
Doi Y, Takaya N. A novel A3 group aconitase tolerates oxidation and nitric oxide[J]. Journal of Biological Chemistry, 2015, 290(3): 1412-1421. DOI:10.1074/jbc.M114.614164
[17]
Darwin KH, Ehrt S, Gutierrez-Ramos JC, et al. The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide[J]. Science, 2003, 302(5652): 1963-1966. DOI:10.1126/science.1091176
[18]
Welsh D, Castadelli G, Bartoli M, et al. Denitrification in an intertidal seagrass meadow, a comparison of 15N-isotope and acetylene-block techniques: dissimilatory nitrate reduction to ammonia as a source of N2O?[J]. Marine Biology, 2001, 139(6): 1029-1036. DOI:10.1007/s002270100672
[19]
Takaki K, Fushinobu S, Kim SW, et al. Streptomyces griseus enhances denitrification by Ralstonia pickettii K50, which is possibly mediated by histidine produced during co-culture[J]. Bioscience, Biotechnology, and Biochemistry, 2008, 72(1): 163-170. DOI:10.1271/bbb.70528
[20]
Krustok I, Truu J, Odlare M, et al. Effect of lake water on algal biomass and microbial community structure in municipal wastewater-based lab-scale photobioreactors[J]. Applied Microbiology and Biotechnology, 2015, 99(15): 6537-6549. DOI:10.1007/s00253-015-6580-7
[21]
Xiao JJ, Guo P, Huo WJ, et al. Application of denitrifying microbes to wastewater denitrification[J]. Environmental Science & Technology, 2009, 32(12): 97-102. (in Chinese)
肖晶晶, 郭萍, 霍炜洁, 等. 反硝化微生物在污水脱氮中的研究及应用进展[J]. 环境科学与技术, 2009, 32(12): 97-102. DOI:10.3969/j.issn.1003-6504.2009.12.022
[22]
Guo F, Ju F, Cai L, et al. Taxonomic precision of different hypervariable regions of 16S rRNA gene and annotation methods for functional bacterial groups in biological wastewater treatment[J]. PLoS One, 2013, 8(10): e76185. DOI:10.1371/journal.pone.0076185
[23]
Nguyen VK, Park Y, Yang H, et al. Effect of the cathode potential and sulfate ions on nitrate reduction in a microbial electrochemical denitrification system[J]. Journal of Industrial Microbiology & Biotechnology, 2016, 43(6): 783-793.
[24]
Hiraishi A, Ueda Y. Rhodoplanes gen. nov., a new genus of phototrophic bacteria including Rhodopseudomonas rosea as Rhodoplanes roseus comb. nov. and Rhodoplanes elegans sp. nov.[J]. International Journal of Systematic Bacteriology, 1994, 44(4): 665-673. DOI:10.1099/00207713-44-4-665
[25]
Gui MY, Chen Q, Ni JR. Effect of NaCl on aerobic denitrification by strain Achromobacter sp. GAD-3[J]. Applied Microbiology and Biotechnology, 2017, 101(12): 5139-5147. DOI:10.1007/s00253-017-8191-y
[26]
Nie YX, Li L, Wang MC, et al. Nitrous oxide emission potentials of Burkholderia species isolated from the leaves of a boreal peat moss Sphagnum fuscum[J]. Bioscience, Biotechnology, and Biochemistry, 2015, 79(12): 2086-2095. DOI:10.1080/09168451.2015.1061420
[27]
Yang J, Zhang GZ, Yang XN, et al. Microbial community structure and diversity in cellar water by 16S rRNA high-throughput sequencing[J]. Environmental Science, 2017, 38(4): 1704-1716. (in Chinese)
杨洁, 张国珍, 杨晓妮, 等. 16S rRNA高通量测序研究集雨窖水中微生物群落结构及多样性[J]. 环境科学, 2017, 38(4): 1704-1716.
[28]
Sun X, Hu ZX, Jia W, et al. Decaying Cyanobacteria decrease N2O emissions related to diversity of intestinal denitrifiers of Chironomus plumosus[J]. Journal of Limnology, 2015, 74(2): 261-271.
[29]
Li R, Feng CP, Hu WE, et al. Woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process for nitrate contaminated water remediation[J]. Water Research, 2016, 89: 171-179. DOI:10.1016/j.watres.2015.11.044
[30]
Huang XF, Li WG, Zhang DY, et al. Ammonium removal by a novel oligotrophic Acinetobacter sp. Y16 capable of heterotrophic nitrification-aerobic denitrification at low temperature[J]. Bioresource Technology, 2013, 146(10): 44-50.
[31]
He TX, Li ZL, Sun Q, et al. Heterotrophic nitrification and aerobic denitrification by Pseudomonas tolaasii Y-11 without nitrite accumulation during nitrogen conversion[J]. Bioresource Technology, 2016, 200: 493-499. DOI:10.1016/j.biortech.2015.10.064
[32]
Poulsen M, Kofoed MVW, Larsen LH, et al. Chironomus plumosus larvae increase fluxes of denitrification products and diversity of nitrate-reducing bacteria in freshwater sediment[J]. Systematic and Applied Microbiology, 2014, 37(1): 51-59. DOI:10.1016/j.syapm.2013.07.006
[33]
Cai YJ, Gong ZJ, Qin BQ. Influences of habitat type and environmental variables on benthic macroinvertebrate communities in a large shallow subtropical lake (Lake Taihu, China)[J]. Annales de Limnologie-International Journal of Limnology, 2011, 47(1): 85-95. DOI:10.1051/limn/2010028
[34]
Stief P, Schramm A. Regulation of nitrous oxide emission associated with benthic invertebrates[J]. Freshwater Biology, 2010, 55(8): 1647-1657.
[35]
Monteiro M, Séneca J, Magélhaes C. The history of aerobic ammonia oxidizers: from the first discoveries to today[J]. Journal of Microbiology, 2014, 52(7): 537-547. DOI:10.1007/s12275-014-4114-0
[36]
Saggar S, Jha N, Deslippe J, et al. Denitrification and N2O:N2 production in temperate grasslands: processes, measurements, modelling and mitigating negative impacts[J]. Science of the Total Environment, 2013, 465: 173-195. DOI:10.1016/j.scitotenv.2012.11.050
[37]
Wu TT, Sheng JP, Shen L. Application of microbial molecular ecology techniques in microbial diversity of lake[J]. Biotechnology Bulletin, 2010(3): 62-66. (in Chinese)
武婷婷, 生吉萍, 申琳. 微生物分子生态学技术在湖泊微生物多样性研究中的应用[J]. 生物技术通报, 2010(3): 62-66.
[38]
Shao KQ, Gao G, Qin BQ, et al. Comparing sediment bacterial communities in the macrophyte-dominated and algae-dominated areas of eutrophic Lake Taihu, China[J]. Canadian Journal of Microbiology, 2011, 57(4): 263-272. DOI:10.1139/w11-003
[39]
Wang S, Xu Q, Zhang GS, et al. Operational performance and microbial community structure in a completely mixed aeration system[J]. Environmental Science, 2017, 38(2): 665-671. (in Chinese)
王硕, 徐巧, 张光生, 等. 完全混合式曝气系统运行特性及微生物群落结构解析[J]. 环境科学, 2017, 38(2): 665-671.
[40]
Wen DH, Zhang N, Yu C, et al. Community structure and contaminant degradation function of biofilm in environmental engineering systems[J]. Microbiology China, 2014, 41(7): 1394-1401. (in Chinese)
温东辉, 张楠, 于聪, 等. 环境中生物膜的菌群结构与污染物降解特性[J]. 微生物学通报, 2014, 41(7): 1394-1401.
[41]
Svenningsen NB, Heisterkamp IM, Sigby-Clausen M, et al. Shell biofilm nitrification and gut denitrification contribute to emission of nitrous oxide by the invasive freshwater mussel Dreissena polymorpha (Zebra mussel)[J]. Applied and Environmental Microbiology, 2012, 78(12): 4505-4509. DOI:10.1128/AEM.00401-12
[42]
Sun DL, Jiang X, Wu QL, et al. Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity[J]. Applied and Environmental Microbiology, 2013, 79(19): 5962-5969. DOI:10.1128/AEM.01282-13
[43]
Cai L, Ye L, Tong AHY, et al. Biased diversity metrics revealed by bacterial 16S pyrotags derived from different primer sets[J]. PLoS One, 2013, 8(1): e53649. DOI:10.1371/journal.pone.0053649
[44]
Liang LH, Zuo JE. Denitrifying functional genes-the molecular marker for detection of denitrifying community structure[J]. Microbiology China, 2009, 36(4): 627-633. (in Chinese)
梁丽华, 左剑恶. 反硝化功能基因-检测反硝化菌种群结构的分子标记[J]. 微生物学通报, 2009, 36(4): 627-633.