微生物学通报  2018, Vol. 45 Issue (1): 111−119

扩展功能

文章信息

李袁飞, 成艳芬, 朱伟云
LI Yuan-Fei, CHENG Yan-Fen, ZHU Wei-Yun
共存甲烷短杆菌Methanobrevibacter thaueri F1提高梨囊鞭菌Piromyces sp. F1对硝呋烯腙的耐受性
Enhancing the resistance of anaerobic fungus Piromyces sp. F1 to nitrovin by co-culture with Methanobrevibacter thaueri F1
微生物学通报, 2018, 45(1): 111-119
Microbiology China, 2018, 45(1): 111-119
DOI: 10.13344/j.microbiol.china.170143

文章历史

收稿日期: 2017-02-22
接受日期: 2017-07-05
优先数字出版日期(www.cnki.net): 2017-08-31
共存甲烷短杆菌Methanobrevibacter thaueri F1提高梨囊鞭菌Piromyces sp. F1对硝呋烯腙的耐受性
李袁飞 , 成艳芬 , 朱伟云     
江苏省消化道营养与动物健康重点实验室 南京农业大学消化道微生物实验室    江苏 南京    210095
摘要【背景】 硝呋烯腙能够抑制厌氧真菌。共存甲烷菌可以促进厌氧真菌的生长以及对木质纤维素的降解,然而关于共存甲烷菌对厌氧真菌抗逆性影响的研究较少。【目的】 旨在研究甲烷菌共存对厌氧真菌耐受硝呋烯腙的影响。【方法】 采用体外批次培养,以稻草为底物,添加不同浓度的硝呋烯腙(0、5、10、25 mg/L),分别接种厌氧真菌纯培养和厌氧真菌与甲烷菌共培养悬浮液,于39静置培养96 h。测定不同时间点的产气量和甲烷产量,结束后测定pH、干物质降解率(DMD)、中性洗涤纤维消失率(NDFD)、半纤维素消失率(ADSD)、酸性洗涤纤维消失率(ADFD)以及上清液中甲酸、乳酸和乙酸的浓度。【结果】 添加5、10和25 mg/L硝呋烯腙皆显著降低了厌氧真菌纯培养的发酵活性(P < 0.05);添加5 mg/L硝呋烯腙没有显著降低厌氧真菌与甲烷菌共培养的发酵活性(P > 0.05),添加10和25 mg/L硝呋烯腙则显著降低了共培养发酵活性(P < 0.05);比较5、10 mg/L硝呋烯腙对纯培养和共培养发酵活性影响的结果表明,共培养发酵活性显著高于纯培养发酵活性(P < 0.05)。【结论】 硝呋烯腙对厌氧真菌纯培养和厌氧真菌与甲烷菌共培养的抑制作用都存在剂量效应,在一定添加浓度范围内(< 25 mg/L),甲烷菌共存可以显著提高厌氧真菌对硝呋烯腙的耐受性。
关键词厌氧真菌     甲烷菌     共培养     稻草     硝呋烯腙    
Enhancing the resistance of anaerobic fungus Piromyces sp. F1 to nitrovin by co-culture with Methanobrevibacter thaueri F1
LI Yuan-Fei, CHENG Yan-Fen, ZHU Wei-Yun     
Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
Received: February 22, 2017; Accepted: July 05, 2017; Published online (www.cnki.net): August 31, 2017
Foundation item: Natural Science Foundation of Jiangsu Province (BK20141372); Construction Funds for the Second Phase Advantageous Disciplines of Jiangsu Province; Fundamental Research Funds for the Central Universities of China (KYZ201312); National Natural Science Foundation of China (31101735)
*Corresponding author: CHENG Yan-Fen, Tel: 86-25-84395523; E-mail: yanfencheng@njau.edu.cn.
Abstract: [Background] Anaerobic fungi can be inhibited by nitrovin. The presence of associated methanogens enhances the growth of anaerobic fungi and the decomposition of lignocellulose by anaerobic fungi. However, few studies have investigated the effect of the co-cultured methanogens on stress resistance of anaerobic fungi. [Objective] The objective of this study was to investigate the effect of associated methanogen on the resistance of anaerobic fungus to nitrovin. [Methods] Mono-culture of anaerobic fungus Piromyces sp. and co-culture of Piromyces sp. and Methanobrevibacter thaueri were inoculated into fresh media with rice straw as substrate, respectively. Nitrovin hydrochloride was added to the final concentrations of 0, 5, 10 and 25 mg/L-nitrovin. Bottles were incubated at 39 C for 96 h without shaking. Gas production and methane production were measured at intervals. At the end of fermentation, the pH was determined immediately upon removing crimp-seals and stoppers. Samples were collected for the analysis of in vitro digestibility of dry matter, digestibility of neutral detergent fiber, digestibility of acid detergent solution and digestibility of acid detergent fiber. The water-soluble end-products including formate, lactate and acetate were measured as well. [Results] In the mono-culture, nitrovin (5, 10 and 25 mg/L) significantly reduced the fermentation activity of anaerobic fungus (P < 0.05). In the co-culture, no significant difference was observed when adding 5 mg/L nitrovin (P > 0.05). However, the fermentation activity was significantly depressed at the concentrations of 10 and 25 mg/L. At the concentrations of 5 and 10 mg/L nitrovin, the fermentation activity of the co-culture was significantly higher than the mono-culture (P < 0.05). [Conclusion] A dose effect of nitrovin on the fermentation of anaerobic fungal mono-culture and co-culture was observed. The presence of associated methanogen enhanced the resistance of anaerobic fungus to nitrovin when the concentration of nitrovin was less than 25 mg/L.
Key words: Anaerobic fungi     Methanogens     Co-cultures     Rice straw     Nitrovin    

在瘤胃中,厌氧真菌对粗饲料的降解起着非常重要的作用,其降解粗纤维的能力显著高于瘤胃细菌和瘤胃原虫[1]。厌氧真菌降解不同底物的代谢产物主要为氢气、甲酸、乙酸、乳酸和乙醇[2]。甲烷菌是瘤胃内的主要氢利用菌之一,它们只能利用H2、CO2、甲酸、乙酸和甲醇等简单物质作为能量来源。大量研究报道表明,利用亨氏滚管技术能够分离得到厌氧真菌和甲烷菌的共培养,而且它们之间存在着“一对一”的关系[3-5]。同时,它们之间通过种间氢转移可以长期稳定共存[3, 6]

甲烷菌共存不仅提高了厌氧真菌木质纤维素降解酶的活性[7-8],同时也提高了厌氧真菌对一系列木质纤维素的降解[4]。Stewart等[9]利用从瘤胃中分离得到的厌氧真菌和从淤泥中分离得到的甲烷菌进行混合培养发现,当以葡萄糖为底物时甲烷菌的存在能够提高厌氧真菌对离子载体(莫能菌素和拉沙里菌素)的耐受性。Cann等[10]研究发现,在体外培养时尽管厌氧真菌对盐霉素和多氧菌素比较敏感,但在体内使用时仍然可以检测到厌氧真菌,而且他们发现在存活的厌氧真菌表面附有甲烷菌。这些研究结果表明,甲烷菌的存在不仅提高了厌氧真菌的纤维降解能力,还可能帮助厌氧真菌抵抗恶劣环境。综合Bauchop等[3]和Cheng等[11]的结果发现,共存甲烷菌通过促进厌氧真菌氢化酶体中NAD (NADP)的再生成来调节厌氧真菌的代谢。

硝呋烯腙是一种人工合成的具有5-硝基呋喃环母核的广谱抗菌药物,其抗菌机理是干扰微生物体内的氧化还原酶系统,使微生物代谢紊乱[12]。我们推测硝呋烯腙可能会抑制或阻断甲烷菌对厌氧真菌氢化酶体中NAD (NADP)再生成的促进作用。为了验证上述推测,我们利用瘤胃厌氧真菌中丰度较高的厌氧真菌属(Piromyces)[13]和瘤胃甲烷菌中丰度较高的甲烷菌属(Methanobrevibacter)[14]共培养物,以稻草为底物,研究甲烷菌存在时厌氧真菌对真菌抑制剂硝呋烯腙的响应,探讨甲烷菌共存对厌氧真菌抵抗恶劣环境能力的影响,为深入研究甲烷菌和厌氧真菌相互关系及瘤胃内微生物间相互关系提供依据。

1 材料与方法 1.1 菌种及培养基的配制

所用菌株为从山羊瘤胃液中分离得到的厌氧真菌(Piromyces sp. F1)和甲烷菌(Methanobrevibacter thaueri F1)共培养,通过添加氯霉素去除甲烷菌以获得厌氧真菌纯培养[4]

培养基参照Davies等[15]的方法配制。该培养基组分含(1 000 mL):缓冲液A 150.0 mL,缓冲液B 150.0 mL,无细胞瘤胃液150.0 mL,酵母膏2.5 g,胰蛋白胨10.0 g,NaHCO3 6.0 g,刃天青(0.1%,质量体积比) 1.0 mL,L-半胱氨酸盐酸盐1.0 g。缓冲液A为3.0 g/L的K2HPO4溶液。缓冲液B成分为(g/L):KH2PO4 3.0,(NH4)2SO4 6.0,NaCl 6.0,MgSO4∙7H2O 0.6,CaCl2∙2H2O 0.6。将上述各组分加入宽底细颈瓶,加入去离子水补齐至1 000 mL,加热培养基至沸腾后通入二氧化碳至完全厌氧。底物为直径约为1 mm的稻草秸,添加量为0.8% (质量体积比)。

1.2 主要试剂和仪器

硝呋烯腙盐酸盐,大连美仑生物技术有限公司。气相色谱仪,Shimadzu公司;毛细管色谱柱,Supelco公司;液相色谱仪和反相色谱柱,Agilent公司。

1.3 产甲烷菌共存时厌氧真菌对真菌抑制剂硝呋烯腙的耐受性研究

将硝呋烯腙溶于二甲亚砜配制成不同浓度的母液备用。试验分为4组,硝呋烯腙添加终浓度分别为0、5、10、25 mg/L,同时设置空白对照组(接种等体积厌氧稀释液)用于产气量校正。试验开始时,接种10 mL在39 3 d的厌氧真菌纯培养或厌氧真菌与甲烷菌共培养悬浮液于已预热至39的培养基中,并平衡发酵瓶内气压为0,将发酵瓶置于39静置培养96 h。各试验组均设3个重复。培养期间,分别于培养6、12、18、24、30、36、42、48、54、63、72、84和96 h后测定产气量和甲烷产量。发酵结束后,立即测定发酵液pH值,同时冰浴终止发酵,随后取发酵液备测真菌代谢产物甲酸、乳酸及乙酸。发酵剩余底物用于干物质(Dry matter,DM)、中性洗涤纤维(Neutral detergent fiber,NDF)、酸性洗涤纤维(Acid detergent fiber,ADF)的测定,并计算干物质消失率、中性洗涤纤维消失率、半纤维素消失率及酸性洗涤纤维消失率。

1.4 产气量与甲烷产量测定

参照Theodorou等[16]的方法测定产气量,用气压转换仪定时测定发酵瓶内产气量,记录读数后,将瓶内气压平衡为0,以便测定下一时间点的产气量,将各时间点的产气量相加得到累计产气量。甲烷测定参照胡伟莲等[17]的方法。所用气相方法相关参数如下:柱温80,汽化室温度100,氢离子火焰检测器,检测温度120,载气为氮气,压力为0.05 MPa,空气压力为0.05 MPa,氢气压力为0.05 MPa。

1.5 底物消失率测定

采用van Soest等[18]的方法测定NDF和ADF。以对照作校正,参照van Soest等[18]和李袁飞等[19]的方法计算底物的干物质消失率(Disappearance rate of DM,DMD)、中性洗涤纤维消失率(Disappearance rate of NDF,NDFD)、半纤维素消失率(Disappearance rate of acid detergent solution,ADSD)和酸性洗涤纤维消失率(Disappearance rate of ADF,ADFD)。

1.6 代谢产物测定

取0.5 mL上清液与等体积的H2SO4溶液(10%,体积比)混匀,4、10 000×g离心15 min后取上清液过滤(0.22 µm),滤液用于检测甲酸、乳酸和乙酸的浓度。测定方法参照Li等[6]的方法,所用液相方法相关参数如下:流动相为20 mmol/L KH2PO4-H3PO4缓冲液(pH 2.7)和甲醇(两者比例为99:1),检测波长为215 nm,柱温为30,进样体积为10 µL。

1.7 数据分析

经Excel 2013初步整理各数据后,利用SPSS 20.0统计软件进行分析。采用One-Way ANOVA分析添加不同浓度硝呋烯腙对纯培养和共培养的影响;采用独立样本t检验分析在相同添加剂量下纯培养和共培养对硝呋烯腙的响应。置信区间为95%,数据以平均值±标准差表示。

2 结果与分析 2.1 硝呋烯腙对厌氧真菌纯培养/共培养产气的影响

经过96 h的培养,与各自的对照组相比,纯培养和共培养处理组的累计产气量都出现了不同程度的降低(图 1)。纯培养组中,添加5 mg/L硝呋烯腙处理组的产气量仅为对照组的42.0%;添加10和25 mg/L硝呋烯腙处理组的产气量皆低于10 mL,表明这两个处理组的发酵几乎被完全抑制。共培养组中,添加5 mg/L硝呋烯腙处理组的产气量与对照组无显著差异(P > 0.05);当硝呋烯腙添加量达到25 mg/L时发酵才几乎被完全抑制。当硝呋烯腙的添加量为5或10 mg/L时,硝呋烯腙对共培养产气量的影响较小。

图 1 硝呋烯腙对纯培养(M)和共培养(C)产气量的影响 Figure 1 Effect of nitrovin on the gas production of anaerobic fungal mono-culture and co-culture

图 2可知,共培养甲烷产量随着硝呋烯腙添加量的增加而减少。发酵终点时,共培养5 mg/L硝呋烯腙处理组的甲烷产量和对照组无显著差异(P > 0.05),共培养25 mg/L硝呋烯腙处理组几乎完全抑制了甲烷的产生。

图 2 硝呋烯腙对共培养甲烷产量的影响 Figure 2 Effect of nitrovin on methane production of the co-culture
2.2 硝呋烯腙对厌氧真菌纯培养/共培养底物降解的影响

表 1可知,添加硝呋烯腙显著降低了纯培养和共培养的DMD、NDFD、ADSD和ADFD (P < 0.05)。在纯培养中,随着硝呋烯腙添加量的增加,DMD、NDFD、ADSD、ADFD分别由34.12%、39.35%、35.88%和36.94%降至6.30%、4.52%、2.66%和0.97%。在共培养中,添加5 mg/L硝呋烯腙处理组的DMD、NDFD、ADSD和ADFD与对照组差异不显著(P > 0.05)。添加10和25 mg/L硝呋烯腙处理组的DMD、NDFD、ADSD和ADFD显著低于对照组(P < 0.05)。

表 1 硝呋烯腙对厌氧真菌纯培养及厌氧真菌与甲烷菌共培养底物降解的影响 Table 1 Effect of nitrovin on in vitro digestibility of substrate by anaerobic fungal mono-culture and co-culture (%)
指标
Index
硝呋烯腙Nitrovin (mg/L) 标准误
SEM
显著性Significance (P value)
0 5 10 25 线性Linear 二次方Quadrate
Mono-culture
   DMD 34.12±3.72a 10.96±2.05b 8.15±5.33b 6.30±0.71b 3.49 < 0.001 < 0.001
   NDFD 39.35±2.53a 11.15±1.42b 5.78±3.71c 4.52±0.33c 4.31 < 0.001 < 0.001
   ADSD 35.88±1.80a 13.74±1.37b 4.28±3.44c 2.66±1.76c 4.03 < 0.001 < 0.001
   ADFD 36.94±3.52a 4.43±1.73b 1.96±3.96b 0.97±1.78b 4.58 < 0.001 < 0.001
Co-culture
   DMD 42.83±0.36a 44.85±0.16a 20.55±8.38b 8.53±0.24c 4.72 < 0.001 0.159
   NDFD 47.78±0.86a 49.02±0.73a 14.46±8.17b 6.63±1.20b 5.86 < 0.001 0.005
   ADSD 44.32±1.12a 44.23±0.70a 16.17±6.73b 9.00±1.15c 4.91 < 0.001 0.004
   ADFD 45.36±0.72a 44.88±2.75a 11.52±4.08b 1.83±2.48c 5.93 < 0.001 < 0.001
注:同行不同小写字母表示差异显著(P < 0.05).
Note: Values in the row with different letters mean significantly different (P < 0.05).
2.3 硝呋烯腙对厌氧真菌纯培养/共培养代谢产物和pH的影响

添加硝呋烯腙改变了纯培养和共培养发酵液中代谢产物的浓度(图 3)。在纯培养中,添加硝呋烯腙显著降低了发酵液中各代谢产物的浓度(P < 0.05)。添加5、10和25 mg/L硝呋烯腙组甲酸浓度分别降低了8.4%、93.3%和99.0%,乙酸浓度分别降低了52.6%、79.4%和97.2%,乳酸浓度分别降低了34.1%、86.9%和97.8%。在共培养中,添加5 mg/L硝呋烯腙处理组乙酸浓度与对照组无显著差异(P > 0.05),添加10和25 mg/L硝呋烯腙处理组乙酸浓度降低了62.5%和92.4% (P < 0.05)。添加5和10 mg/L硝呋烯腙处理组乳酸浓度显著高于对照组(P < 0.05),添加25 mg/L硝呋烯腙处理组中未检测出乳酸。共培养中各组均未检测出甲酸。在添加相同浓度硝呋烯腙的情况下,共培养的乙酸浓度显著高于纯培养(P < 0.05)。当硝呋烯腙添加量为0和5 mg/L时,共培养的乳酸浓度显著低于纯培养(P < 0.05)。

图 3 不同浓度硝呋烯腙对纯培养和共培养代谢产物和pH的影响 Figure 3 Effect of nitrovin on end-products and pH value of the mono-culture and co-culture 注:*:相同硝呋烯腙添加浓度下纯培养和共培养差异显著(P < 0.05). Note: Asterisks indicated statistically significant difference between the mono-culture and co-culture under the same concentration of nitrovin (P < 0.05).

纯培养中,硝呋烯腙各处理组发酵液pH均显著高于对照组(P < 0.05)。共培养中,添加5 mg/L硝呋烯腙处理组pH与对照组没有显著差异(P > 0.05),硝呋烯腙添加量为10和25 mg/L时pH显著高于对照组(P < 0.05)。共培养对照组发酵液的pH显著高于纯培养对照组发酵液的pH (P < 0.05);然而,当硝呋烯腙添加量为5和10 mg/L时,共培养组发酵液的pH显著低于纯培养组发酵液的pH (P < 0.05)。

2.4 硝呋烯腙对厌氧真菌纯培养与共培养影响的比较研究

由前文可知,共培养对照组的发酵活性高于纯培养对照组;添加10和25 mg/L硝呋烯腙对共培养和纯培养发酵活性都有很大的抑制作用;添加5 mg/L硝呋烯腙对纯培养发酵活性存在显著影响,然而对共培养发酵活性却没有显著影响。因此,为了更好地揭示甲烷菌共存对厌氧真菌抵抗恶劣环境能力的影响,单独对添加5 mg/L硝呋烯腙的共培养组和纯培养组进行比较研究。

图 4-6可知,添加5 mg/L硝呋烯腙对纯培养和共培养的影响存在显著差异。共培养的发酵延滞期较纯培养短,共培养组的产气量在发酵至30 h时已显著高于纯培养(P < 0.05),至发酵终点时共培养产气量为纯培养的3.6倍(P < 0.05) (图 4)。共培养DMD、NDFD、ADSD和ADFD则分别为纯培养的4.1、4.4、3.2和10.1 (P < 0.05) (图 5)。添加5 mg/L硝呋烯腙时,共培养的乙酸浓度显著高于纯培养(P < 0.05),而甲酸和乳酸浓度以及pH显著低于纯培养(P < 0.05) (图 6)。

图 4 5 mg/L硝呋烯腙对纯培养和共培养产气量的影响 Figure 4 Effect of 5 mg/L nitrovin on the gas production of the mono-culture and co-culture 注:*:同一时间点下纯培养和共培养差异显著(P < 0.05). Note: Asterisks indicated statistically significant difference between the mono-culture and co-culture at the same time point (P < 0.05).

图 5 5 mg/L硝呋烯腙对纯培养和共培养底物消失率的影响 Figure 5 Effect of 5 mg/L nitrovin on in vitro digestibility of substrate by the mono-culture and co-culture 注:*:纯培养和共培养差异显著(P < 0.05). Note: Asterisks indicated statistically significant difference between the mono-culture and co-culture (P < 0.05).

图 6 5 mg/L硝呋烯腙对纯培养和共培养代谢产物和pH的影响 Figure 6 Effect of 5 mg/L nitrovin on end-products and pH value of the mono-culture and co-culture 注:*:纯培养和共培养差异显著(P < 0.05). Note: Asterisks indicated statistically significant difference between the mono-culture and co-culture (P < 0.05).
3 讨论与结论 3.1 硝呋烯腙对厌氧真菌的抑制作用

Marounek等[20]研究发现,在以葡萄糖为底物时,硝呋烯腙对所研究的3种厌氧真菌(Neocallimastix frontalisPiromyces communisCaecomyces communis)皆存在抑制作用。本研究结果表明,添加硝呋烯腙抑制了厌氧真菌Piromyces的生长并显著降低了厌氧真菌对稻秸的降解。在本研究中,硝呋烯腙对厌氧真菌Piromyces的半数致死剂量(以厌氧真菌分泌乙酸的量下降50%为标准)低于5 mg/L,低于Marounek等[20]报道的半数致死剂量(9 mg/L,厌氧真菌为Piromyces communis)。出现上述现象的可能原因为:(1)底物不同:Marounek等[20]用的底物为葡萄糖,而本研究所用底物为稻秸,相比于稻秸葡萄糖更容易被厌氧真菌所摄取及利用;(2)菌株耐受性不同:20世纪七八十年代,在西方国家硝呋烯腙作为饲料添加剂被广泛用于动物生产[21-23],但在国内硝呋烯腙曾主要用于鸡和猪饲料中[24-25],而且硝呋烯腙在2002年已被农业部禁用,因此本文所用菌株(2009年分离于山羊瘤胃)对硝呋烯腙的耐受性可能低于Marounek等[20]报道的菌株(1989年分离于绵羊瘤胃)。

厌氧真菌进行混合酸发酵,发酵终产物为甲酸、乙酸、乳酸、乙醇、H2和CO2[26]。与好氧真菌不同,厌氧真菌没有线粒体,但其胞内存在一种类似于线粒体的细胞器——氢化酶体(氢体)。厌氧真菌的氢化酶体是细胞内以膜隔离的大约1 μm左右的小隔室,它们在厌氧条件下通过底物水平磷酸化的作用产生ATP,为机体供能[27]。厌氧真菌分泌的乙酸由氢体代谢产生[26]。当添加硝呋烯腙时,纯培养中乙酸显著降低,这暗示硝呋烯腙可抑制氢体的代谢,因而抑制了氢体的产能。

3.2 甲烷菌共存提高厌氧真菌对硝呋烯腙的耐受性

甲烷菌和厌氧真菌有着紧密的关系,本研究结果表明,甲烷菌共存改变了厌氧真菌的代谢过程,也提高了厌氧真菌对硝呋烯腙的耐受性。与Bauchop等[3]和Jin等[4]的研究结果类似,甲烷菌存在时乙酸生成量增加,乳酸生成量减少,这暗示氢体代谢增强,产生了更多的H2,消耗了更多的NADH (NADPH),导致胞质中用来生成乳酸的NADH (NADPH)减少。添加5 mg/L硝呋烯腙对共培养的生长无显著影响,这可能是甲烷菌对厌氧真菌氢体的促进作用要强于硝呋烯腙对氢体的抑制作用。然而添加10 mg/L硝呋烯腙时,共培养的生长受到显著抑制,甲烷在发酵78 h后才出现少量的积累,但乳酸浓度则显著高于未添加硝呋烯腙组和添加5 mg/L硝呋烯腙组。这暗示甲烷菌受到了抑制,其对厌氧真菌氢体的促进作用减弱,因此乳酸的代谢有所增强。Stewart等[9]发现,甲烷菌的存在提高了厌氧真菌对离子载体的耐受性。尽管本研究和上述研究所用抑制剂不同,但最终却得到了相似的结果。其可能原因为甲烷菌对这些药物不敏感,甲烷菌通过对厌氧真菌代谢产物(氢气和甲酸)的利用,促进厌氧真菌氢体的能量代谢[6],因此部分抵消了这些药物对厌氧真菌的抑制;另外,这些药物可能都能抑制厌氧真菌氢体的代谢,当药物对厌氧真菌起到部分抑制作用时,甲烷菌的存在仍然能够增强厌氧真菌氢体的能量代谢。结合Stewart等[9]、Cann等[10]以及本研究结果发现,厌氧真菌和甲烷菌存在着互利互惠的关系:厌氧真菌为甲烷菌提供底物,维持甲烷菌的生长;甲烷菌则促进厌氧真菌氢体的代谢,从而增强厌氧真菌抵抗不利环境的能力。

综上所述,共存甲烷菌能提高厌氧真菌对硝呋烯腙的耐受性,其可能机制还有待进一步研究。

参考文献
[1]
Lee SS, Ha JK, Cheng KJ. Relative contributions of bacteria, protozoa, and fungi to in vitro degradation of orchard grass cell walls and their interactions[J]. Applied and Environmental Microbiology, 2000, 66(9): 3807-3813. DOI:10.1128/AEM.66.9.3807-3813.2000
[2]
Teunissen MJ, de Kort GVM, op den Camp HJM, et al. Production of cellulolytic and xylanolytic enzymes during growth of the anaerobic Piromyces sp. on different substrates[J]. Journal of General Microbiology, 1992, 138(8): 1657-1664. DOI:10.1099/00221287-138-8-1657
[3]
Bauchop T, Mountfort DO. Cellulose fermentation by a rumen anaerobic fungus in both the absence and the presence of rumen methanogens[J]. Applied and Environmental Microbiology, 1981, 42(6): 1103-1110.
[4]
Jin W, Cheng YF, Mao SY, et al. Isolation of natural cultures of anaerobic fungi and indigenously associated methanogens from herbivores and their bioconversion of lignocellulosic materials to methane[J]. Bioresource Technology, 2011, 102(17): 7925-7931. DOI:10.1016/j.biortech.2011.06.026
[5]
Sun MZ, Jin W, Li YF, et al. Isolation and identification of cellulolytic anaerobic fungi and their associated methanogens from Holstein Cow[J]. Acta Microbiologica Sinica, 2014, 54(5): 563-571.
孙美洲, 金巍, 李袁飞, 等. 瘤胃降解粗纤维产甲烷的厌氧真菌与甲烷菌共培养物的分离鉴定[J]. 微生物学报, 2014, 54(5): 563-571.
[6]
Li YF, Jin W, Cheng YF, et al. Effect of the associated methanogen Methanobrevibacter thaueri on the dynamic profile of end and intermediate metabolites of anaerobic fungus Piromyces sp. F1[J]. Current Microbiology, 2016, 73(3): 434-441. DOI:10.1007/s00284-016-1078-9
[7]
Mountfort DO, Asher RA. Production and regulation of cellulase by two strains of the rumen anaerobic fungus Neocallimastix frontalis[J]. Applied and Environmental Microbiology, 1985, 49(5): 1314-1322.
[8]
Joblin KN, Naylor GE, Williams AG. Effect of Methanobrevibacter smithii on xylanolytic activity of anaerobic ruminal fungi[J]. Applied and Environmental Microbiology, 1990, 56(8): 2287-2295.
[9]
Stewart CS, Richardson AJ. Enhanced resistance of anaerobic rumen fungi to the ionophores monensin and lasalocid in the presence of methanogenic bacteria[J]. Journal of Applied Bacteriology, 1989, 66(1): 85-93. DOI:10.1111/jam.1989.66.issue-1
[10]
Cann IKO, Kobayashi Y, Onoda A, et al. Effects of some ionophore antibiotics and polyoxins on the growth of anaerobic rumen fungi[J]. Journal of Applied Bacteriology, 1993, 74(2): 127-133. DOI:10.1111/jam.1993.74.issue-2
[11]
Cheng YF, Edwards JE, Allison GG, et al. Diversity and activity of enriched ruminal cultures of anaerobic fungi and methanogens grown together on lignocellulose in consecutive batch culture[J]. Bioresource Technology, 2009, 100(20): 4821-4828. DOI:10.1016/j.biortech.2009.04.031
[12]
Yu HM. Study on rapid testing strip for nitrofurans in feeds[D]. Beijing: Master's Thesis of Beijing University of Agriculture, 2015 (in Chinese)
余厚美. 饲料中硝基呋喃类药物检测的胶体金试纸条研制[D]. 北京: 北京农学院硕士学位论文, 2015 http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGXJ201510001198.htm
[13]
Liggenstoffer AS, Youssef NH, Couger MB, et al. Phylogenetic diversity and community structure of anaerobic gut fungi (phylum Neocallimastigomycota) in ruminant and non-ruminant herbivores[J]. The ISME Journal, 2010, 4(10): 1225-1235. DOI:10.1038/ismej.2010.49
[14]
Wright ADG, Williams AJ, Winder B, et al. Molecular diversity of rumen methanogens from sheep in Western Australia[J]. Applied and Environmental Microbiology, 2004, 70(3): 1263-1270. DOI:10.1128/AEM.70.3.1263-1270.2004
[15]
Davies DR, Theodorou MK, Lawrence MIG, et al. Distribution of anaerobic fungi in the digestive tract of cattle and their survival in faeces[J]. Journal of General Microbiology, 1993, 139(6): 1395-1400. DOI:10.1099/00221287-139-6-1395
[16]
Theodorou MK, Williams BA, Dhanoa MS, et al. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds[J]. Animal Feed Science and Technology, 1994, 48(3/4): 185-197.
[17]
Hu WL, Wang JK, Lü JM, et al. Rapid gas chromatogram determination of methane, organic acid in in vitro ruminal fermentation products[J]. Journal of Zhejiang University (Agriculture & Life Science), 2006, 32(2): 217-221.
胡伟莲, 王佳堃, 吕建敏, 等. 瘤胃体外发酵产物中的甲烷和有机酸含量的快速测定[J]. 浙江大学学报:农业与生命科学版, 2006, 32(2): 217-221.
[18]
van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition[J]. Journal of Dairy Science, 1991, 74(10): 3583-3597. DOI:10.3168/jds.S0022-0302(91)78551-2
[19]
Li YF, He XY, Cheng YF, et al. Effects of shading during grain filling on nutritive value and in vitro digestibility of "Yangmai 15" wheat straw[J]. Acta Prataculturae Sinica, 2016, 25(1): 187-198.
李袁飞, 何香玉, 成艳芬, 等. 灌浆期弱光胁迫对"扬麦15"小麦秸营养价值和体外降解率的影响[J]. 草业学报, 2016, 25(1): 187-198. DOI:10.11686/cyxb2015065
[20]
Marounek M, Hodrova B. Susceptibility and resistance of anaerobic rumen fungi to antimicrobial feed additives[J]. Letters in Applied Microbiology, 1989, 9(5): 173-175. DOI:10.1111/j.1472-765X.1989.tb00317.x
[21]
Batterham ES, Fagan VJ. Nitrovin supplementation of diets for growing pigs[J]. Australian Journal of Experimental Agriculture, 1970, 10(45): 391-392. DOI:10.1071/EA9700391
[22]
Pokorny M, Bauer B, Polasek L, et al. Effectiveness of nitrovin in the feeding of growing lambs[J]. Acta Crystallographica, 1980, 70(2): 166-172.
[23]
Tokosova M, Tokos M. Use of nitrovin in feed and its effect on the development of Marek's disease in chickens[J]. Veterinarni Medicina, 1989, 34(12): 735-742.
[24]
Liu JS, Yang CM, Chen AG. Application effectiveness and characteristics of nitrovin in animal feed[J]. Feed Research, 1999(11): 32-33.
刘金松, 杨彩梅, 陈安国. 硝呋烯腙在畜禽饲料中的应用效果及特点[J]. 饲料研究, 1999(11): 32-33. DOI:10.3969/j.issn.1002-2813.1999.11.012
[25]
Chen YF, Yin YL, Tan ZL, et al. Effect of the nitrovin on the growth performance of weanling pig[J]. Chinese Journal of Animal Science, 2003, 39(3): 29-30.
陈永丰, 印遇龙, 谭支良, 等. 硝呋烯腙对断奶仔猪生产性能的影响[J]. 中国畜牧杂志, 2003, 39(3): 29-30.
[26]
Boxma B, Voncken F, Jannink S, et al. The anaerobic chytridiomycete fungus Piromyces sp. E2 produces ethanol via pyruvate: formate lyase and an alcohol dehydrogenase E[J]. Molecular Microbiology, 2004, 51(5): 1389-1399. DOI:10.1046/j.1365-2958.2003.03912.x
[27]
Marvin-Sikkema FD, Gomes TMP, Grivet JP, et al. Characterization of hydrogenosomes and their role in glucose metabolism of Neocallimastix sp. L2[J]. Archives of Microbiology, 1993, 160(5): 388-396.