微生物学通报  2017, Vol. 44 Issue (8): 1761−1766

扩展功能

文章信息

刘开力, 赫英舸, 于乐祥, 陈瑶, 赫荣乔
Liu Kai-li, He Ying-ge, Yu Le-xiang, CHEN Yao, He Rong-qiao
APP/PS1转基因老年性痴呆模型小鼠肠道甲醛浓度异常升高
Markedly elevated formaldehyde in the cecum of APP/PS1 transgenic mouse model of Alzheimer's disease
微生物学通报, 2017, 44(8): 1761-1766
Microbiology China, 2017, 44(8): 1761-1766
DOI: 10.13344/j.microbiol.china.176008

文章历史

收稿日期: 2017-05-01
接受日期: 2017-06-08
优先数字出版日期(www.cnki.net): 2017-06-12
APP/PS1转基因老年性痴呆模型小鼠肠道甲醛浓度异常升高
刘开力1, 赫英舸1, 于乐祥1, 陈瑶1,2, 赫荣乔1     
1. 中国科学院生物物理研究所 脑与认知科学国家重点实验室    北京    100101;
2. 西南医科大学    四川 泸州    646000
摘要【目的】 肠道菌群通过“微生物-肠道-脑轴”影响中枢神经系统的功能,同时也与老年性痴呆的发生发展相关,特别是盲肠内微生物菌群的变化更为显著。肠道菌群可以产生和代谢甲醛,而肠道能够迅速吸收甲醛;体内甲醛含量与老年性痴呆病人的认知损害程度呈正相关。因此,本文比较了7月龄APP/PS1转基因老年性痴呆模型小鼠(简称APP/PS1转基因小鼠)与同月龄C57BL/6J野生型小鼠(简称C57BL/6J小鼠)肠道菌群产生甲醛的情况。【方法】 取APP/PS1转基因小鼠(n=8) 与C57BL/6J小鼠(n=9) 的不同肠段(十二指肠、小肠、盲肠、结肠),采用2, 4-dinitrophenylhydrazi zne (DNPH)显色偶联高效液相色谱(HPLC coupled with DNPH)测定肠道消化物和肠壁组织的甲醛。【结果】 APP/PS1转基因小鼠盲肠消化物内的甲醛含量,较C57BL/6J小鼠存在显著升高(P=0.036);而两者小肠和结肠消化物甲醛含量无显著差别。在两种小鼠之间,小肠壁内甲醛存在差异(P=0.052),而盲肠和结肠壁甲醛含量无显著差异(P > 0.05)。【结论】 肠道菌群是小鼠体内甲醛的主要来源之一,无论肠道消化物,还是肠道壁组织均为盲肠的甲醛含量最高。这些结果表明,APP/PS1转基因小鼠肠道菌群存在甲醛代谢失调,从而导致其肠道消化物的甲醛含量升高。
关键词肠道菌群     年龄相关的认知损害     老年性痴呆     甲醛     APP/PS1转基因小鼠     C57BL/6J野生型小鼠    
Markedly elevated formaldehyde in the cecum of APP/PS1 transgenic mouse model of Alzheimer's disease
Liu Kai-li1, He Ying-ge1, Yu Le-xiang1, CHEN Yao1,2, He Rong-qiao1     
1. State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
2. Southwest Medical University, Luzhou, Sichuan 646000, China
Received: May 01, 2017; Accepted: June 08, 2017; Published onlineJune 12, 2017
Foundation item: Project for Brain Research Supported by Beijing Science and Technology Committee (No. Z161100000216137); National Key Research and Development Plan of China (No. 2016YFC1306300)
*Corresponding author: HE Rong-Qiao, Tel: 86-10-64889876; E-mail: rongqiaohe@163.com.
Abstract: [Objective] Intestinal microbiota affects the function of central nervous system through the "microbiota-gut-brain axis". Alzheimer's disease (AD) is considered being related with the microbiota in the intestines. Concentrations of endogenous formaldehyde are positively correlated to the cognitive impairment of AD inpatients. Therefore, we compared the concentration of intestinal formaldehyde between APP/PS1 transgenic mouse model of Alzheimer's disease and C57BL/6J wildtype mice. [Methods] Take different sections of duodenum, small intestine, cecum, and colon of APP/PS1 transgenic mice (n=8) and those of C57BL/6J wildtype mice (n=9), respectively. Measure the concentrations of formaldehyde in the digestion contents and intestinal walls with HPLC coupled with 2, 4-dinitrophenylhydrazine (DNPH) absorptions. [Results] The levels of the cecum formaldehyde in the digestion contents from APP/PS1 transgenic mice were significantly (P=0.036) higher than those from C57BL/6J wildtype mice, but no significant (P > 0.05) difference could be observed in the small intestine and colon. Formaldehyde in walls of duodenum, cecum and colon were not significantly different except for the small intestine. That is, the concentration of formaldehyde was observably elevated in small intestinal wall though the change approached to the significant (P=0.052) different. For APP/PS1 mice, the concentration of formaldehyde in cecum either digestion content or wall exhibited the highest, compared with the other intestinal sections. [Conclusion] Intestinal microbiota is one of the important sources producing formaldehyde. The elevated concentrations of formaldehyde in the cecum digestion contents and small intestinal wall of APP/PS1 transgenic AD mice suggested that dysmetabolism of formaldehyde in the intestinal microbiota may be related to age-related cognitive impairment.
Key words: intestinal microbiota     age-related cognitive impairment     Alzheimer's disease     formaldehyde     APP/PS1 transgenic mouse     C57BL/6J wildtype mouse    

肠道菌群约占人类共生微生物的95%,构成了影响人类健康的重要内在环境因素[1]。在消化、营养及免疫等方面,其发挥对机体健康的保护作用[2]。越来越多的证据表明,肠道微生物与中枢神经系统的功能之间具有密切的联系,并影响脑的功能和行为。肠道微生物被认为是通过“微生物-肠道-脑轴(microbiota-Gut-Brain axis)”对中枢神经系统产生影响[3]。随着对肠道共生微生物的深入研究,一些中枢神经系统的疾病被证实与肠道共生菌群的失调相关,如自闭症[4]、抑郁症[5]、帕金森病[6]等。最近,阿尔茨海默病(Alzheimer’s disease,AD,俗称“老年性痴呆”)的发生发展也被证明与肠道菌群相关,并认为AD的发病可能始于肠道[7]

我国人口老龄化日趋严重,老年人口约占我国总人口的10%以上。到2050年,我国将有800-1200万AD患者,严重危害老年人的身心健康和生活质量,给患者造成痛苦,给家庭和社会带来沉重的经济和精神负担。AD是一种常见的中枢神经系统退行性疾病,约占所有老年痴呆的60%-80%[8],主要表现为渐进性记忆和认知损害,包括人格改变及语言障碍等[9]。因此,研究老年性痴呆的发生发展机制,不但具有理论意义,同时具有潜在的重要应用价值。

甲醛具有强烈的毒性,小鼠处于气态甲醛环境中,可出现明显认知能力下降,产生抑郁、焦虑等行为[10]。Kilburn等发现,在解剖或病理实验室工作的技术人员,由于长期接触福尔马林(37%甲醛),在退休后发生痴呆的概率显著高于同龄对照[11]。王佳琬等观察到,老年人( > 65岁)经历大型或长时间手术,发生手术后认知损害(post operative cognitive dysfunction,POCD)的概率会显著增加,而发生POCD患者尿甲醛浓度,显著高于未发生POCD的患者[12]。杨美凤等采用低浓度甲醇喂食年轻猕猴(3-5岁),检测到猴脑脊液甲醛浓度显著升高,学习记忆能力下降,脑内出现老年斑(Aβ淀粉样沉积),神经Tau蛋白异常磷酸化等老年性痴呆的典型病理征兆[13-14]。临床实验表明,阿尔兹海默病病人内源甲醛的浓度与其认知损害程度呈正相关[15]

APP/PS1转基因老年性痴呆小鼠是目前国内外最常用于AD研究的动物模型鼠[16],被广泛用于AD的发病因素、病理机制、药效学等研究。本文选用APP/PS1转基因小鼠作为对象,以野生型C57BL/6J小鼠为对照,分析和比较肠道内甲醛的含量,以探索AD模型鼠肠道菌群甲醛代谢的状况。

1 材料与方法 1.1 材料

7月龄APP/PS1转基因小鼠(n=8) 和相同月龄C57BL/6J野生型小鼠(n=9) 来自北京华阜康生物科技股份有限公司。APP/PS1实验小鼠和C57BL/6J对照小鼠均在相同条件下饲养。

1.2 主要试剂和仪器

2, 4-二硝基苯肼(2, 4-dinitrophenylhydrazine,DNPH)、三氯乙酸、乙腈及甲醛,德国Sigma公司。LC-20A高效液相色谱仪UV-HPLC、SPD-M20A二极管阵列检测器,日本岛津公司;色谱柱:LiChrospher 100 RP-18 (250 mmx4.6 mmx5 mm),德国Merck公司。

1.3 肠道消化物的收集

实验开始前,称小鼠体重和血糖。处死后,立刻取肠段。从胃到肛门的方向,依次分取小鼠肠段,即十二指肠、小肠、盲肠、结肠;肠道截取后,在冰浴中迅速将小肠、盲肠和结肠内的消化物分别取出,称量湿重,迅速进行甲醛测定。由于十二指肠内消化物非常少,无法测定其消化物内的甲醛浓度。

1.4 肠段的截取与收集

消化物收集后,立刻采用10倍于肠道组织体积的预冷(4℃)生理盐水灌洗肠道3次,包括十二指肠、小肠、盲肠、结肠肠段,洗净后,迅速进行甲醛的测定。

1.5 肠道消化物甲醛的测定

样品制备:取不同肠段内的消化物各1.0 g,加入10%三氯乙酸溶液(10 ml),混匀后4 ℃、13 000 r/min离心30 min。

取0.4 ml上清、0.1 ml 2, 4-二硝基苯肼(1.0 g/L)和0.5 ml乙腈混匀后,60 ℃保温30 min,4 ℃、13 000 r/min离心10 min,取上清用于HPLC分析甲醛。甲醛测定的具体方法参考本实验室的2, 4-二硝基苯肼HPLC方法[17]

1.6 肠壁组织甲醛的测定

样品制备:取不同肠段各1.0 g,加入10%三氯乙酸溶液(10 ml),加入0.5 mL repa组织裂解液匀浆1 min,4 ℃、13 000 r/min离心30 min,取0.4 ml上清测定甲醛的含量。

1.7 数据统计

采用Graphpad软件对获得的数据进行one-Way ANOVA统计分析并作图,数值使用平均值±标准误差(S.E.M)表示,P < 0.05时被认为有显著性差异。

2 结果与讨论 2.1 小鼠体重和血糖的比较

对实验小鼠和对照小鼠的基本生理状况进行了比较,分别称量APP/PS1转基因小鼠和C57BL/6J小鼠的体重,如图 1a所示,两组小鼠的体重无显著差异(P > 0.05)。同时对两组小鼠的血糖进行了分析,APP/PS1转基因小鼠的血糖有轻微升高(图 1b),但尚未达到显著差异(P=0.09)。

图 1 APP/PS1转基因小鼠与C57BL/6J野生型小鼠的体重和血糖的比较 Figure 1 Comparison of body weight and blood sugar between APP/PS1 transgenic mice (n=8) and C57BL/6J mice (n=9) before they participated the experiments
2.2 APP/PS1转基因小鼠肠道消化物的甲醛含量

为了比较APP/PS1转基因小鼠与C57BL/6J野生型小鼠肠道内甲醛含量,采用HPLC偶联DNPH显色法[17],对不同肠段的消化物进行甲醛含量分析。结果显示(表 1),APP/PS1老年性痴呆转基因小鼠盲肠内消化物的甲醛含量最高,并且显著(P=0.036) 高于C57BL/6J小鼠(图 2)。两组鼠的小肠和结肠消化物中的甲醛含量无显著差异(P > 0.05)。

表 1 APP/PS1转基因小鼠与C57BL/6J小鼠肠道消化物的甲醛含量 Table 1 Concentrations of endogenous formaldehyde in the intestines of APP/PS1 transgenic mice and C57BL/6J mice
SamplesFormaldehyde concentrations in digestion
contents (μmol/g)
Formaldehyde concentrations in
intestinal walls (μmol/g)
APP/PS1C57BL/6JAPP/PS1C57BL/6J
Duodenum--57.75±5.9555.94±4.53
Small intestine81.57±11.9892.51±10.8384.34±8.3060.35±7.78
Cecum141.87±20.2292.84±8.96114.95±10.06126.44±12.02
Colon100.27±11.74100.85±11.94100.23±14.8380.90±10.15
Note: -: No data were shown because the amount of digestion contents were too few to perform the analysis.

图 2 APP/PS1转基因小鼠与C57BL/6J野生型小鼠肠道消化物的甲醛含量 Figure 2 Comparison of concentrations of formaldehyde in the intestinal digestion contents between APP/PS1 transgenic mice and C57BL/6J wildtype mice Note: Concentrations of formaldehyde in small intestine, cecum and colon of APP/PS1 and C57BL/6J mice were determined with HPLC-coupled with DNPH absorption measurements. The levels of the cecum formaldehyde of APP/PS1 mice (n=8) were significantly (P < 0.05) higher than C57BL/6J wildtype mice (n=9) used as control. However, levels of formaldehyde in small intestine and colon between both APP/PS1 and C57BL/6J mice were not markedly different (P > 0.05).

APP/PS1转基因小鼠盲肠消化物甲醛浓度显著高于其自身的小肠(P=0.022) 和略高于大肠消化物(P=0.097)。这些结果提示,老年性痴呆模型小鼠盲肠内甲醛蓄积,而且浓度高于其他肠道的消化物。

2.3 APP/PS1转基因小鼠肠壁组织的甲醛含量

甲醛能够进入细胞[18],从而被肠道吸收。为了进一步了解甲醛在肠道内的分布,测定了十二指肠、小肠、盲肠以及结肠壁内甲醛的含量(表 1)。虽然APP/PS1转基因小鼠盲肠壁内的甲醛浓度与对照鼠的浓度相比无显著差异。但可以观察到,盲肠壁的甲醛含量最高,其次是结肠和小肠壁组织(图 3)。APP/PS1转基因小鼠小肠壁内的甲醛含量较对照组有升高,但无统计学上的显著差异(P < 0.052)。然而,比较各肠段壁内的甲醛含量显示,无论实验组还是对照组,其盲肠壁的甲醛含量为最高。

图 3 APP/PS1转基因小鼠肠壁组织中的甲醛含量 Figure 3 Concentrations of formaldehyde in the intestinal wall of APP/PS1 transgenic mice 注:与C57BL/6J小鼠比较,APP/PS1转基因小鼠小肠壁的甲醛含量升高,接近显著差异(P < 0.052);但其他肠壁中甲醛的含量,两组相比,未见显著升高(P > 0.05). Note: Conditions were as for Materials and Methods, except that concentrations of formaldehyde in the intestinal wall were determined. Levels of formaldehyde in small intestinal walls of APP/PS1 and C57BL/6J mice were observably different (P < 0.052). However, levels of formaldehyde in the duodenum, cecum, and colon walls were not significantly different (P > 0.05).
2.4 肠道菌群是体内甲醛的主要来源之一

APP/PS1模型组盲肠消化物的甲醛浓度平均值为141.87 μmol/kg,而对照组为92.84 μmol/kg,AD鼠增加了52.8%。从肠道壁来看,尽管AD模型鼠和野生型鼠的盲肠壁不存在显著差异(P > 0.05),但盲肠壁内的甲醛含量均高于十二指肠、小肠、结肠壁组织。说明甲醛的蓄积主要发生在盲肠。

通过比较APP/PS1与C57BL/6J小鼠肠道内甲醛含量,作者认为,肠道菌群是人体内产生甲醛的主要来源之一,其理由是:(1) 在哺乳动物细胞培育过程中,细胞自身可以产生少量甲醛,如小鼠神经母细胞瘤N2a细胞中约为5 μmol/L[19],血管上皮bEnd.3细胞中约为4 μmol/L,远低于肠道内甲醛的水平,提示肠道壁细胞对肠道甲醛的贡献很小[20];(2) C57BL/6J野生型小鼠脑内甲醛含量仅为14.2±2.1 μmol/L[21],远低于其盲肠消化物的浓度92.84±8.96 μmol/L;(3) C57BL/6J野生型小鼠盲肠壁内甲醛浓度为126.44±12.02 μmol/L,说明甲醛能够进入肠壁组织;(4) APP/PS1转基因小鼠盲肠消化物甲醛浓度高达141.87±20.22 μmol/L,肠壁为114.95±10.06 μmol/L,接近野生型小鼠脑甲醛浓度的10倍;(5) 已有研究报道,甲醛可以迅速通过细胞,从而被肠道吸收[18, 22]。以上结果显示,甲醛可以由肠道菌群产生,从而被肠道吸收。

2.5 老年性痴呆病人肠道内微生物菌群的变化

在肠道菌群中,有益生菌和致病菌,它们均能够产生和代谢甲醛。肠道内的益生菌,如Lactobacillus fermentum strain NS9、Lactobacillus helveticusBifidobacteria longum三种益生菌对人类的认知甚至学习记忆有益(表 2)。它们分别含有ADH、ALDH及ADH甲醛代谢酶,具有降解甲醛的作用。Lactobacillus fermentum strain NS9[24, 34]Lactobacillus helveticus[25]具有改善大鼠心理认知状态、增强小鼠学习记忆能力的作用[26]

表 2 一些与老年性痴呆症相关的产生和降解甲醛的肠道益生菌和致病菌 Table 2 Some candidates for AD-related formaldehyde-generating and degrading gut microbiota
Gut microbiotaClassificationRelation with ADReferences
Lactobacillus fermentum strain NS9probioticAmeliorate cognitive impairmentPark, et al., 2012[23]; Wang, et al., 2015[24]
Lactobacillus helveticusprobioticAmeliorate cognitive impairmentLuo, et al., 2014[25]; Ohsawa, et al., 2015[26]
Bifidobacteria longumprobioticAmeliorate cognitive impairmentDel Re, et al., 2000[27]; Savignac, et al., 2015[28]
Chlamydia pneumoniaepathogenAssociated with ADLittle, et al., 2004[29]; Gérard, et al., 2006[30]
Helicobacter pyloripathogenAssociated with ADRoubaud-Baudron, et al., 2012[31]; Kountouras, et al., 2012[32]
Toxoplasma gondiipathogenAssociated with ADPrandota, 2014[33]

另一方面,在老年性痴呆发生发展过程中,肠道内也寄生有一些致病菌,如Chlamydia pneumoniae[29-30]Helicobacter pylori[31-32]Toxoplasma gondii[33],它们分别与老年性痴呆相关,在AD发生发展的过程中发挥不良作用。这些研究工作证实,在老年性痴呆的进程中,患者体内的肠道菌群发生改变,导致肠道菌群的代谢失调,从而影响脑的认知功能。

3 结论

肠道微生物菌群是体内甲醛的主要来源,对于盲肠来说,无论是消化物还是肠壁组织,其甲醛含量均比其他肠段要明显高得多。相比之下,老年性痴呆模型小鼠的小肠壁甲醛也有较高的含量。这些结果提示,必须重视肠道菌群的甲醛产生与代谢问题,特别是老年性痴呆病人肠道菌群的甲醛代谢失调。

老年性痴呆住院患者和正常人的内源甲醛分别为13.70±5.17 mmol/L及9.61±2.90 mmol/L[21]。内源甲醛作为临床检验的生物标志物,可以用于老年认知损害的指标,但该临床指标不能用来区分阿尔茨海默病与血管性痴呆(VD)。然而,AD和VD可以通过病史进行鉴别诊断。“微生物-肠道-脑轴”不但与衰老相关,也与认知损害相关[35]。对于65岁以上的老人,进行尿和粪便甲醛的测定,对出现内源甲醛升高的老人,可以作为生物学标志物在流行病学和临床上药物干预方面加以应用,以利于早期发现、早期诊断,以肠道甲醛代谢为药物作用靶点进行早期预防,从而减少甲醛对中枢神经系统和认识的损害。

参考文献
[1]
Xu YH, Zhou H, Zhu Q. The impact of microbiota-gut-brain axis on diabetic cognition impairment[J]. Frontiers in Aging Neuroscience, 2017, 9: 106. DOI:10.3389/fnagi.2017.00106
[2]
Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut[J]. Science, 2001, 292(5519): 1115-1118. DOI:10.1126/science.1058709
[3]
Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour[J]. Nature Reviews Neuroscience, 2012, 13(10): 701-712. DOI:10.1038/nrn3346
[4]
Finegold SM, Dowd SE, Gontcharova V, et al. Pyrosequencing study of fecal microflora of autistic and control children[J]. Anaerobe, 2010, 16(4): 444-453. DOI:10.1016/j.anaerobe.2010.06.008
[5]
Naseribafrouei A, Hestad K, Avershina E, et al. Correlation between the human fecal microbiota and depression[J]. Neurogastroenterology and Motility, 2014, 26(8): 1155-1162. DOI:10.1111/nmo.2014.26.issue-8
[6]
Scheperjans F, Aho V, Pereira PAB, et al. Gut microbiota are related to Parkinson's disease and clinical phenotype[J]. Movement Disorders, 2015, 30(3): 350-358. DOI:10.1002/mds.26069
[7]
Hu X, Wang T, Jin F. Alzheimer's disease and gut microbiota[J]. Science China-Life Sciences, 2016, 59(10): 1006-1023. DOI:10.1007/s11427-016-5083-9
[8]
Alzheimer's Association. 2015 Alzheimer's disease facts and figures[J]. Alzheimers & Dementia, 2015, 11(3): 332-384.
[9]
Reitz C, Brayne C, Mayeux R. Epidemiology of Alzheimer disease[J]. Nature Reviews Neurology, 2011, 7(3): 137-152. DOI:10.1038/nrneurol.2011.2
[10]
Li T, Su T, He YG, et al. Brain formaldehyde is related to water intake behavior[J]. Aging and Disease, 2016, 7(5): 561-584. DOI:10.14336/AD.2016.0323
[11]
Kilburn KH, Warshaw R, Thornton JC. Formaldehyde impairs memory, equilibrium, and dexterity in histology technicians: effects which persist for days after exposure[J]. Archives of Environmental Health, 1987, 42(2): 117-120. DOI:10.1080/00039896.1987.9935806
[12]
Wang JW, Su T, Liu Y, et al. Postoperative cognitive dysfunction is correlated with urine formaldehyde in elderly noncardiac surgical patients[J]. Neurochemical Research, 2012, 37(10): 2125-2134. DOI:10.1007/s11064-012-0834-x
[13]
Yang MF, Lu J, Miao JY, et al. Alzheimer's disease and Methanol Toxicity (Part 1): chronic methanol feeding led to memory impairments and tau hyperphosphorylation in mice[J]. Journal of Alzheimer's Disease, 2014, 41(4): 1117-1129.
[14]
Yang MF, Miao J, Rizak J, et al. Alzheimer's disease and Methanol Toxicity (Part 2): lessons from four rhesus macaques (Macaca mulatta) chronically fed methanol[J]. Journal of Alzheimer's Disease, 2014, 41(4): 1131-1147.
[15]
Tong ZQ, Zhang JL, Luo WH, et al. Urine formaldehyde level is inversely correlated to mini mental state examination scores in senile dementia[J]. Neurobiology of Aging, 2011, 32(1): 31-41. DOI:10.1016/j.neurobiolaging.2009.07.013
[16]
Webster SJ, Bachstetter AD, Nelson PT, et al. Using mice to model Alzheimer's dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models[J]. Frontiers in Genetics, 2014, 5: 88.
[17]
Su T, Wei Y, He RQ. Assay of brain endogenous formaldehyde with 2, 4-dinitrophenylhydrazine through UV-HPLC[J]. Progress in Biochemistry and Biophysics, 2011, 38(12): 1171-1177. (in Chinese) 苏涛, 魏艳, 赫荣乔. 改良2, 4-二硝基苯肼法测定脑内源甲醛[J]. 生物化学与生物物理进展, 2011, 38(12): 1171-1177.
[18]
Shcherbakova LN, Tel'pukhov VI, Trenin SO, et al. Permeability of the blood-brain barrier to intra-arterial formaldehyde[J]. Bulletin of Experimental Biology and Medicine, 1986, 102(11): 573-575.
[19]
Wang J, Zhou J, Mo WC, et al. Accumulation of simulated pathological level of formaldehyde decreases cell viability and adhesive morphology in neuronal cells[J]. Progress in Biochemistry and Biophysics, 2017. (in Chinese) 王腈, 周均, 莫炜川, 等. 病理浓度甲醛的累积导致小鼠神经母瘤细胞活力及粘附能力下降[J]. 生物化学与生物物理进展, 2017. DOI:10.16476/j.pibb.2017.0062
[20]
Chen XX, Su T, He YG, et al. Spatial cognition decline caused by excess formaldehyde in the lysosome[J]. Progress in Biochemistry and Biophysics, 2017, 44(6): 486-494. (in Chinese) 陈茜茜, 苏涛, 赫英舸, 等. 氧化应激对溶酶体储存与转运甲醛的影响[J]. 生物化学与生物物理进展, 2017, 44(6): 486-494.
[21]
Li Y, Song ZY, Ding YJ, et al. Effects of formaldehyde exposure on anxiety-like and depression-like behavior, cognition, central levels of glucocorticoid receptor and tyrosine hydroxylase in mice[J]. Chemosphere, 2016, 144: 2004-2012. DOI:10.1016/j.chemosphere.2015.10.102
[22]
Lu J, Miao JY, Su T, et al. Formaldehyde induces hyperphosphorylation and polymerization of Tau protein both in vitro and in vivo[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2013, 1830(8): 4102-4116. DOI:10.1016/j.bbagen.2013.04.028
[23]
Park JH, Kim Y, Kim SH. Green tea extract (Camellia sinensis) fermented by Lactobacillus fermentum attenuates alcohol-induced liver damage[J]. Bioscience, Biotechnology, and Biochemistry, 2012, 76(12): 2294-2300. DOI:10.1271/bbb.120598
[24]
Wang T, Hu X, Liang S, et al. Lactobacillus fermentum NS9 restores the antibiotic induced physiological and psychological abnormalities in rats[J]. Beneficial Microbes, 2015, 6(5): 707-717. DOI:10.3920/BM2014.0177
[25]
Luo J, Wang T, Liang S, et al. Ingestion of Lactobacillus strain reduces anxiety and improves cognitive function in the hyperammonemia rat[J]. Science China-life Sciences, 2014, 57(3): 327-335. DOI:10.1007/s11427-014-4615-4
[26]
Ohsawa K, Uchida N, Ohki K, et al. Lactobacillus helveticus-fermented milk improves learning and memory in mice[J]. Nutritional Neuroscience, 2015, 18(5): 232-240. DOI:10.1179/1476830514Y.0000000122
[27]
Del Re B, Sgorbati B, Miglioli M, et al. Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum[J]. Letters in Applied Microbiology, 2000, 31(6): 438-442. DOI:10.1046/j.1365-2672.2000.00845.x
[28]
Savignac HM, Tramullas M, Kiely B, et al. Bifidobacteria modulate cognitive processes in an anxious mouse strain[J]. Behavioural Brain Research, 2015, 287: 59-72. DOI:10.1016/j.bbr.2015.02.044
[29]
Little CS, Hammond CJ, MacIntyre A, et al. Chlamydia pneumoniae induces Alzheimer-like amyloid plaques in brains of BALB/c mice[J]. Neurobiology of Aging, 2004, 25(4): 419-429. DOI:10.1016/S0197-4580(03)00127-1
[30]
Gérard HC, Dreses-Werringloer U, Wildt KS, et al. Chlamydophila(Chlamydia) pneumoniae in the Alzheimer's brain[J]. Fems Immunology and Medical Microbiology, 2006, 48(3): 355-366. DOI:10.1111/fim.2006.48.issue-3
[31]
Roubaud-Baudron C, Krolak-Salmon P, Quadrio I, et al. Impact of chronic Helicobacter pylori infection on Alzheimer's disease: preliminary results[J]. Neurobiology of Aging, 2012, 33(5): 1009.e11-1009.e19. DOI:10.1016/j.neurobiolaging.2011.10.021
[32]
Kountouras J, Boziki M, Zavos C, et al. A potential impact of chronic Helicobacter pylori infection on Alzheimer's disease pathobiology and course[J]. Neurobiology of Aging, 2012, 33(7): e3-e4. DOI:10.1016/j.neurobiolaging.2012.01.003
[33]
Prandota J. Possible link between Toxoplasma gondii and the anosmia associated with neurodegenerative diseases[J]. American Journal of Alzheimers Disease and Other Dementias, 2014, 29(3): 205-214. DOI:10.1177/1533317513517049
[34]
Yüksekdağ ZN, Beyath Y, Aslim B. Metabolic activities of Lactobacillus spp. strains isolated from kefir[J]. Nahrung-Food, 2004, 48(3): 218-220. DOI:10.1002/(ISSN)1521-3803
[35]
Scott KA, Ida M, Peterson VL, et al. Revisiting Metchnikoff: Age-related alterations in microbiota-gut-brain axis in the mouse[J]. Brain, Behavior, and Immunity, 2017. DOI:10.1016/j.bbi.2017.02.004