微生物学通报  2017, Vol. 44 Issue (6): 1458−1463

扩展功能

文章信息

赵凡, 李春保
Zhao Fan, Li Chun-bao
肠道菌Akkermansia muciniphila的特性及其与机体健康的关系
Characteristics of intestinal bacterium Akkermansia muciniphila and the association with host health
微生物学通报, 2017, 44(6): 1458-1463
Microbiology China, 2017, 44(6): 1458-1463
DOI: 10.13344/j.microbiol.china.160740

文章历史

收稿日期: 2016-10-16
接受日期: 2017-01-25
优先数字出版日期(www.cnki.net): 2017-02-27
肠道菌Akkermansia muciniphila的特性及其与机体健康的关系
赵凡, 李春保    
南京农业大学 国家肉品质量安全控制工程技术研究中心    江苏    南京    210095
摘要Akkermansia muciniphila是一种从粪便中分离到的严格厌氧肠道菌,在肠道中的丰度通常占1%−3%,可以利用肠道黏蛋白作为唯一碳源和氮源进行生长,主要代谢产物为丙酸。Akkermansia muciniphila在肠道中的定殖与宿主的健康息息相关,它可以改善肥胖、糖尿病患者的炎症反应以及胰岛素抵抗和葡萄糖耐受等不良症状,还可以调节机体的免疫应答,维持体内代谢平衡。虽然多数情况下该菌表现出有益作用,也有个别研究发现高血红素铁膳食诱导的肠道上皮细胞增生与Akkermansia muciniphila丰度的增加有关,可破坏肠道黏液层。然而,关于该菌利用黏蛋白的代谢机制及其影响宿主健康的机制尚不清楚,有待进一步探索。
关键词Akkermansia muciniphila     黏蛋白     健康    
Characteristics of intestinal bacterium Akkermansia muciniphila and the association with host health
Zhao Fan, Li Chun-bao    
National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
Received: October 16, 2016; Accepted: January 25, 2017; Published online(www.cnki.net): February 27, 2017
Foundation item: National Natural Science Foundation of China (No. 31530054)
*Corresponding author: LI Chun-Bao, Tel:86-25-84395679;E-mail:chunbao.li@njau.edu.cn.
Abstract: Akkermansia muciniphila was isolated from human faeces in anaerobic medium containing gastric mucin as the sole carbon and nitrogen source. It represents approximately 1% to 3% of the total microbiota in the intestine of healthy adult, and it produces propionic acid as main metabolite. This mucin-degrading bacterium has been closely correlated with host health. A. muciniphila administration could enhance glucose tolerance, reduce insulin resistance, modulate pathways involved in establishing homeostasis for basal metabolism and immune tolerance toward commensal microbiota. But on the contrary, the abundance of the mucin-degrading A. muciniphila was significantly increased by heme diet, which is associated with epithelial hyperproliferation, and destroyed mucus layer. The mechanisms of mucin utilization by this bacterium in the gut and the interactive mechanisms between A. muciniphila and host is still unknown and need further explorations.
Key words: Akkermansia muciniphila     mucin     health    

哺乳动物的消化道中寄居着复杂多样的微生物群落,研究发现,这些肠道微生物的区系组成受膳食、宿主基因组以及生态环境等因素的影响[1-3]。健康的肠道菌群可以调节机体代谢、能量平衡以及免疫系统的发育,而不健康的菌群则与某些疾病的出现有一定的关系[4-7]。可见,肠道微生物对宿主健康有着深远的影响。Akkermansia muciniphila是近年来从人粪便中分离培养的一株严格厌氧的肠道菌,属疣微菌门,与机体能量代谢、免疫应答以及肠道黏蛋白的分泌有着紧密的联系,其代谢特性以及影响宿主健康的调控机制是近年来一大研究热点,值得深入探究。

1 Akkermansia muciniphila的发现及其特性

A. muciniphila是由荷兰瓦赫宁根大学微生物实验室的科研工作者首次通过厌氧培养从人粪便中分离鉴定并命名的一种肠道细菌,属疣微菌门,这是一门被划出不久的细菌,包括少数几个被识别的种类,已鉴定出的几种细菌主要来自水体、土壤以及粪便当中。A. muciniphila可以利用胃肠道黏蛋白作为唯一的碳源和氮源而良好生长。该菌为革兰氏阴性菌,严格厌氧、非运动的、不产芽孢的椭圆形菌,可以单个生长,也可以成对生长,在含有黏蛋白的培养基中还可抱团生长[8]

该团队利用荧光原位杂交以及实时荧光定量PCR等方法研究发现,这株菌在人类肠道中是普遍存在的;对不同年龄段人群进行分析证实,该菌在婴儿出生1年内可以稳定定殖,最终达到与健康成年人相同的水平,占肠道中所有微生物的1%-3%[9-10],这与Yatsunenko等[11]随后研究发现的人类肠道微生物多样性以及区系组成随年龄变化的趋势一致。

2011年,通过基因组序列测定,A. muciniphila的基因组序列和功能基因信息的神秘面纱被揭开。在其基因组序列中存在许多编码黏蛋白降解酶的基因(超过61个,占总基因的11%)。蛋白质组学分析发现,在人的粪便中存在大量该菌用来降解胃肠道黏蛋白的酶[12],如糖苷酶、硫酸酯酶和唾液酸苷酶等。体外实验证实,A. muciniphila可以降解人源的muc2蛋白以及猪源的Muc5ac[13-14]。但是A. muciniphila是通过什么途径降解黏蛋白,如何利用这些物质作为自身生长代谢营养,还未见相关机理报道。此外,在其基因组信息中与噬菌体相关的基因贯穿始终,说明病毒在其进化过程中扮演了至关重要的角色[15]。在获取该菌基因组信息后,通过序列测定方法对人肠道中的微生物进行分析发现,其中至少有8个菌株与A. muciniphila具有大于95%的相似性,称为Akkermansia-like微生物。瓦赫宁根大学微生物实验室Willem M. de Vos团队Ouwerkerk等[16]近期又从蟒蛇体内分离培养出了与A. muciniphila基因序列具有94.4%相似度的新菌株,并且发现它们也具有相似的特性,将该微生物命名为Akkermansia glycaniphila

2 Akkermansia muciniphila在肠道中的定殖与宿主健康的关系

肠上皮细胞通常被黏液层(主要成分为黏蛋白)覆盖着,一方面可以保护肠上皮细胞免受微生物的侵袭,另一方面还为以其为营养物质的微生物提供生长能源。由于A. muciniphila具有降解哺乳动物肠道黏蛋白的特殊功能,它与机体的相互作用关系备受关注。作为肠道微生物,该菌与宿主代谢的关系,不仅体现在与葡萄糖、蛋白质和脂类代谢相关的能量的摄入、利用和消耗方面,还伴随着黏液层健康以及黏膜免疫应答等方面,提示了潜在的微生物影响宿主代谢的机制。

2.1 Akkermansia muciniphila对宿主免疫的调节作用

定殖在肠道中的微生物与宿主相互依存、相互影响。肠道黏膜表面的微生物被认为与宿主免疫系统作用更为紧密,A. muciniphila就是这类微生物的典型代表[17]

一方面,宿主的营养环境会影响A. muciniphila在肠道中的生长,例如A. muciniphila降解黏液这一特性在宿主营养匮乏,如禁食、营养不良时可作为其竞争性优势。对仓鼠的禁食实验就证实了这一点,禁食后仓鼠肠道中A. muciniphila丰度显著升高[18];而且使用阿拉伯糖基木糖或菊粉饲喂的大鼠肠道中黏蛋白水平显著提高,这一变化也促使了A. muciniphila丰度的升高。另一方面,宿主也会因为该微生物的定殖获益,A. muciniphila降解黏液素的特性决定了它在肠道中定殖在稀疏的黏液层中,与其他定殖在肠腔中的微生物相比更接近肠上皮细胞,因此它的代谢产物丙酸也就存在于靠近肠上皮细胞的黏液层,很容易与宿主接触。丙酸可以通过Gpr43 (G蛋白偶联受体43)、其他短链脂肪酸可以通过Gpr41作用于肠道组织[19-20],从而引起一系列的通路变化达到免疫调节作用。

此外,Derrien等[21]还将A. municiphila定殖于无菌小鼠体内,发现该菌的有效定殖数量在盲肠中最高,可能是由于大部分的黏蛋白都在盲肠中产生;然而作为对比的L. plantarum (植物乳杆菌)处理组在宿主肠道内定殖后,大部分都分布于肠腔内,远离肠道细胞。宿主肠道组织的基因表达在两种微生物定殖后发生不同的变化,分别有750 (A. muciniphila处理组)和1 500 (L.plantarum处理组)个基因表达发生了显著变化,前者变化主要集中在与免疫应答相关的基因上,而后者变化主要集中在脂类代谢相关的基因上。由此可知,A. muciniphila可以调控机体代谢平衡以及免疫耐受。

2.2 Akkermansia muciniphila与肥胖、糖尿病的关系

随着肠道微生物与健康关系研究的发展,A. muciniphila与宿主健康的关系也受到高度关注。研究发现,其相对丰度与炎性肠病(Inflammatory bowel disease,IBD)、盲肠炎[14]、肥胖[22-23]和青少年自闭症[24]等疾病呈负相关。目前,肥胖已成为一种严重威胁人类健康的全球性疾病,全球至少超过5亿人口患有肥胖症,并且患病率仍在迅速上升[25]。这些肥胖人群面临着血脂异常、非酒精性脂肪肝、胰岛素抵抗等一系列代谢疾病的威胁[26]。随着肠道微生物研究的逐渐深入,关于A. muciniphila与这两类代谢疾病,特别是高脂膳食诱导的肥胖以及二型糖尿病的关系也备受关注。目前,大多研究表明,A. muciniphila对于这类代谢疾病的患者能够起到有益作用。

万古霉素处理的非肥胖糖尿病(Non-obese diabetic,NOD)模型小鼠一型糖尿病发病率降低,在抗生素处理下,几乎所有革兰氏阳性菌和革兰氏阴性菌含量均有所降低,然而A. muciniphila的相对丰度却由10%左右升高到87%左右,由此可推测其在肠道中的定殖对一型糖尿病有一定的防治作用[27]

二甲双胍作为一种常用的治疗二型糖尿病的药物,处理小鼠后其肠道微生物中的A. muciniphila丰度显著升高,机体血糖情况趋于正常,仅用A. muciniphila灌胃疾病小鼠时,也能显著改善葡萄糖耐受,并且通过诱导叉头蛋白转录因子(Foxp3) 调控调节性T细胞(Treg)以缓解内脏脂肪的炎症反应[28]。此外,最新研究发现,它还能通过改善Apoe-/-小鼠内毒素血症诱导的炎症反应对动脉粥样硬化起到保护作用[29]

自从研究者们发现A. muciniphila对改善肥胖和二型糖尿病存在有益作用以来,众多科研团队开始对其作用机制展开研究。Everard等用A. muciniphila灌胃肥胖以及二型糖尿病小鼠,发现高脂膳食诱导的代谢紊乱,例如脂肪含量增加、内毒素血症、脂肪组织炎症以及胰岛素抵抗都得到恢复[30]。这种改变可能是通过提高肠道中内源性大麻素的水平来实现调控炎症反应、肠道屏障以及肠肽分泌的。同时,热灭活的菌体却没有表现出相同的作用,说明只有处于生理活动的A. muciniphila才具有调控作用。此外,A. muciniphila的代谢产物短链脂肪酸(SCFAs)还可能通过降低肠道通透性来调节免疫应答,当小鼠肠道中脂多糖(Lipopolysaccharide,LPS)向门静脉易位时会导致肥胖相关的低水平炎症反应发生,同时伴随胰岛素抵抗,而A. muciniphila产生的丙酸可以在一定程度上改善这种情况。利用小鼠肠道类器官的体外实验还发现,A. muciniphila的代谢产物可以调控细胞脂代谢与生长过程中的许多转录因子和基因表达,如禁食诱导脂肪细胞因子(Fasting-induced adipose factor,Fiaf)、Gpr43、组蛋白去乙酰化酶以及过氧化物酶体增殖物激活受体γ (PPARγ)。其中PPARγ是重要的细胞分化转录因子,在哺乳动物的脂肪、血管平滑肌和心肌等组织中均有表达。它们在转录因子的调控、细胞周期调节、脂类分解及饱腹感的调节上均起到重要作用[31]。这个发现很可能是A. muciniphila改善肥胖的另一种机制。伴随人们对于A. muciniphila改善肥胖机制探究的不断刷新,最新研究发现A. muciniphila还可以通过调节γ-干扰素(Interferon-γ,IFNγ)对葡萄糖耐受的负面作用来改善葡萄糖耐受情况[32]

作用机制众说纷纭,尚无定论。然而,最近一项研究引起了业界的轰动。该研究表明,不但A. muciniphila活菌可以预防肥胖以及相关并发症,经低温巴氏消毒后的A. muciniphila菌同样具有该功能,甚至效果更优于活菌,更加令人兴奋的是,该研究团队表达并纯化了可能发挥这种有益作用的该菌外膜蛋白Amuc-1100,该蛋白在巴氏消毒中能保持稳定,其与Toll样受体2相互作用,可以改善肠道屏障功能,单独行使细菌的部分益生功能,这个发现意义重大,为该菌应用于临床治疗提供了重要的理论依据[33]

这种寄居于肠道黏液层的微生物可能对防止或治疗肥胖以及相关代谢紊乱疾病具有重要而深远的意义。

然而,也有研究发现,A. muciniphila在肠道中的定殖可能对机体产生负面影响。例如,高血红素铁膳食诱导的肠上皮细胞增生与肠道黏液层损伤的同时,还导致A. muciniphila的相对丰度显著升高了8倍,而经过抗生素处理后的小鼠肠道黏液层完整性可以得到一定程度的恢复,与此同时A. muciniphila的丰度也显著降低。这表明高血红素铁膳食诱导的肠道黏液层损伤很可能与该黏液降解菌的存在紧密相关[34],在不同的背景和生长条件下,该微生物可能具有不同的代谢特性,从而发挥不同的作用。

3 Akkermansia muciniphila与宿主膳食的关系

机体摄入的食物经过胃和小肠的消化吸收,未被消化的部分会进入大肠被其中的微生物所利用,这为肠道中丰富的微生物提供了赖以生存的营养物质[35-36]。肠道微生物是人体后天获得的非常重要的“器官”,是膳食与人体健康的重要桥梁[37]。大肠是微生物最密集的地方,微生物数量大约为1014个,是人体自身细胞数目的10倍[20]。它们在人体的生理学过程和营养代谢当中起着重要的作用,能够保护机体免受致病菌的侵害[5, 38-41]A. muciniphila作为肠道微生物中唯一属于疣微菌门的细菌,其在肠道中的丰度也同样受到膳食结构的调控。基于动物模型的研究指出,多种营养物质的干预都会影响肠道中A. muciniphila的生长,了解膳食对A. muciniphila生长的影响有利于指导更加合理健康的膳食。一部分研究证实,多酚[42-44]、低聚果糖[45-46]、共轭亚油酸[47]和燕麦麸[48]等特定营养素在提高机体健康的同时,也增加了A. muciniphila的丰度。此外,食用一些中草药如金银花、白术及真菌类食物如灵芝等,同样可以提高肠道中A. muciniphila的丰度,同时改善了宿主的代谢[49-51]。相反,高脂膳食会降低A. muciniphila的丰度,伴随某些代谢疾病的发生[28, 30, 52]。然而,在众多研究表明A. muciniphila作为一种有益菌出现在肠道中的同时,却有一项研究发现,高剂量摄入血红素铁的膳食显著提高A. muciniphila在小鼠肠道中丰度的同时,却破损了肠道黏液层[35],是否因为在不同膳食环境下,该菌的代谢特性发生了变化还有待进一步探究。此外,血红素铁是红肉中的一种典型物质,过多摄入红肉是否会同样产生这样的影响也有待进一步验证。本实验室前期研究发现,与红肉和植物蛋白相比,按照推荐摄入量进食白肉蛋白能够显著提高乳杆菌在肠道中的丰度,降低血清内毒素水平,对机体产生潜在的有益作用[53-54],乳杆菌作为一种公认的益生菌,在肠道中也具备一定降解黏液蛋白的能力,与A. muciniphila一起寄居在肠道黏液层中[55]。那么摄食肉类物质对于同样能降解黏液蛋白且能够以其作为唯一碳源、氮源而生长的A. muciniphila有怎样的影响,二者是否存在关联,还有待进一步探究。

4 总结与展望

综上所述,A. muciniphila作为一种可以很好地利用胃肠道黏蛋白进行生长的肠道菌,与机体的免疫应答、脂类代谢等过程有着密不可分的联系,对于维持机体健康扮演着重要的角色。A. muciniphila在肠道中的定殖情况受年龄、膳食以及机体健康状态等多种因素的影响,其中除病理状态的变化外,膳食对它的调控尤其显著。目前,对于该微生物的代谢特性及其与宿主健康关系的机制研究不断增多,然而关于该微生物利用黏蛋白的代谢通路尚不清楚;除A. muciniphila的代谢产物——丙酸对机体免疫调节的作用机制已有确定结论外,A. muciniphila是否通过其他途径与宿主互作从而改善疾病的机制还没有确切的定论。此外,该微生物在肠道中受膳食影响的情况较为复杂,高脂膳食可降低其丰度,阿拉伯糖基木糖或菊粉可增加其丰度,高血红素铁膳食可增高其丰度,然而这些变化的机制也尚不清楚。因此,还有待通过体外培养、动物实验等方法进一步探究膳食调控机制以及微生物与宿主的作用机制,从而有助于更加合理地指导人们健康膳食,开发出其临床应用的潜在价值。

参考文献
[1] Benson AK, Kelly SA, Legge R, et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(44) : 18933–18938. DOI:10.1073/pnas.1007028107
[2] Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease[J]. Nature Reviews Immunology, 2009, 9(5) : 313–323. DOI:10.1038/nri2515
[3] Leamy LJ, Kelly SA, Nietfeldt J, et al. Host genetics and diet, but not immunoglobulin A expression, converge to shape compositional features of the gut microbiome in an advanced intercross population of mice[J]. Genome Biology, 2014, 15(12) : 552. DOI:10.1186/s13059-014-0552-6
[4] Cho I, Blaser MJ. The human microbiome: at the interface of health and disease[J]. Nature Reviews Genetics, 2012, 13(4) : 260–270.
[5] Clemente JC, Ursell LK, Parfrey LW, et al. The impact of the gut microbiota on human health: an integrative view[J]. Cell, 2012, 148(6) : 1258–1270. DOI:10.1016/j.cell.2012.01.035
[6] Tremaroli V, B ckhed F. Functional interactions between the gut microbiota and host metabolism[J]. Nature, 2012, 489(7415) : 242–249. DOI:10.1038/nature11552
[7] Ridaura VK, Faith JJ, Rey FE, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice[J]. Science, 2013, 341(6150) : 1241214. DOI:10.1126/science.1241214
[8] Derrien M, Vaughan EE, Plugge CM, et al. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium[J]. International Journal of Systematic and Evolutionary Microbiology, 2004, 54(5) : 1469–1476. DOI:10.1099/ijs.0.02873-0
[9] Collado MC, Derrien M, Isolauri E, et al. Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly[J]. Applied and Environmental Microbiology, 2007, 73(23) : 7767–7770. DOI:10.1128/AEM.01477-07
[10] Derrien M, Collado MC, Ben-Amor K, et al. The mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract[J]. Applied and Environmental Microbiology, 2008, 74(5) : 1646–1648. DOI:10.1128/AEM.01226-07
[11] Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography[J]. Nature, 2012, 486(7402) : 222–227.
[12] Rooijers K, Kolmeder C, Juste C, et al. An iterative workflow for mining the human intestinal metaproteome[J]. BMC Genomics, 2011, 12 : 6. DOI:10.1186/1471-2164-12-6
[13] Swidsinski A, Loening-Baucke V, Herber A. Mucosal flora in Crohn's disease and ulcerative colitis-an overview[J]. Journal of Physiology and Pharmacology, 2009, 60(S6) : 61–71.
[14] Png CW, Lindén SK, Gilshenan KS, et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria[J]. The American Journal of Gastroenterology, 2010, 105(11) : 2420–2428. DOI:10.1038/ajg.2010.281
[15] van Passel MW, Kant R, Zoetendal EG, et al. The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes[J]. PLoS One, 2011, 6(3).
[16] Ouwerkerk JP, Aalvink S, Belzer C, et al. Akkermansia glycaniphila sp. nov.: an anaerobic mucin-degrading bacterium isolated from reticulated python faeces[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(11) : 4614–4620. DOI:10.1099/ijsem.0.001399
[17] Nieuwdorp M, Gilijamse PW, Pai N, et al. Role of the microbiome in energy regulation and metabolism[J]. Gastroenterology, 2014, 146(6) : 1525–1533. DOI:10.1053/j.gastro.2014.02.008
[18] Sonoyama K, Fujiwara R, Takemura N, et al. Response of gut microbiota to fasting and hibernation in Syrian hamsters[J]. Applied and Environmental Microbiology, 2009, 75(20) : 6451–6456. DOI:10.1128/AEM.00692-09
[19] le Poul E, Loison C, Struyf S, et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation[J]. Journal of Biological Chemistry, 2003, 278(28) : 25481–25489. DOI:10.1074/jbc.M301403200
[20] Maslowski KM, Vieira AT, Ng A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43[J]. Nature, 2009, 461(7268) : 1282–1286. DOI:10.1038/nature08530
[21] Derrien M, van Baarlen P, Hooiveld G, et al. Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphila[J]. Frontiers in Microbiology, 2011, 2 : 166.
[22] Zhang H, DiBaise JK, Zuccolo A, et al. Human gut microbiota in obesity and after gastric bypass[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(7) : 2365–2370. DOI:10.1073/pnas.0812600106
[23] Santacruz A, Collado MC, García-Valdés L, et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women[J]. British Journal of Nutrition, 2010, 104(1) : 83–92. DOI:10.1017/S0007114510000176
[24] Wang L, Christophersen CT, Sorich MJ, et al. Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism[J]. Applied and Environmental Microbiology, 2011, 77(18) : 6718–6721. DOI:10.1128/AEM.05212-11
[25] Swinburn BA, Sacks G, Hall KD, et al. The global obesity pandemic: shaped by global drivers and local environments[J]. The Lancet, 2011, 378(9793) : 804–814. DOI:10.1016/S0140-6736(11)60813-1
[26] Eckel RH, Alberti K, Grundy SM, et al. The metabolic syndrome[J]. The Lancet, 2010, 375(9710) : 181–183. DOI:10.1016/S0140-6736(09)61794-3
[27] Hansen CHF, Krych L, Nielsen DS, et al. Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse[J]. Diabetologia, 2012, 55(8) : 2285–2294. DOI:10.1007/s00125-012-2564-7
[28] Shin N, Lee CJ, Lee HY, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice[J]. Gut, 2014, 63(5) : 727–735. DOI:10.1136/gutjnl-2012-303839
[29] Li J, Lin SQ, Vanhoutte PM, et al. Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in apoe−/− mice[J]. Circulation, 2016, 133(24) : 2434–2446. DOI:10.1161/CIRCULATIONAHA.115.019645
[30] Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(22) : 9066–9071. DOI:10.1073/pnas.1219451110
[31] Lukovac S, Belzer C, Pellis L, et al. Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids[J]. mBio, 2014, 5(4) : e01438–14.
[32] Greer RL, Dong XX, Moraes ACF, et al. Akkermansia muciniphila mediates negative effects of IFNγ on glucose metabolism[J]. Nature Communications, 2016, 7 : 13329. DOI:10.1038/ncomms13329
[33] Plovier H, Everard A, Druart C, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice[J]. Nature Medicine, 2017, 23(1) : 107–113.
[34] Ijssennagger N, Belzer C, Hooiveld GJ, et al. Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(32) : 10038–10043. DOI:10.1073/pnas.1507645112
[35] van Hylckama Vlieg JE, Veiga P, Zhang CH, et al. Impact of microbial transformation of food on health-from fermented foods to fermentation in the gastro-intestinal tract[J]. Current Opinion in Biotechnology, 2011, 22(2) : 211–219. DOI:10.1016/j.copbio.2010.12.004
[36] Rist VTS, Weiss E, Eklund M, et al. Impact of dietary protein on microbiota composition and activity in the gastrointestinal tract of piglets in relation to gut health: a review[J]. Animal, 2013, 7(7) : 1067–1078. DOI:10.1017/S1751731113000062
[37] Qin JJ, Li YR, Cai ZM, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes[J]. Nature, 2012, 490(7418) : 55–60. DOI:10.1038/nature11450
[38] B ckhed F, Ley RE, Sonnenburg JL, et al. Host-bacterial mutualism in the human intestine[J]. Science, 2005, 307(5717) : 1915–1920. DOI:10.1126/science.1104816
[39] Ramakrishna BS. Role of the gut microbiota in human nutrition and metabolism[J]. Journal of Gastroenterology and Hepatology, 2013, 28(S4) : 9–17.
[40] B ckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(44) : 15718–15723. DOI:10.1073/pnas.0407076101
[41] O'Hara AM, Shanahan F. The gut flora as a forgotten organ[J]. EMBO Reports, 2006, 7(7) : 688–693. DOI:10.1038/sj.embor.7400731
[42] Kemperman RA, Gross G, Mondot S, et al. Impact of polyphenols from black tea and red wine/grape juice on a gut model microbiome[J]. Food Research International, 2013, 53(2) : 659–669. DOI:10.1016/j.foodres.2013.01.034
[43] Roopchand DE, Carmody RN, Kuhn P, et al. Dietary polyphenols promote growth of the gut bacterium Akkermansia muciniphila and attenuate high-fat diet-induced metabolic syndrome[J]. Diabetes, 2015, 64(8) : 2847–2858. DOI:10.2337/db14-1916
[44] Anhê FF, Roy D, Pilon G, et al. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice[J]. Gut, 2015, 64(6) : 872–883. DOI:10.1136/gutjnl-2014-307142
[45] Everard A, Lazarevic V, Derrien M, et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice[J]. Diabetes, 2011, 60(11) : 2775–2786. DOI:10.2337/db11-0227
[46] Reid DT, Eller LK, Nettleton JE, et al. Postnatal prebiotic fibre intake mitigates some detrimental metabolic outcomes of early overnutrition in rats[J]. European Journal of Nutrition, 2016, 55(8) : 2399–2409. DOI:10.1007/s00394-015-1047-2
[47] Chaplin A, Parra P, Serra F, et al. Conjugated linoleic acid supplementation under a high-fat diet modulates stomach protein expression and intestinal microbiota in adult mice[J]. PLoS One, 2015, 10(4) : e0125091. DOI:10.1371/journal.pone.0125091
[48] Andersson KE, Axling U, Xu J, et al. Diverse effects of oats on cholesterol metabolism in C57BL/6 mice correlate with expression of hepatic bile acid-producing enzymes[J]. European Journal of Nutrition, 2013, 52(7) : 1755–1769. DOI:10.1007/s00394-012-0479-1
[49] Wang JH, Bose S, Kim GC, et al. Flos Lonicera ameliorates obesity and associated endotoxemia in rats through modulation of gut permeability and intestinal microbiota[J]. PLoS One, 2014, 9(1) : e86117. DOI:10.1371/journal.pone.0086117
[50] Wang JH, Bose S, Kim HG, et al. Fermented Rhizoma Atractylodis Macrocephalae alleviates high fat diet-induced obesity in association with regulation of intestinal permeability and microbiota in rats[J]. Scientific Reports, 2015, 5 : 8391. DOI:10.1038/srep08391
[51] Chang CJ, Lin CS, Lu CC, et al. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota[J]. Nature Communications, 2015, 6 : 7489. DOI:10.1038/ncomms8489
[52] Baldwin J, Collins B, Wolf PG, et al. Table grape consumption reduces adiposity and markers of hepatic lipogenesis and alters gut microbiota in butter fat-fed mice[J]. The Journal of Nutritional Biochemistry, 2016, 27 : 123–135. DOI:10.1016/j.jnutbio.2015.08.027
[53] Zhu YY, Lin XS, Li H, et al. Intake of meat proteins substantially increased the relative abundance of genus Lactobacillus in rat feces[J]. PLoS One, 2016, 11(4) : e0152678. DOI:10.1371/journal.pone.0152678
[54] Zhu YY, Lin XS, Zhao F, et al. Meat, dairy and plant proteins alter bacterial composition of rat gut bacteria[J]. Scientific Reports, 2015, 5 : 15220. DOI:10.1038/srep15220
[55] Etzold S, Kober OI, Mackenzie DA, et al. Structural basis for adaptation of lactobacilli to gastrointestinal mucus[J]. Environmental Microbiology, 2014, 16(3) : 888–903. DOI:10.1111/emi.2014.16.issue-3