微生物学通报  2017, Vol. 44 Issue (3): 726−731

扩展功能

文章信息

蔡俊, 田尔诺, 邵帅, 杜馨, 王常高, 林建国
CAI Jun, TIAN Er-Nuo, SHAO Shuai, DU Xin, WANG Chang-Gao, LIN Jian-Guo
黄曲霉毒素B1生物脱毒的研究进展
Progress in biological detoxification of Aflatoxin B1
微生物学通报, 2017, 44(3): 726-731
Microbiology China, 2017, 44(3): 726-731
DOI: 10.13344/j.microbiol.china.160318

文章历史

收稿日期: 2016-04-17
接受日期: 2016-09-07
优先数字出版日期(www.cnki.net): 2016-09-29
黄曲霉毒素B1生物脱毒的研究进展
蔡俊, 田尔诺, 邵帅, 杜馨, 王常高, 林建国     
湖北工业大学 发酵工程教育部重点实验室 工业发酵湖北省协同创新中心    湖北 武汉    430068
摘要: 黄曲霉毒素是一组由黄曲霉、寄生曲霉等多种真茵产生的次级代谢产物,具有强烈的毒性,可以引起动物肝脏肿大、病变甚至癌变,对人和家畜的健康产生极大的威胁。本文简介了黄曲霉毒素B1的分子结构、理化性质、污染现状,综述了黄曲霉毒素B1生物脱毒方面及其应用的研究进展,重点讲述通过微生物降解黄曲霉毒素B1的研究近况。
关键词黄曲霉毒素B1     生物脱毒     应用     微生物降解    
Progress in biological detoxification of Aflatoxin B1
CAI Jun, TIAN Er-Nuo, SHAO Shuai, DU Xin, WANG Chang-Gao, LIN Jian-Guo     
Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Collaborative Innovation Center for Industrial Fermentation, Hubei University of Technology, Wuhan, Hubei 430068, China
Received: April 17, 2016; Accepted: September 07, 2016; Published online(www.cnki.net): September 29, 2016
Foundation item: National Natural Science Foundation of China (No. 31401807)
*Corresponding author: CAI Jun, E-mail: caijun@mail.hbut.edu.cn.
Abstract: Aflatoxin, with strong toxicity, is a group of secondary metabolites produced by the Aspergillus flavus, Aspergillus parasitieus and some other fungies. Aflatoxin can lead to liver enlargement, diseases and even cancer, showing a great threat to humans and animals health. This article introduces the molecular structure, physical and chemical properties, pollution situations of aflatoxin B1. Research progress about the biological detoxication especially microbiological degradation of aflatoxin B1 and applicationare discussed.
Key words: Aflatoxin B1     Biological detoxification     Application     Microbiological degradation    

黄曲霉毒素B1 (Aflatoxin B1,AFB1) 是二呋喃香豆素的衍生物,其分子结构如图 1所示,AFB1被世界卫生组织 (WHO) 列为毒物之首,2002年被国际肿瘤研究机构 (IARC) 列为Ⅰ级强致癌物[1-3],在食品、饲料等行业中,AFB1的脱毒显得尤为重要。AFB1毒素在268−269 ℃时才分解,在强碱环境下被完全破坏,酸性条件下稳定,在pH 1.0−3.0的强酸性溶液中才有极少量的分解,但在pH 9.0−10.0碱性溶液中会迅速分解。AFB1易溶于氯仿、丙酮、甲醇、乙醇等多种有机溶剂中,但不溶于乙醚、石油醚、己烷和水。所以,简单的物理化学方法难适用于AFB1脱毒。

图 1 黄曲霉毒素B1分子结构 Figure 1 The molecular structure of aflatoxin B1

2013年3月,据荷兰乳业组织透露,在两家荷兰牛奶农场的牛奶中发现了过量的黄曲霉毒素,被污染的牛奶立即从生产链上撤下销毁。随后美国一家公司发布召回公告,将对几款狗粮实施召回,还有很多乳制品也存在毒素污染情况。有许多检验报告表明,我国的饲料、坚果、牛奶等食品中仍可检测出AFB1,甚至含量存在超标的情况[4-8]。AFB1的污染仍是在食品、饲料等行业中亟待解决的重要问题。

AFB1的脱毒方法分物理、化学以及生物法 (表 1)。根据联合国粮农组织 (FAO) 规定,黄曲霉毒素的脱毒工艺必须满足以下条件:(1) 去除黄曲霉毒素或者使之失去活性;(2) 不产生任何有毒的副产物;(3) 破坏产毒的真菌孢子或菌丝体;(4) 脱毒后食品或饲料应保持它原有的营养价值和适口性。

表 1 黄曲霉毒素B1的脱毒方法 Table 1 The detoxification methods of AFB1
项目
Item
物理法
Physical method
化学法
Chemical method
生物法
Biological method
吸附法
Adsorption
降解法
Degradation
具体措施
Specific measures
加热、辐照、溶剂萃取、吸附剂吸附等[9-14]
Heating, radiation, solvent extraction, adsorbent, etc[9-14]
碱处理、氧化法 (臭氧、过氧化氢处理) 等[15-19]
Alkali treatment, oxidation (ozone, hydrogen peroxide), etc[15-19]
干酪乳杆菌、酿酒酵母、鼠李糖乳杆菌等,利用其细胞壁吸附毒素[20-21]
Lactobacillus casei, Saccharomyces cerevisiae, Lactobacillus rhamnosus, etc. Using their cell walls to adsorb toxins[20-21]
黑曲霉、枯草芽孢杆菌等通过发酵或产酶降解毒素[22-24]
Fermentation or enzyme degrade toxin by Aspergillus niger, Bacillus subtilis, etc[22-24]
脱毒效果及评估
Detoxication effect and evaluation
去毒效果好,固态样品中脱毒不彻底。存在试剂回收问题;仪器成本太高;可能改变物质的性质;可应用的领域小
The detoxication effect is better for liquid sample than solid. There are some problem such as reagent recycle, cost too much, may change the nature of the substance, small application field
脱毒效果良好。易导致副产物的产生以及处理剂的残留,且容易造成二次污染;对产品的成分有影响
Detoxification effect is good. It is easy to lead to the generation of by-products, the residual of treatment agent and secondary pollution. The compositions of the products could be impacted
同物理吸附,对于液态样品脱毒效果更好。存在毒性的可逆性恢复,导致去毒不彻底;去毒周期长
As well as physical adsorption, the detoxification effect for liquid samples is better. Some problems are as follows: the toxin reversibly recover, resulting in that detoxification is not complete, long detoxification period
脱毒效果彻底。高效性,无污染,无危害;所需的条件相对温和;还有增加产品营养价值的可能性
Detoxification effect is complete. There are many advantages such as efficient, non-polluting, non-hazardous, conditions are relatively mild. There is the possibility of increasing the nutritional value of products
1 黄曲霉毒素B1的生物脱毒

AFB1的生物脱毒主要是利用微生物或其产生的酶及其制剂通过生物催化的方法脱毒,与物理、化学方法相比生物脱毒条件相对温和,产品的品质得以保证,甚至有些益生菌还能提升产品的营养价值。微生物对AFB1的作用主要有两方面:(1) 微生物细胞对AFB1的吸附作用;(2) 微生物发酵产生的酶对AFB1的降解作用。

1.1 微生物吸附黄曲霉毒素B1

自然界中有些微生物可以吸附AFB1,如:乳酸菌、酵母菌等,形成菌体-毒素复合体。这些微生物吸附AFB1后,其吸附能力下降,就会同AFB1一起被排出体外,从而降低毒素对畜禽的伤害。

乳酸菌的脱毒机理主要是细胞壁中N-乙酰胞壁酸及N-乙酰葡萄糖胺为主要成分的肽聚糖对AFB1进行物理吸附。Hernandez-Mendoza等[20-21]筛选得到对AFB1有高吸附率的干酪乳杆菌Lactobacillus casei L30;并发现毒素-菌体复合物的稳定性良好,其吸附过程是一个有限制的可逆过程,反复水洗后只有极少的毒素解吸附,证明了细胞中胞壁酸成分对吸附AFB1有重要作用。

酵母细胞因其细胞壁中含有葡聚糖、甘露聚糖、几丁质等特殊成分使其具有较好吸附AFB1的能力。Shetty等[25]筛选出的酿酒酵母A18和26.1.11,对PBS中AFB1的吸附能力分别为38.7%和36.1%;并提出了酵母吸附AFB1的原理是其细胞壁上的碳水化合物或甘露聚糖参与了毒素的吸附。在国内,刘畅等[26]首次筛选出了吸附效果最佳的酿酒酵母Y1,其对AFB1的吸附率高达81.16%。所以,从酵母细胞中提取的葡聚糖、甘露聚糖等成分可广泛应用于畜禽饲养过程中,降低AFB1对畜禽的伤害。

虽然有较多的微生物对AFB1具有吸附作用,但这种吸附不能从根本上去除AFB1,因此,研究AFB1的微生物降解具有十分重要的意义。

1.2 微生物降解黄曲霉毒素B1

AFB1的微生物降解是指微生物所分泌的胞内、胞外酶可以将AFB1分子破坏,同时产生无毒的降解产物的过程。

1.2.1 黄曲霉毒素B1降解产物的结构: 毒性的减弱是AFB1脱毒的必要条件。目前已知的一些无毒或低毒降解产物结构见表 2

表 2 黄曲霉毒素B1降解产物结构 Table 2 The structure of production from AFB1 degradation
名称
Name
分子式
Molecular formula
结构
Structure
Aflatoxinal C17H14O6
(314)
AFD1[27] C16H14O5
(286)
AFD2[27] C11H10O4
(206)
AFD3[27] C8H4O3
(149)
AFB1-8, 9-
dihydrodiol[28]
C17H14O8
(346)

1.2.2 微生物酶降解黄曲霉毒素B1: 目前,已发现有很多微生物可以产生能降解AFB1的酶。在国内,Liu等[29]和Li等[30]最早研究生物降解AFB1,发现假蜜环菌 (Armillariella tabescens) 及其胞内多酶复合体可以作用于AFB1双呋喃环的烯醚键生成AFB1的环氧化物,再经水解生成AFB1-二氢二醇达到去除毒素的目的;并得到黄曲霉毒素氧化酶 (Aflatoxin-oxidase)。通过酶处理AFB1,可以发现AFB1的特征性蓝色荧光明显减弱,说明了毒素的内酯环被破坏,这将有助于AFB1降解机制的深入探究。该酶的基因已经获得,并成功进行了重组表达,将会逐步应用于AFB1的检测和去除。

漆酶是目前已知的一种广泛存在的AFB1降解酶。王会娟等[31]和周露等[32]筛得了糙皮侧耳 (Pleurotus ostreatus) P1,P1的产酶能力高,培养条件优化后,降解率可达82.43%。Alberts等[33]和Zeinvand-Lorestani等[34]还利用糙皮侧耳 (Pleurotus ostreatus)、隔孢伏革菌 (Peniophora)、变色栓菌 (Trametes versicolor) 和黑曲霉 (Aspergillus niger) 产生的漆酶及其重组酶使AFB1的致突变性完全消失,AFB1的荧光减弱,降解产物的诱变性显著降低。漆酶在AFB1分子上的作用靶点是双呋喃环结构并将其氧化,证明了漆酶可以作为一种有效生物降解真菌毒素的生物大分子广泛运用于食品生产,而且糙皮侧耳作为食用菌,以其作为材料的食品工业产品将对AFB1的防治和去毒有良好的应用前景。

最新发现的过氧化物酶MnP为酶降解毒素提供了新思路。Wang等[28]发现白腐真菌 (Phanerochaete sordida YK-624) 产生的能降解木质素的锰过氧化物酶MnP具有AFB1降解功能,MnP与AFB1降解率高达86.0%,加入Tween 80后促进了AFB1的降解。Umu试验检测处理后的AFB1诱变活性降低了69.2%。分析其降解机制是AFB1首先被MnP氧化为AFB1-8, 9-环氧化物,然后水解转化成AFB1-8, 9-二氢二醇 (图 2)。这也是首次关于MnP可以将AFB1转化为AFB1-8, 9-二氢二醇来降低AFB1诱变性的报道。根据这种酶的作用机制,用氧化酶类进行AFB1的脱毒也是一种合理的思路。

图 2 Mn过氧化物酶降解AFB1过程 Figure 2 The process of degradation of AFB1 by MnP

具有AFB1降解能力的菌株还有很多,如Sangare等[35]选育出的假单胞菌 (Pseudomonas)、Shcherbakova等[36]筛选的茎点霉菌 (Phoma glomerata) PG41、Adebo等[37]选育的沃氏葡萄球菌 (Staphylocococcus warneri)、Lysinibacillus fusiformis,蔡俊等[38-40]筛选出了可以降解AFB1的菌体Sinornonas sp.和夏孢生枝孢 (Cladosporium uredinicola),夏孢生枝孢降解AFB1后可以检测到在紫外光下呈蓝色荧光的产物。利用加热、蛋白酶K、SDS处理后毒素的降解率明显降低,由此推断这些菌体也可以产降解AFB1的酶。

2 黄曲霉毒素B1生物脱毒应用

饲料、食品生产中AFB1的脱毒是保证畜禽健康养殖和食品安全的重要环节,也是研究的热点。AFB1生物脱毒技术的应用研究主要体现在以下几个方面:

一方面,改善发酵工艺方法。Chen等[41]利用嗜热链球菌 (Streptococcus thermophilus) 和保加利亚德氏乳杆菌 (Lactobacillus delbrueckii subsp. bulgaricus) 将花生粕加热10 min后再与菌混合进行厌氧发酵,3 d检测花生粕中AFB1的转化率达到100%,细胞毒性试验检测花生粕中毒性已经几乎完全丧失,而且加热和厌氧发酵并未改变花生粕中氨基酸浓度等其他性质。通过发酵工艺的改善从而优化毒素降解工艺,这对以花生为原料的产品的安全性提供了保障。以微生物发酵为基础,对发酵条件等加工方式的改良从而达到去毒目的,这是一种在生产实际中适当的AFB1生物脱毒方法。

另一方面,研究和生产可降解AFB1的酶制剂产品。曾凡正等[42]将酶法脱胶 (采用磷脂酶A1) 与去毒反应相结合,应用于花生油的精炼工艺,AFB1降解率高达81%,反应后花生油也达到精炼要求 (磷含量降至13 mg/kg)。汤海欧等[43]在饲粮中添加葡萄糖氧化酶 (GOD) 后,肉鸭各项生长性能有显著改善。胡常英等[44]研究表明,在小鸡饲粮或饮用水中加入GOD,小鸡的存活率明显升高,没有表现其他不良现象。程伟等[45]和Zuo等[46]在饲粮中添加了益生菌和AFB1降解酶明显改善了肉鸡的生长、代谢及体内益生菌的积累。由此可见,益生菌、AFB1降解酶及他们的组合应用,可以为食品安全和家禽健康提供有效保障。酶制剂在脱毒方面已经有了初步的应用,并且有了明显的成效,但还存在一些问题如:酶的需求量过大,酶与产品混合使用时的合理配比,保证酶在贮藏过程中的活性等。目前,AFB1的生物脱毒方面应用显得贫乏、简单,一些酶的功能性机制还没有研究彻底,对这些酶进行固定化、修饰用于生产以及合适的生物反应器的制作等工艺还需要更进一步的研究。

3 总结与展望

近年来,对AFB1降解方法的研究从物理、化学、生物各方面的脱毒技术都取得了一些成果,相较之下生物法应是最优的选择,却也存在各种各样的弊端,如需求温和的脱毒环境难以保证,没有合适的反应器等。所以,具有吸附作用的微生物要分析并提取出其吸附毒素的有效成分,结合益生菌制备脱毒剂更有应用价值;微生物降解AFB1,能够从根本上将其去除,对于那些能够降解AFB1的微生物,应提取、分离、纯化AFB1降解酶,在明确其降解原理的基础上找到安全、有效的固定化载体,解决酶在脱毒反应过程中容易失活的问题,而且要确保AFB1降解产物的食用安全性,还要根据酶的性质和应用方法设计出合适的生物反应器,用于各类产品生产。

参考文献
[1] IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. International agency for research on cancer IARC monographs on the evaluation of carcinogenic risks to humans[Z]. 2002, 80
[2] Merrick BA, Phadke DP, Auerbach SS, et al. RNA-Seq profiling reveals novel hepatic gene expression pattern in aflatoxin B1 treated rats[J]. PLoS One, 2013, 8(4) : e61768. DOI:10.1371/journal.pone.0061768
[3] Wild CP, Montesano R. A model of interaction: aflatoxins and hepatitis viruses in liver cancer aetiology and prevention[J]. Cancer Letters, 2009, 286(1) : 22–28. DOI:10.1016/j.canlet.2009.02.053
[4] Pei Q. The hot spots of international food security in 2013[J]. Medical Frontier, 2014(4) : 12–15. (in Chinese) 裴青. 2013年国际食品安全热点解读[J]. 医药前沿, 2014(4) : 12–15.
[5] Gizachew D, Szonyi B, Tegegne A, et al. Aflatoxin contamination of milk and dairy feeds in the Greater Addis Ababa milk shed, Ethiopia[J]. Food Control, 2016, 59 : 773–779. DOI:10.1016/j.foodcont.2015.06.060
[6] Bai CL, Ma BB, Yu Q, et al. Surveillance quality assessment of the 4 aflatoxins in market-sale roasted seeds and nuts in Hubei[J]. Chinese Journal of Health Laboratory Technology, 2015, 25(13) : 2210–2212. (in Chinese) 白春林, 马蓓蓓, 余青, 等. 湖北省市售坚果及籽类制品中4种黄曲霉毒素含量的监测质量评价[J]. 中国卫生检验杂志, 2015, 25(13) : 2210–2212.
[7] Liu J, Sun LH, Zhang JC, et al. Aflatoxin B1, zearalenone and deoxynivalenol in feed ingredients and complete feed from central China[J]. Food Additives & Contaminants: Part B: Surveillance, 2016, 9(2) : 91–97.
[8] Ding N, Xing FG, Liu X, et al. Variation in fungal microbiome (mycobiome) and aflatoxin in stored in-shell peanuts at four different areas of China[J]. Frontiers in Microbiology, 2015, 6 : 1055.
[9] Wang B, Mahoney NE, Pan ZL, et al. Effectiveness of pulsed light treatment for degradation and detoxification of aflatoxin B1 and B2 in rough rice and rice bran[J]. Food Control, 2016, 59 : 461–467. DOI:10.1016/j.foodcont.2015.06.030
[10] Li YP, Wang SQ, Xiao JX, et al. Degradation of aflatoxin B1 in agricultural products by low temperature radio frequency plasma[J]. Science and Technology of Cereals, Oils and Foods, 2014, 22(5) : 54–57. (in Chinese) 李玉鹏, 王世清, 肖军霞, 等. 低温射频等离子体降解农产品中黄曲霉毒素B1效果的研究[J]. 粮油食品科技, 2014, 22(5) : 54–57.
[11] Liu RJ, Wang RQ, Lu J, et al. Degradation of AFB1in aqueous medium by electron beam irradiation: Kinetics, pathway and toxicology[J]. Food Control, 2016, 66 : 151–157. DOI:10.1016/j.foodcont.2016.02.002
[12] Wang SQ, Huang GQ, Li YP, et al. Degradation of aflatoxin B1 by low-temperature radio frequency plasma and degradation product elucidation[J]. European Food Research & Technology, 2015, 241(1) : 103–113.
[13] Zheng HY, Wei S, Guo BL, et al. Reduction of aflatoxin B1 in brown rice by extrusion cooking[J]. Food Science, 2014, 35(14) : 35–39. (in Chinese) 郑海燕, 魏帅, 郭波莉, 等. 挤压膨化降解糙米中黄曲霉毒素B1[J]. 食品科学, 2014, 35(14) : 35–39.
[14] Wang Y, Zhao XP, Wang R, et al. Effect of aflatoxin B1 degradation by microwave-assisted alkali treatment on the quality of no-toxic rice protein[J]. Journal of the Chinese Cereals & Oils Association, 2014, 29(4) : 1–4. (in Chinese) 王勇, 赵秀平, 王韧, 等. 微波辅助碱法降解黄曲霉毒素工艺对米蛋白品质的影响[J]. 中国粮油学报, 2014, 29(4) : 1–4.
[15] de Alencar ER, Faroni LRD, Soares NFF, et al. Efficacy of ozone as a fungicidal and detoxifying agent of aflatoxins in peanuts[J]. Journal of the Science of Food and Agriculture, 2012, 92(4) : 899–905. DOI:10.1002/jsfa.v92.4
[16] Temba BA, Fletcher MT, Fox GP, et al. Inactivation of Aspergillus flavus spores by curcumin-mediated photosensitization[J]. Food Control, 2016, 59 : 708–713. DOI:10.1016/j.foodcont.2015.06.045
[17] Zhou JX, Wu MM, Bao YH, et al. Optimization to degradation of aflatoxin B1in paddy by ozone treatment[J]. Grain Storage, 2014, 43(4) : 17–21. (in Chinese) 周建新, 吴萌萌, 包月红, 等. 臭氧处理稻谷降解黄曲霉毒素B1的工艺条件优化[J]. 粮食储藏, 2014, 43(4) : 17–21.
[18] Diao EJ, Hou HX, Dong HZ. Ozonolysis mechanism and influencing factors of aflatoxin B1: a review[J]. Trends in Food Science & Technology, 2013, 33(1) : 21–26.
[19] Savi GD, Piacentini KC, Scussel VM. Ozone treatment efficiency in Aspergillus and Penicillium growth inhibition and mycotoxin degradation of stored wheat grains (Triticum aestivum L.)[J]. Journal of Food Processing and Preservation, 2014, 39(6) : 940–948.
[20] Hernandez-Mendoza A, Garcia HS, Steele JL. Screening of Lactobacillus casei strains for their ability to bind aflatoxin B1[J]. Food and Chemical Toxicology, 2009, 47(6) : 1064–1068. DOI:10.1016/j.fct.2009.01.042
[21] Hernandez-Mendoza A, Guzman-de-Pe a D, Garcia HS. Key role of teichoic acids on aflatoxin B1 binding by probiotic bacteria[J]. Journal of Applied Microbiology, 2009, 107(2) : 395–403. DOI:10.1111/jam.2009.107.issue-2
[22] Farzaneh M, Shi ZQ, Ghassempour A, et al. Aflatoxin B1 degradation by Bacillus subtilis UTBSP1 isolated from pistachio nuts of Iran[J]. Food Control, 2012, 23(1) : 100–106. DOI:10.1016/j.foodcont.2011.06.018
[23] Prabakaran JJ, Dhanapal S. Degradation of aflatoxin B1 by Bacillus subtilis SHT1 from sheep hide tanning site[J]. Indian Journal of Applied Microbiology, 2012, 15 : 35–48.
[24] Li B, Dong ZY, Chang WS. Degradation and application of aflatoxin B1 by Aspergillus niger[J]. Feed Review, 2012(11) : 6–10. (in Chinese) 李冰, 董征英, 常维山. 黑曲霉对黄曲霉毒B1的降解与应用研究[J]. 饲料博览, 2012(11) : 6–10.
[25] Shetty PH, Hald B, Jespersen L. Surface binding of aflatoxin B1by Saccharomyces cerevisiae strains with potential decontaminating abilities in indigenous fermented foods[J]. International Journal of Food Microbiology, 2007, 113(1) : 41–46. DOI:10.1016/j.ijfoodmicro.2006.07.013
[26] Liu C, Liu Y, Xing FG, et al. Screening of aflatoxin B1 binding strains and binding mechanism[J]. Journal of Nuclear Agricultural Sciences, 2010, 24(4) : 766–771. (in Chinese) 刘畅, 刘阳, 邢福国, 等. 黄曲霉毒素B1吸附菌株的筛选及吸附机理研究[J]. 核农学报, 2010, 24(4) : 766–771.
[27] Samuel MS, Sivaramakrishna A, Mehta A. Degradation and detoxification of aflatoxin B1by Pseudomonas putida[J]. International Biodeterioration & Biodegradation, 2014, 86 : 202–209.
[28] Wang JQ, Ogata M, Hirai H, et al. Detoxification of aflatoxin B1by manganese peroxidase from the white-rot fungus Phanerochaete sordida YK-624[J]. FEMS Microbiology Letters, 2011, 314(2) : 164–169. DOI:10.1111/fml.2010.314.issue-2
[29] Liu DL, Yao DS, Liang YQ, et al. Production, purification, and characterization of an intracellular aflatoxin-detoxifizyme from Armillariella tabescens (E-20)[J]. Food & Chemical Toxicology, 2001, 39(5) : 461–466.
[30] Li SC, Chen JH, Cao H, et al. Amperometric biosensor for aflatoxin B1based on aflatoxin-oxidase immobilized on multiwalled carbon nanotubes[J]. Food Control, 2011, 22(1) : 43–49. DOI:10.1016/j.foodcont.2010.05.005
[31] Wang HJ, Liu Y, Xing FG. Screening high-productionlaccase of Pleurotus ostreatus and degradation of AFB1 by Pleurotus ostreatus laccase[J]. Journal of Nuclear Agricultural Sciences, 2012, 26(7) : 1025–1030. (in Chinese) 王会娟, 刘阳, 邢福国. 高产漆酶平菇的筛选及其在降解黄曲霉毒素B1中的应用[J]. 核农学报, 2012, 26(7) : 1025–1030.
[32] Zhou L, Wang HJ, Xing FG, et al. Optimization of the culture condition and preliminary separation of aflatoxin degrading enzymes of the strain Pleurotus ostreatus P1[J]. Journal of Nuclear Agricultural Sciences, 2014, 28(9) : 1625–1631. (in Chinese) 周露, 王会娟, 邢福国, 等. 平菇P1培养条件优化及其黄曲霉毒素降解酶的初步分离[J]. 核农学报, 2014, 28(9) : 1625–1631.
[33] Alberts JF, Gelderblom WCA, Botha A, et al. Degradation of aflatoxin B1 by fungal laccase enzymes[J]. International Journal of Food Microbiology, 2009, 135(1) : 47–52. DOI:10.1016/j.ijfoodmicro.2009.07.022
[34] Zeinvand-Lorestani H, Sabzevari O, Setayesh N, et al. Comparative study of in vitro prooxidative properties and genotoxicity induced by aflatoxin B1 and its laccase-mediated detoxification products[J]. Chemosphere, 2015, 135 : 1–6. DOI:10.1016/j.chemosphere.2015.03.036
[35] Sangare L, Zhao YJ, Folly YME, et al. Aflatoxin B1 degradation by a Pseudomonas strain[J]. Toxins, 2014, 6(10) : 3028–3040. DOI:10.3390/toxins6103028
[36] Shcherbakova L, Statsyuk N, Mikityuk O, et al. Aflatoxin B1 degradation by metabolites of Phoma glomerata PG41 isolated from natural substrate colonized by aflatoxigenic Aspergillus flavus[J]. Jundishapur Journal of Microbiology, 2015, 8(1) : e24324.
[37] Adebo OA, Njobeh PB, Mavumengwana V. Degradation and detoxification of AFB1 by Staphylocococcus warneri, Sporosarcina sp. and Lysinibacillus fusiformis[J]. Food Control, 2016, 68 : 92–96. DOI:10.1016/j.foodcont.2016.03.021
[38] Shao S, Dai J, Du X, et al. Optimization of fermentation condition for an AFB1-degrading strain and preliminary exploration of degradation mechanism[J]. Food Science, 2016, 37(5) : 138–143. (in Chinese) 邵帅, 戴军, 杜馨, 等. 降解黄曲霉毒素B1菌株的发酵条件优化及降解机制[J]. 食品科学, 2016, 37(5) : 138–143.
[39] Dai J, Shao S, Wang CG, et al. Screening and identification of microorganisms producing AFB1-degrading enzyme and optimization of fermentation conditions[J]. Industrial Microbiology, 2014, 44(6) : 54–59. (in Chinese) 戴军, 邵帅, 王常高, 等. 产黄曲霉毒素B1降解酶菌株的筛选鉴定及发酵条件优化[J]. 工业微生物, 2014, 44(6) : 54–59.
[40] Dai J, Shao S, Wang CG, et al. Optimization of fermentation technology for AFB1-degrading enzyme producing strain[J]. The Food Industry, 2015, 36(12) : 76–80. (in Chinese) 戴军, 邵帅, 王常高, 等. 产黄曲霉毒素B1降解酶菌株的发酵工艺优化[J]. 食品工业, 2015, 36(12) : 76–80.
[41] Chen YJ, Kong Q, Chi C, et al. Biotransformation of aflatoxin B1 and aflatoxin G1 in peanut meal by anaerobic solid fermentation of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus[J]. International Journal of Food Microbiology, 2015, 211 : 1–5. DOI:10.1016/j.ijfoodmicro.2015.06.021
[42] Zeng FZ, Gao Y, Li JW, et al. Removal of aflatoxin B1in peanut oil by bio-refining[J]. China Oils and Fats, 2012, 37(1) : 6–10. (in Chinese) 曾凡正, 高阳, 李进伟, 等. 花生油生物精炼法去除黄曲霉毒素的研究[J]. 中国油脂, 2012, 37(1) : 6–10.
[43] Tang HO, Gao XH, Yao B, et al. Effect of glucose oxidase on growth performance, serum parameters and slaughter performance of meat ducks and its antidotal effect on aflatoxin B1[J]. Chinese Journal of Animal Nutrition, 2015, 27(8) : 2361–2367. (in Chinese) 汤海鸥, 高秀华, 姚斌, 等. 葡萄糖氧化酶对肉鸭生长性能、血清指标和屠宰性能的影响及其解除黄曲霉毒素B1效果[J]. 动物营养学报, 2015, 27(8) : 2361–2367.
[44] Hu CY, Wang YP, Fan X, et al. Study on glucose oxidase removing aflatoxin B1 toxicity[J]. Journal of Biology, 2014, 31(2) : 55–57. (in Chinese) 胡常英, 王云鹏, 范星, 等. 葡萄糖氧化酶解除黄曲霉毒素B1应用研究[J]. 生物学杂志, 2014, 31(2) : 55–57.
[45] Cheng W, Zuo RY, Chang J, et al. Effect of probiotics and aflatoxin B1degrading enzyme on growth performance of broilers and its mechanisms[J]. Chinese Journal of Animal Nutrition, 2014, 26(6) : 1608–1615. (in Chinese) 程伟, 左瑞雨, 常娟, 等. 益生菌和黄曲霉毒素B1降解酶对肉仔鸡生长性能的影响及其作用机理[J]. 动物营养学报, 2014, 26(6) : 1608–1615.
[46] Zuo RY, Chang J, Yin QQ, et al. Effect of the combined probiotics with aflatoxin B1-degrading enzyme on aflatoxin detoxification, broiler production performance and hepatic enzyme gene expression[J]. Food & Chemical Toxicology, 2013, 59 : 470–475.