微生物学通报  2016, Vol. 43 Issue (7): 165-1659

扩展功能

文章信息

姬玉娇, 祝倩, 耿梅梅, 陈闻, 印遇龙, 孔祥峰
JI Yu-Jiao, ZHU Qian, GENG Mei-Mei, CHEN Wen, YIN Yu-Long, KONG Xiang-Feng
高、低营养水平饲粮对环江香猪结肠菌群结构及代谢物的影响
Effect of diets with high- or low-level nutrient on colonic microbial community structure and metabolites in Huanjiang mini-pigs
微生物学通报, 2016, 43(7): 165-1659
Microbiology China, 2016, 43(7): 165-1659
10.13344/j.microbiol.china.150594

文章历史

收稿日期: 2015-08-05
接受日期: 2015-11-13
优先数字出版日期(www.cnki.net): 2015-12-16
高、低营养水平饲粮对环江香猪结肠菌群结构及代谢物的影响
姬玉娇1, 祝倩1, 耿梅梅1, 陈闻1, 印遇龙1, 孔祥峰1, 2     
1. 中国科学院亚热带农业生态研究所 亚热带农业生态过程重点实验室 湖南 长沙 410125;
2. 中国科学院环江喀斯特生态系统观测研究站 香猪研究中心 广西 环江 547100
摘要: 【目的】研究两种饲粮对环江香猪结肠内容物菌群结构及其代谢物的影响。【方法】选用33.5±8.1 kg 的环江香猪10头,随机分为两组,每组5头猪,单栏饲养,分别饲喂高营养水平饲粮(粗蛋白质含量为13.11%,消化能为14.73 MJ/kg)和低营养水平饲粮(粗蛋白质含量为9.77%,消化能为12.24 MJ/kg)。饲喂75 d 后屠宰,每组选3头猪采集结肠内容物提取细菌总DNA,PCR扩增获得16S rRNA 基因V4标签片段,用于MiSeq 高通量测序,基于QIIME 平台比较结肠内容物菌群结构多样性;每组取5头猪的结肠内容物,利用气相色谱和液相色谱分析其中短链脂肪酸、氨氮、生物胺、吲哚和粪臭素的含量。【结果】硬壁菌门、拟杆菌门、螺旋体门和软壁菌门细菌为环江香猪结肠内容物中的优势菌门;饲粮组成不影响环江香猪结肠内容物菌群结构的多样性,高营养水平饲粮组结肠内容物中广古细菌含量显著低于、瘤胃球菌属和假丁酸弧菌属细菌含量显著高于低营养水平饲粮组;高营养水平饲粮组环江香猪结肠内容物中乙酸和丙酸含量显著低于、氨氮和尸胺含量显著高于低营养水平饲粮组。【结论】硬壁菌门、拟杆菌门、螺旋体门和软壁菌门细菌为环江香猪结肠内容物中的优势菌门,短期饲喂高营养水平饲粮可改变环江香猪结肠中的部分微生物含量及其代谢特性。
关键词: 环江香猪    饲粮组成    结肠    菌群    代谢产物    
Effect of diets with high- or low-level nutrient on colonic microbial community structure and metabolites in Huanjiang mini-pigs
JI Yu-Jiao1, ZHU Qian1, GENG Mei-Mei1, CHEN Wen1, YIN Yu-Long1, KONG Xiang-Feng1, 2     
1. Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China;
2. Research Center of Mini-Pig, Huanjiang Observation and Research Station for Karst Ecosystems Chinese Academy of Sciences, Huanjiang, Guangxi 547100, China
Received: August 05, 2015; Accepted: November 13, 2015; Published online (www.cnki.net): December 16, 2015
Foundation item: “Western Light” Key Program for Talent Cultivation from Chinese Academy of Sciences; National Nature Science Foundation of China (No. 31270044); Key Technologies Research and Development Program of China (No. 2012BAC17B0102)
Corresponding author: KONG Xiang-Feng, Tel: 86-731-84619763; E-mail: nnkxf@isa.ac.cn
Abstract: [Objective] We studied the effect of two diets on colonic microbial community structure and metabolites in Huanjiang mini-pigs. [Methods] Ten Huanjiang mini-pigs (initial body weight 33.5±8.1 kg) were randomly assigned into 2 groups with 5 pigs each, of which one group was fed with a diet with high-level nutrient (crude protein 13.11%, digestible energy 14.73 MJ/kg), and the other with low-level nutrient (crude protein 9.77%, digestible energy 12.24 MJ/kg). After 75 d, all animals were killed and the samples of colonic content were collected. Total bacterial DNA of three samples of pigs per group was extracted, and used to amplify PCR for 16S rRNA gene V4 tag fragment and sequence using high-throughput MiSeq technique. Based on the QIIME platform, the microbial community diversity in colonic content was compared. The contents of short-chain fatty acid, ammonia, bioamine, indole, and skatole in colonic contents from five pigs per group were also analyzed using gas chromatography or liquid chromatography. [Results] Firmicutes, Bacteroidetes, Spirochaetes, and Tenericutes were the dominant phyla in colonic content of Huanjiang mini-pigs; dietary nutrient components did not affect the microbial community diversity in colonic content of Huanjiang mini-pigs. The relative abundance of Euryarchaeota was lower in colonic content of pigs fed diet with high-level nutrient, whereas Ruminococcus and Pseudobutyrivibrio were higher than those fed diet with the low-level nutrient. The contents of acetate and propionate were lower in colonic content of pigs fed diet with high-level nutrient, but ammonia and cadaverine were higher than those fed diet with the low-level nutrient. [Conclusion] Firmicutes, Bacteroidetes, Spirochaetes, and Tenericutes were the dominant phyla in colonic content of Huanjiang mini-pigs; diet with high-level nutrient in short feeding-period altered the contents of several colonic bacteria and their metabolic properties.
Key words: Huanjiang mini-pig    Dietary components    Colon    Microbial community    Metabolites    

动物后肠中含有1 000多种微生物,每克肠道内容物中含有约1012个微生物细胞。这些微生物可直接影响或通过其代谢产物间接影响宿主的肠道结构、功能和发育[1],因此有学者将肠道微生物菌群称为“微生物器官”。研究认为,摄入食物的数量、结构和种类会通过影响宿主的肠道菌群而改变其肠道功能[2]。宿主的基因型、年龄和生存环境也是决定肠道菌群结构的重要因素[3]。例如,幼龄动物肠道菌群的个体差异较大,而成年动物肠道菌群可长期处于非常稳定的状态[4]。由于传统的微生物学研究方法具有一定的局限性,研究结果不能反映整个肠道微生物群落的完整信息。近年来发展起来的核酸测序技术,具备通量高、准确度高、成本低等优点,能够更加全面、准确地反映肠道菌群的结构与组成,已成为研究肠道微生物的主要技术手段[5]

我国地方品种猪资源丰富,且具有适应能力强、耐粗饲、肉质好等特征。由于动物肠道微生态对其生长发育、生理代谢和健康维持发挥着重要作用[1, 6],推测地方品种猪具备的上述优良性状可能与其肠道微生态密切相关。结肠是动物胃肠道中微生物含量最多的部位。在小肠中未被消化的抗性淀粉、非淀粉多糖和寡糖等碳水化合物以及食物蛋白质残渣和小肠分泌的黏液、酶类等物质,在结肠微生物作用下可被发酵分解为短链脂肪酸、氨、生物胺等代谢产物,其中有些代谢产物可作为能源物质被宿主利用,而有些代谢产物会影响宿主代谢功能与机体健康[1]。可见,饮食是影响动物胃肠道微生物组成和代谢的主要因素之一。目前,一些地方品种猪的优势性状出现明显退化,这可能与其群体规模变小、营养供给不合理、饲养方式发生改变等因素有关[7]。为了探讨饲粮营养水平与地方品种猪耐粗饲性状的联系,本文利用Illumina MiSeq高通量测序、气相色谱和液相色谱等技术,测定高、低两种营养水平饲粮对我国优良地方小型猪—环江香猪结肠菌群结构多样性及其代谢产物的影响。

1 材料与方法 1.1 试验动物、分组与饲养管理

动物试验在中国科学院环江喀斯特生态系统观测研究站环江香猪实验基地开展。选取10头6-7月龄的环江香猪,体重为33.5±8.1 kg,随机分为2个饲粮处理组,每组5头,单栏饲养,分别饲喂高营养水平饲粮(粗蛋白质含量为13.11%,消化能为14.73 MJ/kg)和低营养水平饲粮(粗蛋白质含量为9.77%,消化能为12.24 MJ/kg)。饲粮配方与营养水平见表 1。每日饲喂2次(08:30和17:00),每头环江香猪的日饲喂量为其初始体重的2.5%,饲养75 d后屠宰试验猪,取其结肠前段和结肠后段内容物,-80 ℃保存备用。

表 1 两种饲粮的组成与营养水平(风干样为基础,%) Table 1 The components and nutrient level of the two experiment diets (air-dry basis, %)
    成分Ingredients高营养水平饲粮 High nutrient level diet低营养水平饲粮 Low nutrient level diet    营养水平b Nutrient levelb高营养水平饲粮 High nutrient level diet低营养水平饲粮 Low nutrient level diet
注:a:预混料为每千克饲粮提供:VA 12 040 IU,VD3 2 112 IU,VE 29.7 IU,VK3 2.8 mg,VB1 1.2 mg,VB2 7.1 mg,VB6 1.3 mg,VB12 0.03 mg,烟酸42.9 mg,泛酸21.6 mg,叶酸0.44 mg,生物素0.12 mg,胆碱320 mg,Fe 80 mg,Cu 40 mg,Zn 140 mg,Mn 52 mg,I 0.56 mg,Co 1.4 mg,Se 0.33 mg;b:消化能、钙和总磷为计算值,其余为实测值.
Note: a: The premix provides the following per kg of diet: VA 12 040 IU, VD3 2 112 IU, VE 29.7 IU, VK3 2.8 mg, VB1 1.2 mg, VB2 7.1 mg, VB6 1.3 mg, VB12 0.03 mg, nicotinic acid 42.9 mg, pantothenic acid 21.6 mg, folic acid 0.44 mg, biotin 0.12 mg, choline 320 mg, Fe 80 mg, Cu 40 mg, Zn 140 mg, Mn 52 mg, I 0.56 mg, Co 1.4 mg, Se 0.33 mg; b: Digestive energy, Ca, and TP were calculated values, and others were measured values.
玉米Corn58.2057.20消化能DE (MJ/kg)14.7312.24
豆粕Soybean meal11.000.00粗蛋白CP13.119.77
麦麸Wheat bran11.5011.00粗纤维CF4.566.86
米糠Rice bran4.0013.00粗脂肪EE9.345.00
苜蓿草粉Alfalfa meal3.0014.00钙Ca0.620.58
赖氨酸Lys0.880.88总磷TP0.520.44
蛋氨酸Met0.270.27赖氨酸Lys1.110.83
苏氨酸Thr0.330.33蛋氨酸+胱氨酸Met+Cys0.650.52
色氨酸Try0.080.08
大豆油Soybean oil7.500.00
磷酸氢钙Dicalcium phosphate1.151.15
石粉Limestone0.790.79
食盐Salt0.300.30
预混料Premixa1.001.00
1.2 结肠内容物细菌总DNA

每个处理组取3头试验猪的结肠内容物样品,采用QIAamp DNA Stool Mini Kit (德国QIAGEN 公司)提取微生物总DNA,利用NanoDrop® ND1000(NanoDrop Technologies Inc.,DE,USA)测定其浓度(mg/L)和纯度(OD260/OD280)。取适量的DNA 样品于离心管中,使用无菌水稀释至1 mg/L 备用。

1.3 16S rRNA基因V4区的PCR扩增及测序

利用稀释后的总DNA作为模板,使用细菌通用引物P1 (515F):5′-GTGCCAGCMGCCGCGGTAA-3′和P2 (806R):5′-GGACTACHVGGGTWTCTAAT-3′,对16S rRNA基因V4区域片段进行PCR扩增。扩增体系(30 μL):2×Master Mix (NEB,美国)12.5 μL,引物(2 μmol/L)各3 μL,牛血清白蛋白(10 mg/L) 0.25 μL,模板10 μL,dd H2O配至30 μL。扩增条件:98 ℃ 1 min;98 ℃ 10 s,50 ℃30 s,72 ℃ 30 s,35个循环;72 ℃ 5 min;4 ℃ 保存。反应结束后将全部反应产物用2%琼脂糖凝胶电泳进行检测,使用Gene JET (Thermo Scientific 公司)胶回收试剂盒回收产物。将纯化后的16S rRNA基因V4区的PCR产物送至北京诺禾致源生物信息科技有限公司,利用Illumina MiSeq平台进行测序。

1.4 结肠代谢产物的测定

每个处理组取5头试验猪的结肠内容物样品,冷冻干燥后,采用气相色谱测定其中乙酸、丙酸、丁酸、异丁酸、戊酸和异戊酸的含量,前处理参考耿梅梅等[8]所述的方法。用UV-160A紫外分光光度计(日本岛津)在550 nm波长处测定氨氮的含量[9]。吲哚和粪臭素含量测定参考姬玉娇[10]的方法,生物胺含量测定参考许丽卫等[11]的方法,均用高效液相色谱检测。

1.5 生物信息学与差异显著性分析

测序得到的PE reads首先根据Overlap关系进行拼接,同时对序列质量进行质控和过滤,利用Uparse软件(v7.0.1001)在97%相似度下聚类,得到OTU代表性序列,并利用RDP Classifier (version 2.2, http://sourceforge.net/projects/rdp-classifier/)[12]与GreenGene数据库(http://greengenes.lbl.gov/cgi-bin/nph-index.cgi)[13]进行物种注释分析(设定阈值为0.8-1.0),赋予每条序列物种单元分类。基于样品测序产生的OTU的结果,通过QIIME软件alpha_diversity.py命令分析样本的Alpha多样性指数,即OTU、ACE、Chao1、Shannon和Simpson指数。在门和属两个分类水平上统计样本的物种丰度,并进行聚类分析。

使用SAS 8.2 GLM procedure程序进行双因子分析(Factorial anova),使用Duncan’s multiple rangetest程序进行菌群Alpha多样性分析;在门和属水平上分析菌群的组成,并对存在差异的属与代谢产物进行Spearman相关性分析,定义R绝对值≥0.5时存在相关性。以P<0.05为显著性差异。

2 结果与分析 2.1 两种饲粮对结肠内容物微生物序列丰度和多样性的影响

对12个结肠内容物微生物样品测序共产生503 398条序列,每个样品平均产生41 950条,用于OTU划分的序列数共475 059条,平均每个样品39 588条。4个组的稀疏曲线显示,在<3 155条序列时,检测出的物种数量(可反映OTU数量)随序列数增加而迅速增加,在约9 445条序列时检测出的物种数量缓慢增加,之后趋于平台期(图 1)。

图 1 环江香猪结肠内容物细菌的稀疏曲线 Figure 1 Rarefaction curve of bacteria in colonic content of Huanjiang mini-pigs 注:HD:高营养水平饲粮;LD:低营养水平饲粮;PC:近端结肠;DC:远端结肠. n=3,下同. Note: HD: High nutrient-level diet; LD: Low nutrient-level diet; PC: Proximal colonic content; DC: Distal colonic content. n=3, the same as belows.

序列比对结果表明,在97%(即种)水平上进行OTU划分,共检出785个不同种系型(包括界、门、纲、目、科、属和种)。Alpha多样性分析结果表明,近端结肠内容物中微生物OTU数量少于远端结肠。从趋势上来看,两种饲粮组环江香猪远端结肠比近端结肠有较高的菌群结构多样性。但无论是饲粮组间还是肠段间,OTU、Chao1、Shannon和Simpson指数均无显著性差异(P>0.05,表 2)。

表 2 环江香猪结肠内容物微生物OTU数量及Alpha多样性 Table 2 OTU number and alpha diversity of microbes of colonic content in Huanjiang mini-pigs
项目 Items高营养水平饲粮HD低营养水平饲粮LDSEMPP values
近端结肠 PC远端结肠 DC近端结肠 PC远端结肠 DC饲粮 Diet部位 Location饲粮×部位 Diet×Location
OTUs1 2501 3331 3621 3416.7690.4690.7060.533
Chao11 2931 3621 3571 3266.4660.8560.7960.508
Shannon7.1107.7997.0267.4560.4820.6100.2010.756
Simpson0.9600.9810.9360.9690.1160.4240.2950.773
ACE1 3111 3731 3741 3296.3850.9020.9070.472
2.2 饲粮组成对环江香猪结肠内容物门水平菌群结构的影响

采用RDP和BLAST同源性序列比对聚类相结合的方法,将所有的序列鉴定为39个门。统计任一样品中相对含量≥0.1%的12个门的相对丰度,发现硬壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)、螺旋体门(Spirochaetes)和软壁菌门(Tenericutes)细菌的含量最高,属于优势菌门;变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、疣微菌门(Verrucomicrobia)、广古细菌门(Euryarchaeota)、纤维杆菌门(Fibrobacteres)、蓝细菌门(Cyanobacteria)、脱铁杆菌门(Deferribacteres)和浮霉菌门(Planctomycetes)细菌的含量较低(表 3)。广古细菌门是鉴定到的唯一一个古细菌门,各样品中细菌的平均含量为0.23%,其分布范围为0.01%-0.54%。高营养水平饲粮组结肠内容物中广古细菌门细菌含量显著低于低营养水平饲粮组(P<0.05)。

表 3 环江香猪结肠内容物中门水平上的细菌相对丰度 Table 3 Bacteria relative abundance on phylum level of colonic content in Huanjiang mini-pigs
项目 Items高营养水平饲粮HD低营养水平饲粮LDSEMPP values
近端结肠 PC (%)远端结肠 DC (%)近端结肠 PC (%)远端结肠 DC (%)饲粮 Diet部位 Location饲粮×部位 Diet×Location
Firmicutes59.1550.1672.5661.060.1840.0720.1190.836
Bacteroidetes29.4134.2515.6526.180.1900.1190.2530.660
Spirochaetes7.599.635.236.580.1140.2660.4760.882
Tenericutes1.081.642.202.600.0520.0540.3270.858
Proteobacteria1.191.981.331.580.0500.7860.2680.559
Actinobacteria0.350.480.950.700.0410.1890.8590.528
Other bacteria0.480.730.640.490.0270.7700.7270.150
Verrucomicrobia0.490.600.540.130.0450.5640.6760.465
Euryarchaeota0.070.070.450.370.0270.0240.7240.755
Fibrobacteres0.150.100.280.200.0200.1330.3510.848
Cyanobacteria0.030.310.070.050.0280.4290.3500.292
Deferribacteres0.020.050.030.020.0110.5410.6060.326
Planctomycetes0.000.000.070.030.0130.1690.5380.517
Unclassified bacteria0.000.000.000.020.0070.4630.2810.538

在饲喂两种饲粮条件下,近端结肠和远端结肠内容物中分布的细菌具有相似性,即远端结肠内容物中拟杆菌门、螺旋体门、软壁菌门和变形菌门的相对含量均高于近端结肠,而硬壁菌门和纤维杆菌门细菌的相对含量均低于近端结肠(P>0.05)。高营养水平饲粮组硬壁菌门、软壁菌门、放线菌门和纤维杆菌门等细菌的相对丰度低于低营养水平饲粮组(P>0.05)。

2.3 饲粮组成对环江香猪结肠内容物属水平菌群结构的影响

对12个结肠内容物样品所得到的细菌OTU进行物种注释,共检测出344个属;对所有样品含量之和相对丰度≥0.5%的属进行了统计,共41个属(表 4)。高营养水平饲粮组瘤胃球菌属([Ruminococcus])和假丁酸弧菌属(Pseudobutyrivibrio)细菌相对含量显著高于、未分类属细菌相对含量显著低于低营养水平饲粮组(P<0.05)。从不同部位的结肠内容物细菌属水平来看,远端结肠内容物中脱硫弧菌属(Desulfovibrio)、颤螺菌属(Oscillospira)、瘤胃球菌属、葡萄球菌属(Staphylococcus)、拟杆菌属(Bacteroides)和棒状杆菌属(Corynebacterium)细菌的含量显著高于近端结肠(P<0.05)。所有测定样品中密螺旋体属(Treponema) (5.05%-26.70%)、乳酸菌属(Lactobacillus) (4.44%-12.72%)、瘤胃球菌属(Ruminococcus) (4.47%-7.20%)、梭菌属(Clostridium)(3.64%-5.05%)、葡萄球菌属(Turicibacter)(1.84%-3.98%)、普氏菌属(Prevotella) (1.59%-3.67%)和颤螺旋菌属(1.85%-4.77%)细菌的相对含量较高,为环江香猪结肠内容物中的优势菌属。

表 4 环江香猪结肠内容物中属水平上的细菌相对丰度 Table 4 Bacteria relative abundance on genus level in colonic content of Huanjiang mini-pigs
    门水平 Phylum level    属水平 Genus level高营养水平饲粮 HD低营养水平饲粮 LDSEMPP values
近端结肠 PC (%)远端结肠 DC (%)近端结肠 PC (%)远端结肠 DC (%)饲粮 Diet部位 Location饲粮×部位 Diet×Location
注:12[Ruminococcus]与Ruminococcus,Prevotella与[Prevotella]分别属于相同的门不同的科.
Note: 1, 2: [Ruminococcus] and Ruminococcus are belong to the same phylum and different families, as well as Prevotella and [Prevotella].
VerrucomicrobiaAkkermansia0.020.010.270.010.030.3730.3290.362
TenericutesAnaeroplasma0.130.180.210.160.020.7200.9730.490
SpirochaetesTreponema7.565.059.6226.70.260.2560.4590.905
ProteobacteriaAcinetobacter0.010.010.120.040.020.2270.4770.466
Anaerovibrio0.170.270.250.200.020.9770.6230.179
Campylobacter0.090.030.140.040.020.5440.1810.741
Clostridium4.694.155.053.630.070.9180.2400.583
Coprococcus0.310.440.520.310.030.7460.7390.190
Desulfovibrio0.110.410.310.480.020.2100.0370.504
Dorea0.110.150.060.090.010.0590.1750.914
Lactobacillus10.4912.724.446.930.130.0840.4550.966
Megasphaera0.110.380.270.060.030.5890.8290.108
Oscillospira2.294.761.854.630.070.7650.0210.872
p-75-a50.260.420.400.520.020.2740.2080.840
Phascolarctobacterium0.340.290.420.300.030.7890.5990.854
Pseudomonas0.050.040.090.030.010.4140.0710.266
rc4-40.080.110.090.080.010.8260.7700.493
Roseburia1.700.981.550.920.040.7420.0550.880
Ruminococcus5.487.204.476.630.070.3970.0580.812
[Ruminococcus]10.160.220.130.160.010.0280.0280.286
Staphylococcus0.080.130.080.130.011.0000.0340.959
Sutterella0.300.230.230.210.030.7130.7360.846
Turicibacter3.981.833.812.160.080.9480.1370.833
Veillonella0.120.140.120.080.010.3420.8070.342
FirmicutesAnaerotruncus0.040.080.030.040.010.3090.3510.626
Dehalobacterium0.030.070.020.040.010.3750.1810.692
Facklamia0.090.040.060.070.010.9240.5290.368
Faecalibacterium0.050.050.090.090.010.1570.9270.956
Lachnospira0.070.060.070.100.010.4620.7420.423
Mitsuokella0.020.130.060.020.010.2790.2510.023
Pediococcus0.080.040.050.030.010.5030.3670.789
Pseudobutyrivibrio0.060.120.040.030.010.0300.3340.181
BacteroidetesCF2311.340.470.540.480.050.4130.3400.403
Prevotella3.611.603.663.520.060.1380.1100.157
Parabacteroides0.870.711.000.740.030.6530.2650.775
ActinobacteriaBacteroides0.950.390.870.460.030.9780.0150.641
Bifidobacterium0.270.830.320.540.040.6750.1990.546
Corynebacterium0.020.070.030.090.010.4080.0360.754
Paludibacter1.050.410.640.500.050.7110.3820.565
[Prevotella]20.740.290.700.520.040.6730.1800.556
YRC220.600.420.380.460.030.4680.6820.296
Unclassified bacteria20.2217.7329.3324.810.130.0210.2490.727
Other bacteria (<0.5%)31.2831.7932.1733.100.140.7650.8440.955
2.4 两种饲粮对环江香猪结肠内容物中代谢产物的影响

表 5可见,高营养水平饲粮组结肠内容物中乙酸和丙酸的含量均显著低于低营养水平饲粮组(P<0.05),SCFA 总量低于、而支链脂肪酸(BCFA)含量高于低营养水平饲粮组(P>0.05)。

表 5 环江香猪结肠内容物中短链脂肪酸的含量 Table 5 amount of short-chain fatty acids in colonic content of Huanjiang mini-pigs
    项目 Items高营养水平饲粮HD低营养水平饲粮LDSEMPP values
近端结肠 PC (mg/g)远端结肠 DC (mg/g)近端结肠 PC (mg/g)远端结肠 DC (mg/g)饲粮 Diet部位 Location饲粮×部位 Diet×Location
注:n=5;A/P:乙酸/丙酸. 下同.
Note: n=5; A/P: Acetate/ Propionate. The same as belows.
Acetate4.714.737.675.240.6430.0420.1310.127
Propionate1.631.882.602.030.3640.0410.5000.109
Butyrate0.951.091.140.920.3890.9800.8940.519
Isobutyrate0.210.310.170.190.1940.2690.4010.569
Valerate0.350.390.270.230.2630.3490.9770.727
Isovalerate0.220.330.160.190.1960.1670.3430.606
Total SCFA8.088.7312.018.800.8090.1160.2910.128
A/P2.912.522.922.680.3850.7270.2520.777
Total BCFA0.440.630.330.380.2740.2070.4650.583

表 6可见,高营养水平饲粮组结肠内容物中氨氮和尸胺含量显著高于低营养水平饲粮组(P<0.05),近端结肠和远端结肠内容物中吲哚和总生物胺含量也高于低营养水平饲粮组(P>0.05);高营养水平饲粮组近端结肠内容物中粪臭素含量最低,但与其他组间无显著差异(P>0.05)。

表 6 环江香猪结肠内容物中含氮代谢物的含量 Table 6 The amount of nitrogen-containing metabolites in colonic content of Huanjiang mini-pigs
项目 Items高营养水平饲粮HD低营养水平饲粮LDSEMPP values
近端结肠 PC (µg/g)远端结肠 DC (µg/g)近端结肠 PC (µg/g)远端结肠 DC (µg/g)饲粮 Diet部位 Location饲粮×部位 Diet×Location
NH3-N (mg/g)17.4414.8312.7514.070.7900.0360.5700.106
Indole9.128.837.837.470.3350.0740.6490.959
Skatole2.424.373.033.230.3380.6910.1180.196
Trytamine0.510.751.410.520.5190.4890.5090.264
Phenylethylamine1.151.241.841.760.4610.1410.9880.817
Putrescine5.602.834.924.811.0020.7170.4330.467
Cadaverine1.872.071.191.090.3900.0140.8620.591
1,7-Heptyl diamine0.480.791.150.460.3300.3950.3440.031
Tyramine0.862.202.021.930.6450.5520.4110.346
Spermidine12.7513.0214.938.631.1600.6490.2310.196
Spermine5.474.183.711.790.7780.0830.1660.771
Total bioamine28.6831.1727.0820.991.7100.7330.2800.424
2.5 属水平差异细菌与差异代谢物的相关性

表 7可见,乙酸含量分别与瘤胃球菌属和颤螺菌属细菌的相对含量呈极显著正相关(P<0.01);丙酸含量与瘤胃球菌属、颤螺菌属和葡萄球菌属细菌的相对含量呈显著正相关(P<0.05),与拟杆菌属细菌的相对含量呈显著负相关(P<0.05);氨氮和尸胺含量与任一测定菌的相对含量均无相关性(P>0.05)。

表 7 结肠内容物细菌多样性与代谢产物的相关性 Table 7 Correlation coefficients between colonic bacterial community and metabolites
   ItemsRuminococcusPseudobutyrivibrioDesulfovibrioOscillospiraStaphylococcusBacteroidesCorynebacterium
Note: **: P<0.01; *:P<0.05.
NH3-N−0.46−0.28−0.40−0.34−0.41−0.46−0.39
Acetate0.83**0.210.410.64**0.46−0.48−0.10
Propionate0.620.390.520.590.69−0.630.11
Cadaverine0.410.37−0.22−0.12−0.210.15−0.20
3 讨论

本研究发现,在97%(即种)水平上进行细菌OTU划分,从31 460条序列中共检测出2 597个OTU;两种饲粮对结肠内容物中细菌OTU数量和Alpha多样性的影响不大,可能是因为本研究中的饲养时间较短,或者高营养水平饲粮对环江香猪来说营养水平仍不够高。硬壁菌门和拟杆菌门为环江香猪结肠内容物中的优势菌门。Lu等[14]研究也发现,硬壁菌门是仔猪结肠内的优势菌门;Edward等[15]也报道,杜洛克断奶仔猪粪便中硬壁菌门细菌的含量最高,其次是拟杆菌门细菌。在改变饲粮营养水平条件下也未能改变它们的优势地位,可见它们在结肠中占据重要地位。硬壁菌门和拟杆菌门都具有降解多糖、促进机体能量吸收的作用。与低营养水平饲粮组相比,高营养水平饲粮组环江香猪结肠中的硬壁菌门、软壁菌门、放线菌门和纤维杆菌门等细菌的相对丰度降低,但差异不显著,可能与本研究测定样品的重复数较少有关。在属水平上,密螺旋体属、乳酸菌属、瘤胃球菌属、梭菌属、葡萄球菌属、普氏菌属和颤螺菌属细菌为环江香猪结肠内容物中的优势菌属。Lamendella等的研究也发现,普氏菌属是猪肠道中的优势菌属[16]。Mackie研究发现,颤螺菌属是较难培养的厌氧菌,常见于草食动物肠道中[17],而在环江香猪结肠内容物中颤螺菌属为优势菌属,这与其耐粗饲有很大关系。

甲烷菌属于广古细菌门,可利用其他微生物厌氧发酵产生的氢气和氨气作为底物合成甲烷,从而减少肠道中气体的累积,维持后肠的厌氧环境,对维持肠道微生物区系的稳定、营养物质的消化利用和肠道健康均具有重要作用[18]。瘤胃球菌属、颤螺菌属和假丁酸弧菌属细菌均是硬壁菌门中能够分解纤维的菌属[19]。拟杆菌属细菌也是肠道中非纤维植物成分的主要降解菌,梭菌属细菌也具有一定的纤维素分解能力。普氏菌属中拥有高活性的半纤维素分解菌[20],并且对植物非纤维多糖和蛋白质的降解均具有至关重要的作用[15]。环江香猪结肠内存在的优势菌多具有纤维素和半纤维素分解能力,这与其具有较强的耐粗饲能力有关。另外,饲喂低营养水平饲粮时,环江香猪结肠内容物中广古细菌门细菌的比例较高,瘤胃球菌属和假丁酸弧菌属细菌的比例较低,与饲粮中的纤维素、蛋白质等营养素的含量高低有关。

结肠是猪后肠中最为发达的肠段,以微生物消化为主,可将前端消化道不能消化的糖类、纤维素、半纤维素以及含氮类物质分解发酵为SCFA、氨、生物胺、吲哚和酚类等物质[21]。测定肠道中上述代谢产物的含量和组成比例,可反映微生物的发酵能力和发酵模式。SCFA 尤其是丁酸是结肠粘膜上皮细胞的主要能源物质,可以维持肠粘膜上皮细胞结构的完整性,并促进大肠的生长[22]。在本研究中,饲喂低营养水平饲粮时,结肠中乙酸和丙酸含量显著增加,是因为低营养水平饲粮中高含量的粗纤维促进了微生物的发酵,这对宿主健康有益。研究证明,随着摄入蛋白质的增加,微生物对尿素的降解和氨基酸的脱氨基等作用相应增加,导致肠道内容物中氨的浓度升高[23],过量的氨会降低结肠细胞的呼吸作用,甚至产生毒性作用。尸胺是由大肠杆菌、尸杆菌等微生物中的L-赖氨酸脱羧酶将赖氨酸脱CO2生成[24]。本研究发现,饲喂高营养水平饲粮时,结肠中氨氮与尸胺的含量较高,是因为高营养水平饲粮中含有较高水平的蛋白质和赖氨酸。

本研究相关性分析发现,环江香猪结肠中瘤胃球菌属和颤螺菌属细菌的相对含量与乙酸含量呈显著正相关,这是因为这两种细菌均具有较强的纤维素分解能力,能够生成乙酸。瘤胃球菌属、颤螺菌属和葡萄球菌属细菌相对含量的增加,也能够提高丙酸的含量,因为瘤胃球菌属和颤螺菌属细菌在降解纤维时也会生成少量丙酸,葡萄球菌属与脱硫弧菌属和颤螺菌属细菌相互促进,提高了丙酸含量。拟杆菌属细菌主要降解胃肠道内的非纤维植物成分,与颤螺菌属细菌存在着一定的拮抗关系,因此可间接影响结肠中丙酸的含量。

综上所述,硬壁菌门、拟杆菌门、螺旋体门和软壁菌门细菌为环江香猪结肠内容物中的优势菌门,短期饲喂高营养水平饲粮可改变环江香猪结肠中的部分微生物含量及其代谢特性。

参考文献
[1] Nicholson JK, Holmes E, Wilson ID. Gut microorganisms, mammalian metabolism and personalized health care[J]. Nature Reviews Microbiology, 2005, 3(5): 431-438
[2] Karen PS, Silvia WG, Paul OS, et al. The influence of diet on the gut microbiota[J]. Pharmacological Research, 2013, 69(1): 52-60
[3] Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography[J]. Nature, 2012, 486(7402): 222-227
[4] Claesson MJ, Cusack S, O’Sullivan O, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly[J]. Proceedings of the National Academy of Sciences, 2011, 108(S1): 4586-4591
[5] Li XM, Yang LJ, Huo GC. Illumina technology research the difference of intestinal flora in infants with different feed fashion[J]. Food Science and Technology, 2012, 37(9): 319-324
[6] Zhao LP, Shen J. Whole-body systems approaches for gut microbiota-targeted, preventive healthcare[J]. Journal of Biotechnology, 2010, 149(3): 183-190
[7] Chen QS, Liu XH, Yang HJ, et al. Protection present situation and the suggestion about Chinese local pig resources[J]. China Swine Industry, 2012(1): 19-22 (in Chinese) 陈清深, 刘小红, 杨红杰, 等. 中国地方猪资源保护现状与建议[J]. 中国猪业, 2012(1): 19-22
[8] Geng MM, Xu LW, Yuan HZ, et al. A determination method based on gas chromatography for analysis of short-chain fatty acids in colonic contents of piglet[J]. Progress in Modern Biomedicine, 2015, 15(6): 1010-1014 (in Chinese) 耿梅梅, 许丽卫, 袁红朝, 等. 气相色谱法测定猪结肠内容物中短链脂肪酸含量[J]. 现代生物医学进展, 2015, 15(6): 1010-1014
[9] Zhou XL, Kong XF, Lian GQ, et al. Dietary supplementation with soybean oligosaccharides increases short-chain fatty acids but decreases protein-derived catabolites in the intestinal luminal content of weaned Huanjing mini-piglets[J]. Nutrition Research, 2014, 34(9): 780-788
[10] Ji YJ. Evaluating nutritional value of three kinds of insects[D]. Nanchang: Master’s Thesis of Nanchang University, 2013 (in Chinese) 姬玉娇. 三种昆虫的营养价值评价[D]. 南昌: 南昌大学硕士学位论文, 2013
[11] Xu LW, Geng MM, Zhang LP, et al. Determination of bioamines in colonic contents of piglets by pre-column derivatization RP-HPLC[J]. Acta Nutrimenta Sinica, 2014, 36(1): 78-83 (in Chinese) 许丽卫, 耿梅梅, 张丽萍, 等. 柱前衍生-反相高效液相色谱法测定仔猪结肠内容物生物胺含量[J]. 营养学报, 2014, 36(1): 78-83
[12] Wang Q, Garrity GM, Tiedje JM, et al. Na?ve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology, 2007, 73(16): 5261-5267
[13] de Santis TZ, Hugenholtz P, Larsen N, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB[J]. Applied and Environmental Microbiology, 2006, 72(7): 5069-5072
[14] Lu XM, Lu PZ, Zhang H. Bacterial communities in manures of piglets and adult pigs bred with different feeds revealed by 16S rDNA 454 pyrosequencing[J]. Applied Microbiology and Biotchnology, 2014, 98(6): 2657-2665
[15] Edward ABP, Jong PC, Marilen PB, et al. Characterization of the fecal microbial communities of Duroc pigs using 16S rRNA gene pyrosequencing[J]. Asian-Australasian Journal of Animal Sciences, 2015, 28(4): 584-591
[16] Lamendella R, Domingo JWS, Ghosh S, et al. Comparative fecal metagenomics unveils unique functional capacity of the swine gut[J]. BMC Microbiology, 2011, 11: 103
[17] Mackie RI, Aminov RI, Hu WP, et al. Ecology of uncultivated Oscillospira species in the rumen of cattle, sheep, and reindeer as assessed by microscopy and molecular approaches[J]. Applied and Environmental Microbiology, 2003, 69(11): 6808-6815
[18] Ge T, Mu CL, Zhu WY. Methanogen and human gut health—a review[J]. Acta Microbiologica Sinica, 2015, 55(6): 661-666 (in Chinese) 葛婷, 慕春龙, 朱伟云. 人肠道产甲烷菌与肠道健康[J]. 微生物学报, 2015, 55(6): 661-666
[19] Hou YJ, Xu J, Su YJ, et al. Effects of different dairy ration which has different roughage sources but with same concentration of NFC and FNDF on ruminal fermentation, digestibility and microbial protein synthesis in vitro[J]. China Dairy Cattle, 2013(1): 1-6 (in Chinese) 候玉洁, 徐俊, 苏衍菁, 等. 体外法研究FNDF、NFC 浓度相同的不同粗饲料来源日粮对瘤胃发酵、纤维消化和微生物蛋白合成的影响[J]. 中国奶牛, 2013(1): 1-6
[20] Matsui H, Ogata K, Tajima K, et al. Phenotypic characterization of polysaccharidases produced by four Prevotella type strains[J]. Current Microbiology, 2000, 41(1): 45-49
[21] Kong XF. The research progress of colonic microbial nitrogen metabolism and body health[J]. Feed and Animal Husbandry: New Feed, 2013(4): 10-17 (in Chinese) 孔祥峰. 结肠微生物氮代谢与机体健康研究进展[J]. 饲料与畜牧: 新饲料, 2013(4): 10-17
[22] Segain JP, Raingeard de la Blétière D, Boureille A, et al. Butyrate inhibits inflammatory responses through NF kappa B inhibition: implications for Crohn S disease[J]. Gut, 2000, 47(3): 397-403
[23] Blachier F, Mariotti F, Huneau JF, et al. Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences[J]. Amino Acids, 2007, 33(4): 547-562
[24] Takatsuka Y, Yamaguchi Y, Ono M, et al. Gene cloning and molecular characterization of lysine decarboxylase from selenomonas ruminantium delineate its evolutionary relationship to ornithine decarboxylase from eukaryotes[J]. Journal of Baeteriology, 2000, 182(23): 6732-6741