微生物学通报  2015, Vol. 42 Issue (1): 125-132

扩展功能

文章信息

魏磊, 吴清平, 张菊梅, 吴克刚, 郭伟鹏, 阙绍辉
WEI Lei, WU Qing-Ping, ZHANG Ju-Mei, WU Ke-Gang, GUO Wei-Peng, QUE Shao-Hui
矿泉水和山泉水中铜绿假单胞菌污染调查及分离菌株毒力基因与耐药性分析
The pollution survey of Pseudomonas aeruginosa in mineral water and spring water and the analyses of virulence genes and antibiotic resistance of the isolates
微生物学通报, 2015, 42(1): 125-132
Microbiology China, 2015, 42(1): 125-132
10.13344/j.microbiol.china.140331

文章历史

收稿日期: 2014-04-19
接受日期: 2014-05-21
优先数字出版日期(www.cnki.net): 2014-05-23
矿泉水和山泉水中铜绿假单胞菌污染调查及分离菌株毒力基因与耐药性分析
魏磊1, 2, 吴清平1 , 张菊梅1, 吴克刚2, 郭伟鹏1, 阙绍辉3    
1. 广东省微生物研究所 省部共建华南应用微生物国家重点实验室 广东省菌种保藏与应用重点实验室 广东省微生物应用新技术公共实验室 广东 广州 510070
2. 广东工业大学 轻工化工学院食品工程与科学系 广东 广州 510006
3. 广东环凯微生物科技有限公司 广东 广州 510663
摘要: 【目的】初步掌握全国矿泉水和山泉水生产过程中铜绿假单胞菌(Pseudomonas aeruginosa)的污染情况。分析矿泉水与山泉水中铜绿假单胞菌的致病性与耐药性。【方法】研究通过对广西、湖北、云南等全国9个省36家水厂进行采样,共采集108个样本,并根据《饮用天然矿泉水检测方法》国家标准(GB/T 8538-2008)检测其铜绿假单胞菌的污染率、污染水平。对分离出的铜绿假单胞菌菌株进行毒力基因与药敏实验。【结果】全国矿泉水水源水、活性碳过滤后水、成品水的污染率分别为16.7%、16.7%、0,污染水平分别为3.7、2.0、0 CFU/250 mL。全国山泉水水源水、活性碳过滤后水、成品水的污染率分别为66.7%、83.3%、5.6%,污染水平分别为5.1、7.3、2.0 CFU/250 mL。对所分离出的36株铜绿假单胞菌进行毒力基因检测和药敏试验显示:exoUexoSphzMtoxAlasB检出率分别为25.0%、75.0%、100%、88.8%、100%,但对美国国家临床实验室标准化委员会标准中14种抗生素均无耐药性。【结论】山泉水水源水、活性碳过滤后水、成品水污染率明显高于矿泉水,但污染水平均较低,无大于40.0 CFU/250 mL样品检出。山泉水活性碳过滤后污染率最高,表明大部分企业在活性碳过滤环节存在污染问题。毒力基因exoUexoSphzMtoxAlasB在分离到的36株铜绿假单胞菌检出率高,但分离到的菌株对所选取的14种抗生素均无耐药性。
关键词: 矿泉水    山泉水    铜绿假单胞菌    毒力基因    耐药性    
The pollution survey of Pseudomonas aeruginosa in mineral water and spring water and the analyses of virulence genes and antibiotic resistance of the isolates
WEI Lei1,2, WU Qing-Ping11 , ZHANG Ju-Mei1, WU Ke-Gang2, GUO Wei-Peng1, QUE Shao-Hui3     
1. State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, Guangdong 510070, China
2. Department of Food Science and Technology, School of Chemical Engineering and Light Industry, Guangdong University of Technology,Guangzhou, Guangdong 510006, China
3. Guangdong Huankai Microbial Science and Technology Company Limited,Guangzhou, Guangdong 510663, China
Abstract: [Objective]This experiment was made to obtain a preliminary understanding of pollution of Pseudomonas aeruginosa in the production process of mineral water and spring water. Pathogenicity and antibiotic resistance of P. aeruginosa of mineral water and spring water were analyzed. [Methods]This experiment based on 108 samples from 36 mineral water and spring water factories in 9 provinces. According to the methods for examination of drinking natural mineral water (GB/T8538-2008), the pollution rates and pollution levels of P. aeruginosa had been obtained. The tests of virulence gene and antibiotic resistance were tested on collected P. aeruginosa isolates. [Results]The pollution rates of source water, activated carbon filtered water and finished products of mineral water were 16.7%, 16.7%, 0 respectively. The pollution levels of source water, activated carbon filtered water and finished products of mineral water were 3.7, 2.0, 0 CFU/250 mL respectively. The pollution rates of source water, activated carbon filtered water and finished products of spring water were 66.7%, 83.3% and 5.6% respectively. The pollution levels of source water, activated carbon filtered water and finished products of spring water were 5.1, 7.3, 2.0 CFU/250 mL respectively. The virulence gene and antibiotic resistance tests of 36 P.aeruginosa isolates showed that the detection rates of exoU, exoS, phzM, toxA and lasB were 25.0%, 75.0%, 100%, 88.8%, 100% respectively; 36 P. aeruginosa strains were sensitive to 14 kinds of antibiotics which were selected according National Committee for Clinical Laboratory Standards of The United States of America. [Conclusion] The pollution rates of source water, activated carbon filtered water and finished products of spring water were significantly higher than mineral water. Both the pollution levels of 2 kinds of water samples were relatively low and there was no greater than 40.0 CFU/250 mL of the sample. The activated carbon filtered water of spring water was the highest pollution rate among all samples, which indicated that most of the factories had some microbial pollution in the activated carbon filter link. The high detection rates of virulence genes, including exoU, exoS, phzM, toxA and lasB in 36 strains of collected P.aeruginosa were analysed. All 36 isolates of collected P.aeruginosa were sensitive to 14 kinds of antibiotics.
Key words: Mineral water    Spring water    Pseudomonas aeruginosa    Virulence gene    Antibiotic resistance    

据世界卫生组织(WHO)统计,人类70%-80%的疾病都来源于不洁净的饮用水。随着人们生活品质的提高,矿泉水和山泉水已受到广大消费者青睐,但近年来却时有成品水中检出铜绿假单胞菌(Pseudomonas aeruginosa)的报道,Varga等在匈牙利国内492份成品水中的7份检出铜绿假单胞菌,该菌的污染率为1.4%[1, 2]。本研究团队邓梅清等在广东省30份成品水中有4份检出该菌,污染率为13.3%[3]。铜绿假单胞菌俗称绿脓杆菌。在自然界分布广泛,主要存在于潮湿的环境,该菌为条件致病菌,是医院内感染的主要病原菌之一[4, 5]。患代谢性疾病、血液病和恶性肿瘤的患者,以及术后或某些治疗后的患者易感染该菌,引起的医院内感染高达30%以上,而呼吸道感染率更高,居病原菌之首[6, 7]

铜绿假单胞菌的致病作用主要是因为其可表达粘附素、弹性蛋白酶等十几种毒力因子。其中基因exoSexoU分别编码胞外酶ExoS和ExoU,ExoS主要通过破坏宿主细胞肌动蛋白细胞骨架重排等作用来抑制其吞噬作用,而ExoU是具有磷脂酶和腺普酸环化酶活性的细胞毒素;基因toxA编码最具有毒性的胞外产物外毒素A,它可以阻止宿主细胞蛋白质的合成,使组织坏死;基因phzM编码吩嗪化合物从而抑制细胞线粒体活动;基因lasB编码的肺弹性蛋白酶可以水解宿主细胞的弹性蛋白等结缔组织成分[8]。研究表明毒力因子的起动主要是通过群体感应控制,各种致毒因子是否表达,表达水平及各种毒力因子协同作用共同影响着铜绿假单胞菌的毒性[9]。随着抗菌药物的广泛应用,越来越多的研究发现了高耐药性铜绿假单胞菌株。一般认为铜绿假单胞菌通过产生抗生素灭活酶改变抗菌药物作用的靶位、膜屏障与主动外排限制药物到达其作用靶位、形成生物膜等几种方法产生耐 药性[10]

迄今为止还没有关于矿泉水与山泉水中铜绿假单胞菌污染情况的研究报告,本研究从9个省36家矿泉水和山泉水水厂、采集了108个水样,在检测其铜绿假单胞菌的污染率、污染水平后,对分离到的菌株进行毒力基因与药敏试验,以期为矿泉水和山泉水生产企业和食品安全监督部门防控铜绿假单胞菌污染提供依据。

1 材料与方法 1.1 样品采集

根据“饮用天然矿泉水检测方法”国家标准(GB/T 8538-2008),从2013年1月开始,分别采集广西、福建、海南、湖北、上海、北京、云南、贵州、四川9个省[11]。每个地区采集4家水厂的成品水、碳后水和水源水,共12个水样,累计36家水厂,108个水样。全部水样均在4 °C 1 d内运到实验室进行检测。

1.2 材料及仪器

API20NE生化鉴定条,法国梅里埃公司; 0.45 μm滤膜,美国Millipore公司;CN培养基、M-H培养基、不锈钢多联过滤系统,广东环凯公司;DNA引物,华大基因公司;DNA提取试剂盒,生工生物工程有限公司;药敏纸片,Oxoid公司。

1.3 实验方法

根据 GB/T 8538-2008,将250 mL水样通过0.45 μm滤膜,将滤膜放置于CN选择培养基上,36 °C培养2 d,铜绿假单胞菌菌落选择参照表 1

表 1 铜绿假单胞菌菌落选择与鉴定 Table 1 The selection and evaluation of Pseudomonas aeruginosa colony
菌落形态 Colony morphology 乙酰胺肉汤 Acetamide broth 氧化酶试验 Oxidase test 金氏B培养是否产荧光 Kim B (Fluorescent) 判定 Judge
蓝/绿 Blue/Green NT NT NT Y
非蓝绿、产荧光 No B/G,Fluorescent + NT NT Y
红褐色 Reddish brown + + + Y
其他 Other NT NT NT N
注:NT:不用试验;No B/G:非蓝绿;+:阳性;Y:铜绿假单胞阳性;N:铜绿假单胞阴性.
Note: NT: No test; No B/G: No Blue/Green; +: Positive; Y: P. aeruginosa positive; N: P. aeruginosa negative.

P. aeruginosa ATCC 15442为阳性对照,Escherichia coli ATCC 25922为阴性对照,ecfX为对照基因,分别检测exoUexoSphzMtoxAlasB在36株铜绿假单胞菌中的存在情况。采用通用引物进行多重PCR实验,具体反应条件参照文献[12],将扩增好的产物进行电泳后用紫外凝胶系统观察照相。

根据美国国家临床实验室标准化委员会(NCCLS)标准,以P. aeruginosa ATCC 15442为阳性对照,E. coli ATCC 25922为阴性对照。采用纸片扩散法,分别用环丙沙星(CIP,5 μg/片)、左氧氟沙星(LEV,5 μg/片)、氧氟沙星(OFX,5 μg/片)、诺氟沙星(NOR,10 μg/片)、庆大霉素(CN,10 μg/片)、托普霉素(TOB,10 μg/片)、氨丁卡霉素(AK, 10 μg/片)、多粘菌素B (PB,300 units)、亚胺培南

(YMP,10 μg/片)、美罗培南(MEM,10 μg/片)、噻污单酰胺菌素(ATM,30 μg/片)、头孢他啶(CAZ, 30 μg/片)、头孢吡肟(FEP,30 μg/片)、哌拉西林他唑巴坦(TZP,100/10 μg)等标准中规定的14种药敏片对收集到的铜绿假单胞菌进行药敏试验。将药敏片分别放在已涂布好铜绿假单胞菌的培养基上,放入37 °C培养箱内培养24 h后,用游标卡尺测量其抑菌圈直径。

2 结果与分析 2.1 铜绿假单胞菌污染率和污染水平

表 2所示,矿泉水厂和山泉水厂108份水样中共有34份水样检出铜绿假单胞菌,污染率为31.5%,这些检出的样品包括水源水15份、活性碳过滤后水18份和成品水1份。18个矿泉水厂家和18个山泉水厂家中共有5个矿泉水厂家和17个山泉水厂家检出铜绿假单胞菌,污染率整体比较高,但矿泉水成品水中无铜绿假单胞菌检出,山泉水成品水仅有1份检出铜绿假单胞菌。矿泉水厂与山泉水厂样品污染水平都很低,无超过50 CFU/250 mL样品检出,平均污染水平为5.4 CFU/250 mL。其中水源水、碳后水和成品水的平均污水平分别为4.8、6.4和1.0 CFU/250 mL。

表 2  铜绿假单胞菌检出结果 Table 2  The detection results of Pseudomonas aeruginosa
企业编号 Manufactory No. 水源水 Source water (CFU/250 mL) 活性碳过滤后水 Carbon filtered water (CFU/250 mL) 成品水 Finished water (CFU/250 mL)
桂A GUI A 40.0
桂B GUI B 1.0 2.0
桂C GUI C 7.0 3.0
闽A MIN A 20.0
闽B MIN B 2.0
滇B DIAN B 1.0
黔A QIAN A 30.0 20.0
黔B QIAN A 1.0 3.0
鄂A E A 3.0 2.0
鄂B E B 1.0
鄂C E C 1.0
川A CHUAN A 2.0 2.0
川B CHUAN B 2.0
海A HAI A 5.0 3.0
海B HAI B 4.0 4.0
海C HAI C 1.0
海D HAI D 3.0
沪A HU A 5.0 2.0
沪B HU B 4.0
京A JING A 3.0 3.0 1.0
京B JING B 2.0 3.0
京C JING C 2.0
阳性样品平均数 Averages 4.8 6.4 1.0
注:A和B:山泉水;C和D:矿泉水.
Note: A and B: Spring water; C and D: Mineral water.

表 3所示,矿泉水厂的污染率为11.1%,其水源水、碳后水和成品水的污染率分别是16.7%、16.7%和0,污染水平分别为3.7、2.0、0 CFU/250 mL。山泉水厂的污染率为51.9%,其水源水、碳后水和成品水的污染率分别为66.7%、83.3%和5.6%,污染水平分别为5.1、7.3、2.0 CFU/250 mL。

表 3 两种水厂中铜绿假单胞菌污染情况 Table 3 The pollution situation of Pseudomonas aeruginosa in two kinds of water treatment plants
样品 Samples 水源水 Source water 活性碳过滤后水 Carbon filtered water 成品水 Finished water 总数 Total amount
污染水平 Contamination rate (CFU/250 mL) 污染率 Contamination level (%) 污染水平 Contamination rate (CFU/250 mL) 污染率 Contamination level (%) 污染水平 Contamination rate (CFU/250 mL) 污染率 Contamination level (%) 污染水平 Contamination rate (CFU/250 mL) 污染率 Contamination level (%)
矿泉水 Mineral water 3.7 16.7 2.0 16.7 0 0 2.8 11.1
山泉水 Spring water 5.1 66.7 7.3 83.3 2.0 5.6 6.1 51.9
平均 Average 4.8 41.7 6.4 50.0 1.0 2.8 5.4 31.5

表 4所示,矿泉水与山泉水水源水中,以地下水为水源的水源水共33份,5份检出铜绿假单胞菌,占全部地下水的15.2%。以地表水为水源的水源水共3份,2份检出铜绿假单胞菌,占全部地表水的66.6%。

表 4 不同水源的铜绿假单胞菌污染情况 Table 4 The contamination rates of Pseudomonas aeruginosa in different source water samples
样品Samples 阳性数量 Positive amount 样品总数 Total 污染率 Contamination rate (%)
地表水Surface water 2 3 66.6
地下水Ground water 5 33 15.2
2.2 分离毒力基因分析

P. aeruginosa ATCC 15442为阳性对照, E. coli ATCC 25922为阴性对照,ecfX为对照基因,分别检测exoUexoSphzMtoxAlasB在36株铜绿假单胞菌中的存在情况。从表 5中可以看出,对照基因ecfX在所有菌株中均检出,目标毒力基因在分离株中检出率高,exoUexoSphzMtoxAlasB分别在9、27、36、32、36株菌中检出,检出率分别为25.0%、75.0%、100%、88.8%、100%。

表 5 铜绿假单胞菌毒力基因检测结果 Table 5 The detection results of virulence gene
编号 No. exoU exoS phzM toxA lasB ecfX 编号 No. exoU exoS phzM toxA lasB ecfX
A + + + + + 18 + + + + +
B 19 + + + + +
1 + + + + + 20 + + + + +
2 + + + + + 21 + + + +
3 + + + + + 22 + + + + +
4 + + + + 23 + + + +
5 + + + + + 24 + + + + +
6 + + + + + 25 + + + + +
7 + + + + + 26 + + + + +
8 + + + + + 27 + + + + +
9 + + + + + 28 + + + + +
10 + + + + + 29 + + + + +
11 + + + + + 30 + + + + +
12 + + + + + 31 + + + + +
13 + + + + + 32 + + + + +
14 + + + + + 33 + + + + +
15 + + + + + 34 + + + + +
16 + + + + 35 + + + + +
17 + + + + + 36 + + + + +
Total (%) 25.0 75.0 100 88.8 100 100
注:A:铜绿假单胞菌 ATCC 15442;B:大肠杆菌 ATCC 25922.
Note:A: P. aeruginosa ATCC 15442; B: E. coli ATCC 25922.
2.3 分离株抗药性测定

表 6所示,药敏试验结果表明,所有36株从样品中分离的铜绿假单胞菌株对NCCLS标准中选取的14种抗生素敏感,没有发现耐药菌株。

表 6 铜绿假单胞菌药敏试验结果 Table 6 The susceptibility test results of Pseudomonas aeruginosa isolates
抗生素 编号 No. CIP (mm) LEV (mm) OFX (mm) NOR (mm) CN (mm) TOB (mm) AK (mm) PB (mm) IPM (mm) MEM (mm) ATM (mm) CAZ (mm) FEP (mm) TZP (mm)
S ≥21 ≥17 ≥16 ≥17 ≥15 ≥15 ≥17 ≥12 ≥16 ≥16 ≥16 ≥18 ≥18 ≥18
I 16-20 14-16 13-15 13-16 13-14 13-14 15-16 - 14-15 14-15 14-15 15-17 15-17 -
R ≤15 ≤13 ≤12 ≤12 ≤12 ≤12 ≤14 ≤11 ≤13 ≤13 ≤13 ≤14 ≤14 ≤17
A 29.1 28.2 32.3 41.1 29.5 36.9 29.8 31.7 29.7 30.9 26.4 29.1 24.3 33.9
B 27.6 29.0 34.4 39.1 29.5 33.6 29.3 27.5 25.3 34.9 26.3 29.8 25.4 30.7
1 28.1 33.4 33.3 40.5 20.3 30.3 30.3 34.6 35.1 37.8 31.5 18.6 22.2 31.8
2 29.2 26.4 30.4 42.6 20.3 32.4 27.3 34.7 36.6 36.8 32.3 19.3 24.6 32.6
3 30.8 26.3 30.0 44.5 24.8 33.1 28.6 34.4 24.5 30.5 33.9 20.0 25.4 34.2
4 27.4 25.2 30.7 36.8 24.4 36.8 26.7 29.7 33.7 33.5 25.3 21.3 24.7 35.5
5 29.1 27.2 30.3 41.1 25.5 36.0 28.8 35.7 39.7 31.9 27.4 19.1 24.3 33.9
6 28.2 28.2 30.3 39.1 26.3 36.0 27.0 32.6 36.5 32.8 32.4 20.2 27.8 32.5
7 25.6 30.0 31.4 35.0 22.5 33.4 28.3 29.5 23.3 36.9 23.3 19.8 25.3 30.6
8 23.2 34.6 29.5 31.2 34.9 33.7 35.6 21.7 30.0 35.6 31.3 21.6 24.4 30.9
9 25.6 36.1 25.7 33.9 33.1 32.3 27.1 17.8 21.7 33.0 32.5 22.5 27.8 30.2
10 26.6 31.0 25.4 27.1 30.3 36.8 29.6 19.6 21.2 33.5 27.1 21.3 20.8 30.2
11 23.3 32.8 21.6 31.6 34.9 32.0 28.7 18.9 21.6 34.4 27.4 23.7 29.6 29.9
12 25.8 35.1 23.8 32.8 29.9 31.6 35.1 21.1 24.5 36.5 28.9 25.2 28.5 34.2
13 27.2 32.0 23.3 33.5 32.9 36.9 28.0 19.7 21.9 35.0 28.7 25.2 26.5 35.5
14 23.8 34.8 24.5 32.8 33.6 35.4 29.1 19.9 20.6 31.7 32.3 21.3 24.8 33.5
15 26.1 30.7 23.2 33.3 32.0 33.3 33.1 19.9 22.9 34.4 28.9 22.8 26.1 33.8
16 27.2 30.7 25.5 32.4 27.2 35.5 29.6 19.0 23.1 35.7 38.6 22.2 25.9 31.7
17 27.0 32.1 26.7 33.6 29.2 33.2 29.5 17.9 22.7 33.9 28.8 23.2 24.5 32.8
18 27.0 34.4 21.2 33.4 33.4 31.7 29.0 19.9 21.9 31.4 27.3 20.6 23.4 30.4
19 28.2 24.8 26.0 30.0 31.1 32.3 34.4 23.1 23.1 32.4 28.9 19.8 24.1 32.8
20 25.5 28.3 29.5 25.0 26.8 29.1 23.1 25.1 23.5 29.0 28.0 26.5 26.0 24.9
21 25.9 30.3 30.8 33.2 25.2 34.0 25.3 31.5 33.9 31.9 28.0 19.7 24.9 35.5
22 29.3 27.1 26.9 30.4 20.8 33.8 27.5 34.8 31.6 30.4 24.1 19.9 23.6 30.3
23 32.7 22.0 33.4 37.1 27.1 30.7 29.2 33.3 36.0 38.3 29.1 21.6 27.7 30.0
24 29.6 26.9 28.0 33.8 29.2 31.7 27.5 32.4 32.2 37.5 24.6 29.6 27.6 31.2
25 28.4 29.3 30.5 38.0 23.9 31.0 27.6 30.7 35.2 37.2 28.5 19.6 20.8 33.9
26 31.4 28.4 28.2 36.8 25.9 31.5 31.2 30.4 33.4 33.7 26.0 19.0 21.4 31.3
27 30.5 29.9 31.9 39.3 25.2 34.9 28.9 31.1 40.1 33.3 30.5 19.1 24.1 32.6
28 29.9 27.4 29.9 41.4 24.3 33.2 31.3 36.1 36.1 34.4 30.4 19.7 25.1 33.4
29 32.5 32.0 33.0 42.4 26.6 36.8 35.8 33.8 25.5 33.3 30.9 20.3 25.6 36.5
30 32.6 28.8 29.2 37.6 26.3 33.8 28.6 31.9 37.9 32.8 28.5 19.7 28.1 35.2
31 30.8 34.7 32.7 37.5 27.6 34.7 33.0 29.4 35.2 35.5 26.7 21.2 27.2 36.5
32 21.5 37.3 34.3 41.1 28.1 37.0 33.5 39.4 37.9 37.3 38.2 18.8 19.8 32.3
33 27.1 33.5 35.3 35.6 24.3 30.5 33.4 33.7 34.1 31.9 30.6 28.6 22.2 31.9
34 25.3 26.5 32.4 32.7 29.3 32.7 29.3 35.7 33.6 30.8 39.4 31.4 24.6 32.6
35 27.8 23.3 40.9 28.5 29.8 34.0 25.6 33.4 29.5 34.5 30.9 25.0 25.4 34.2
36 29.4 24.2 31.7 28.8 28.4 36.5 27.7 26.6 30.7 30.5 29.3 31.3 24.7 35.5
注:A:铜绿假单胞菌ATCC 15442;B:大肠杆菌ATCC 25922;S:敏感;I:中度耐药;R:耐药.
Note: A: P. aeruginosa ATCC 15442; B: E. coli ATCC 25922; S: Sensitive; I: Intermedium resistance; R: Resistance.
3 讨论

矿泉水厂的污染率为11.1%,其水源水、碳后水和成品水的污染率分别是16.7%、16.7%和0,污染水平分别为3.7、2.0、0 CFU/250 mL。山泉水厂的污染率为51.9%,其水源水、碳后水和成品水的污染率分别为66.7%、83.3%和5.6%,污染水平分别为5.1、7.3、2.0 CFU/250 mL。山泉水水源水、活性碳过滤后水、成品水污染率明显高于矿泉水,但污染水平均较低,在阳性样品中,平均污染水平均未大于10.0 CFU/250 mL。矿泉水与山泉水中成品水的铜绿假单胞菌污染率很低,在18份矿泉水成品水中没有检测到铜绿假单胞菌,18份山泉水成品水中仅1份检出铜绿假单胞菌。在全部水样中,山泉水活性碳过滤后水污染率最高,达到了83.3%,表明大部分企业在活性碳过滤环节存在污染问题,生产企业应给予活性碳过滤环节足够的重视,定期对活性碳进行清洗和消毒。矿泉水与山泉水水源水中,地下水铜绿假单胞菌污染率远小于地表水,地下水铜绿假单胞菌的污染率为15.2%。,地表水铜绿假单胞菌的污染率为66.6%。毒力基因exoUexoSphzMtoxAlasB在收集到的36株分离菌株中检出率高,这表明其致病性强。但对NCCLS标准中的14种抗生素均无耐药性,其可控性较强。

参考文献
[1] Fuentefria DB, Ferreira AE, Cor??o G. Antibiotic-resistant Pseudomonas aeruginosa from hospital wastewater and superficial water: Are they genetically related?[J]. Journal of Environmental Management, 2011, 92(1): 250-255
[2] Nagaveni S, Rajeshwari H, Oli AK, et al. Widespread emergence of multidrug resistant Pseudomonas aeruginosa isolated from CSF samples[J]. Indian Journal of Microbiology, 2011, 51(1): 2-7
[3] Deng MQ, Zhang JM, Guo WP, et al. Study on contamination investigation of Pseudomonas aeruginosa in mineral water[J]. Chinese Journal of Health Laboratory Technology, 2009, 19(11): 2672-2673 (in chinese) 邓梅清, 张菊梅, 郭伟鹏, 等. 矿泉水中铜绿假单假菌污染状况调查研究[J]. 中国卫生检验杂志, 2009, 19(11): 2672-2673
[4] Frank DW. The exoenzyme S regulon ofPseudomonas aeruginosa[J]. Molecular Microbiology, 1997, 26(4): 621-629
[5] Aujoulat F, Lebreton F, Romano S, et al. Comparative diffusion assay to assess efficacy of topical antimicrobial agents against Pseudomonas aeruginosa in burns care[J]. Annals of Clinical Microbiology and Antimicrobials, 2011, 10(27): 1-10
[6] Waters V, Zlosnik JEA, Yau YCW, etz al. Comparison of three typing methods for Pseudomonas aeruginosa isolates from patients with cystic fibrosis[J]. European Journal of Clinical Microbiology and Infectious Diseases, 2012, 31(12): 3341-3350
[7] Allydice-Francis K, Brown PD. Diversity of antimicrobial resistance and virulence determinants in Pseudomonas aeruginosa associated with fresh vegetables[J]. International Journal of Microbiology, 2012, 2012: 1-7
[8] Zhu YY, Yi Y, Yang X, et al. Discovery of new structure of class 1 integron in MDR Pseudomonas aeruginosa and its association with drug-resistance[J]. Acta Microbiologica Sinica, 2013, 53(9): 927-932 (in chinese) 朱易莹, 易勇, 杨犀, 等. 多重耐药铜绿假单胞菌中I型整合子新结构的发现及其与耐药的相关性[J]. 微生物学报, 2013, 53(9): 927-932
[9] Bradbury RS, Roddam LF, Merritt A, et al. Virulence gene distribution in clinical, nosocomial and environmental isolates of Pseudomonas aeruginosa[J]. Journal of Medical Microbiology, 2010, 59(8): 881-890
[10] Feinbaum RL, Urbach JM, Liberati NT, et al. Genome-wide identification of Pseudomonas aeruginosa virulence-related genes using a Caenorhabditis elegans infection model[J]. PLoS Pathogens, 2012, 8(7): e1002813
[11] GB/T 8538-2008. Methods for examination of drinking natural mineral water[S] (in chinese) 国家标准GB/T 8538-2008. 饮用天然矿泉水检测方法[S]
[12] Li F. The distribution regularity and genctic diversity of food-borne in packaging drinking nature spring water[D]. Guangzhou: Master’s Thesis of South China University of Technology, 2013 (in chinese) 李飞. 包装饮用泉水食源性致病菌分布规律和遗传多样性研究[D]. 广州: 华南理工大学硕士学位论文, 2013