生物工程学报  2024, Vol. 40 Issue (2): 529-541
http://dx.doi.org/10.13345/j.cjb.230443
中国科学院微生物研究所、中国微生物学会主办
0

文章信息

翁雪莲, 侯建兵, 常洪博, 崔红娟
WENG Xuelian, HOU Jianbing, CHANG Hongbo, CUI Hongjuan
桑根酮C通过促进β-catenin的泛素化水平抑制胶质母细胞瘤的迁移侵袭能力
Sanggenon C inhibits glioblastoma cell migration and invasion by promoting ubiquitination of β-catenin
生物工程学报, 2024, 40(2): 529-541
Chinese Journal of Biotechnology, 2024, 40(2): 529-541
10.13345/j.cjb.230443

文章历史

Received: June 16, 2023
Accepted: August 14, 2023
Published: August 16, 2023
桑根酮C通过促进β-catenin的泛素化水平抑制胶质母细胞瘤的迁移侵袭能力
翁雪莲1,2,3,4,6 , 侯建兵1,2,3,4,5 , 常洪博1,2,3,4,5 , 崔红娟1,2,3,4,5     
1. 西南大学资源昆虫高效养殖与利用全国重点实验室, 重庆 400716;
2. 西南大学医学研究院, 重庆 400716;
3. 金凤实验室, 重庆 400039;
4. 重庆市蚕丝生物材料与再生医学工程技术研究中心, 重庆 400716;
5. 西南大学癌症生物医学与转化医学工程研究中心, 重庆 400715;
6. 西南大学蚕桑纺织与生物质科学学院, 重庆 400715
摘要:胶质母细胞瘤属于浸润性的恶性肿瘤,目前其化疗新药物的寻找和治疗仍待突破。桑根酮C (Sanggenon C, SC)来源于桑白皮,在多种癌症中发挥着抗肿瘤功效。本研究利用显微镜拍摄、transwell实验和免疫荧光实验验证了SC对胶质母细胞瘤的迁移侵袭能力的影响;基因富集、实时荧光定量PCR (real-time qPCR)以及泛素化实验用于阐明SC抑制胶质母细胞瘤迁移侵袭能力的分子机制。显微镜拍摄结果显示,对胶质母细胞瘤进行加药处理后细胞形态明显回缩,细胞迁移侵袭能力被削弱;Transwell实验和免疫荧光实验也验证了SC能抑制胶质母细胞瘤迁移侵袭能力的猜测;基因富集实验结果表明SC可能调控迁移侵袭相关基因的表达,并且影响Wnt/β-catenin信号通路的活性;Western blotting揭示了SC可调控β-catenin的泛素化水平,并且抑制β-catenin及其下游蛋白的表达;Real-time qPCR实验结果在转录水平上佐证Western blotting的结果。SC通过调控β-catenin的泛素化水平抑制胶质母细胞瘤的迁移侵袭能力,为胶质母细胞瘤的治疗提供了新的思路。
关键词胶质母细胞瘤    桑根酮C    迁移    侵袭    β-catenin泛素化    
Sanggenon C inhibits glioblastoma cell migration and invasion by promoting ubiquitination of β-catenin
WENG Xuelian1,2,3,4,6 , HOU Jianbing1,2,3,4,5 , CHANG Hongbo1,2,3,4,5 , CUI Hongjuan1,2,3,4,5     
1. State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China;
2. Medical Research Institute, Southwest University, Chongqing 400716, China;
3. Jinfeng Laboratory, Chongqing 400039, China;
4. Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, China;
5. Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China;
6. College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
Abstract: Glioblastoma is a malignant and highly invasive tumor, which requires new approaches to search for chemotherapeutic agents. Sanggenon C (SC) mainly exists in the root bark of white mulberry. Although its anti-tumor effects have been reported in some cancers, the mechanism remains unclear. In this study, we used microscopic observation, transwell assay, and immunofluorescence assay to verify the effect of Sanggenon C on the migration and invasion of glioblastoma cells. We then carried out the gene set enrichment analysis (GESA), real-time qPCR assay and ubiquitination assay to delineate the molecule mechanism by which Sanggenon C affects the migration and invasion ability of glioblastoma. With the addition of Sanggenon C, glioblastoma cells were rounded up, with the migration and invasion ability weakened as verified by transwell assay and immunofluorescence assay. The results of GESA suggested that SC might regulate the expression of genes associated with migration and invasion and affect the activity of Wnt/β-catenin signaling pathway. Western blotting revealed that Sanggenon C promoted the ubiquitination of β-catenin to reduce the levels of β-catenin and its downstream proteins. This was further supported by the results of real-time qPCR analysis of target genes of β-catenin. Taken together, SC inhibits glioblastoma cell migration and invasion by enhancing β-catenin ubiquitination. Our work suggests a new direction for the treatment of glioblastoma.
Keywords: glioblastoma    Sanggenon C    migration    invasion    the ubiquitination of β-catenin    

脑瘤和其他神经中枢系统肿瘤是最致命的肿瘤之一,属于浸润性肿瘤[1]。据统计,近一半的恶性脑瘤为胶质母细胞瘤,诊断后生存期为12−18个月[2],而在我国,胶质母细胞瘤每年致死人数约为30万[3]。临床上,化疗、放射治疗为胶质母细胞瘤治疗的常规手段。但由于血脑屏障的存在、复杂的肿瘤微环境以及肿瘤细胞弥散性生长,目前胶质母细胞瘤患者的治疗效果仍未得到显著改善[4]。广泛应用于化疗的药物替莫唑胺及其衍生物可通过血脑屏障,导致胶质瘤凋亡,但由于后期O6-甲基鸟嘌呤-DNA甲基转移酶基因表达量下调,人体对替莫唑胺产生耐药性[5-6]。而另一类化疗药物亚硝基脲类可抑制DNA的修复以及RNA的合成,但此药物对人体造成的损伤是不可逆的[6],因而,新药物的寻找与开发成为肿瘤治疗的首要问题。

天然产物一直以来都是发现新药物的资源库。目前姜黄素和白藜芦醇在临床上已被广泛用于癌症的治疗[7-8]。桑根酮C (Sanggenon C, SC)来源于桑白皮,具有抗肿瘤作用[9]IC50一定程度上可以反映细胞对药物的耐受程度,而向胶质母细胞瘤中加入SC后,测得U-87 MG细胞IC50为13.06 μmol/L,LN-229细胞的IC50为14.81 μmol/L,显著低于正常细胞[10]。目前研究发现,SC通过阻遏ERK-Drp1通路,影响线粒体分裂,进而诱导细胞凋亡,抑制肝癌的发展[9]。同样地,在结肠癌中,SC通过增加活性氧(reactive oxygen species, ROS)的生成和减少NO的产生诱导细胞的凋亡[11]。SC还可抑制全球男性第二“杀手”前列腺癌细胞的增殖,通过激活caspase 3及caspase 9诱导前列腺癌细胞的凋亡[12]。此外,SC对心脏病、骨质疏松症等疾病的临床治疗也极具潜力[13-14]

因此,本文以药物SC为切入点,研究SC对胶质母细胞迁移侵袭能力的影响及其分子机制。显微镜拍摄、免疫荧光实验以及transwell实验表明SC能够抑制胶质母细胞瘤的迁移侵袭能力,通过基因富集、real-time qPCR实验以及泛素化实验验证了SC通过Wnt/β-catennin信号通路抑制肿瘤发展的分子机制,本研究拓展了SC抑制胶质母细胞迁移侵袭的分子机制,为胶质母细胞瘤的治疗提供了新的思路。

1 材料与方法 1.1 材料

人GBM细胞系U-87 MG、LN-229、293 FT购自美国标准菌种收藏所(American Type Culture Collection, ATCC);桑根酮C购自成都普菲德生物技术有限公司,批号80651-76-9;胎牛血清、胰蛋白酶、青霉素/链霉素双抗、二甲基亚砜(dimethyl sulfoxide, DMSO)和蛋白质marker购自赛默飞公司;RIPA裂解液、辣根过氧化物酶标记山羊抗兔IgG(H+L)、辣根过氧化物酶标记山羊抗小鼠IgG(H+L)、BCA蛋白浓度检测试剂盒、ECL化学发光试剂、5×上样缓冲液、一抗稀释液、Actin-Tracker Green (微丝绿色荧光探针,鬼笔环肽)和琼脂糖凝胶珠购自上海碧云天生物有限公司;脱脂奶粉购自生工生物工程(上海)股份有限公司;Transwell小室购自Corning公司;MG132购自MedchemExpress公司;小鼠抗人Tubulin、兔抗人β-catenin、兔抗人c-Myc、兔抗人MMP 7、兔抗人Paxillin、兔抗人ZO-1、兔抗人E-cadherin、兔抗人N-cadherin和兔抗人Snail购自武汉三鹰生物技术公司。

1.2 方法 1.2.1 药物的配制

用预热的二甲基亚砜将离心后的SC干粉完全溶解,并配制为100 mmol/L的母液,包上锡箔纸避光,置于−80 ℃储存。

1.2.2 加药处理

浓度梯度处理细胞时,细胞密度60%,SC的浓度分别为0、10、15 μmol/L (对照组为DMSO),加药处理48 h。为检测MG132对蛋白含量的恢复情况,在收集细胞前8 h加入蛋白酶体抑制剂。时间梯度处理细胞时SC浓度为10 μmol/L,处理时间梯度为0、24、48 h。

1.2.3 细胞传代培养

细胞密度达到80%左右,用1 mL胰酶(trypsin-EDTA solution)消化细胞,5 min后终止消化,离心弃上清,重悬计数后按比例转入新的培养板中,37 ℃、5% CO2条件下扩大培养。

1.2.4 Transwell实验

将U-87 MG、LN-229细胞消化清洗后,用无血清的DMEM培养基重悬,并用血细胞计数板计数。用提前配制的SC浓度为0、10、15 μmol/L的无血清DMEM培养基稀释U-87 MG、LN-229 (对照组为DMSO),以20 000个/孔细胞密度向小室内加入细胞悬液,小室外加入500 μL含有10%胎牛血清的DMEM培养基,37 ℃、5% CO2条件下培养。U-87 MG培养6 h,LN-229培养12 h后,4%多聚甲醛用于固定小室外部细胞,结晶紫将小室外部细胞染为紫色,PBS清洗小室后用酒精棉球擦去小室内细胞,显微镜拍摄穿过小室膜的细胞。为检测细胞侵袭能力,采用含有基质胶的小室进行上述实验。

1.2.5 Western blotting实验

RIPA裂解液完全融化后,冰上裂解收集的细胞1 h,利用BCA法测定细胞裂解液中的蛋白浓度,分装蛋白样品并加入5×上样缓冲液,沸水浴15 min,于−80 ℃保存。以30 μg/孔的蛋白上样量将获得的蛋白样品进行SDS-PAGE凝胶电泳,按照滤纸、PVDF膜、凝胶和滤纸的顺序进行半干转,5%脱脂奶粉室温封闭2 h。加入对应一抗4 ℃孵育过夜,相同属性的二抗室温孵育2 h,TBST清洗后配制ECL显色液,利用相机检测对应蛋白含量。

1.2.6 免疫荧光实验

提前将消毒的爬片置于24孔板内备用,待U-87 MG、LN-229细胞密度达到60%,将细胞消化重悬后,以3 000个/孔的密度接种细胞于爬片上,5% CO2、37 ℃培养8 h后换液,分别加入SC浓度为0、10、15 μmol/L (对照组为DMSO)的培养基培养48 h。经过固定、打孔、封闭等实验步骤,一抗稀释液1:100比例稀释抗体Paxillin,每孔加入200 μL,4 ℃摇床孵育过夜。加入对应二抗室温孵育2 h,最后微丝绿色荧光探针染色1 h,DAPI染色30 min,将爬片置于提前准备有抗荧光淬灭剂的载玻片上固定,利用共聚焦显微镜拍照。

1.2.7 实时荧光定量PCR实验

提取0、10、15 μmol/L SC处理48 h的细胞总RNA,并利用Promega反转录试剂盒将获得的2 μg mRNA反转录为cDNA。查询PrimerBank网站(https://pga.mgh.harvard.edu/primerbank)并设计BTRCSIAH1CBLE6APMUC1USP9XUSP33OTUB2JOSD2c-MycMMP7的引物,以GAPDH为内参基因(表 1)。

表 1 文中所用的引物 Table 1 Primers used in this study
Primer name Primer sequence (5′→3′)
BTRC-F CCAGACTCTGCTTAAACCAAGAA
BTRC-R GGGCACAATCATACTGGAAGTG
SIAH1-F AGCCGTCAGACTGCTACAG
SIAH1-R AAAAGACTCGCCAAGTCATTGT
CBL-F TAGGCGAAACCTAACCAAACTG
CBL-R AGAGTCCACTTGGAAAGATTCCT
E6AP-F CTCAGCTTACCTTGAGAACTCG
E6AP-R TTCTAGCGCCTTTCTTGTTCAT
USP9X-F TCGGAGGGAATGACAACCAG
USP9X-R GGAGTTGCCGGGGAATTTTCA
USP33-F TACCACTCTTCGAGTATGGTGT
USP33-R GAGGTTGTCTTACATGAGGCAAT
OTUB2-F TTGAGGAGCACAAGTTCAGAAAC
OTUB2-R GCAGAAGTCTTTGATGTCCATCT
JOSD2-F CCCACCGTGTACCACGAAC
JOSD2-R CTCCTGGCTAAAGAGCTGCTG
MUCI-F TGCCGCCGAAAGAACTACG
MUC1-R TGGGGTACTCGCTCATAGGAT
β-catenin-F CATCTACACAGTTTGATGCTGCT
β-catenin-R GCAGTTTTGTCAGTTCAGGGA
GAPDH-F GGAGCGAGATCCCTCCAAAAT
GAPDH-R GGCTGTTGTCATACTTCTCATGG
1.2.8 显微镜拍摄

含有0、10、15 μmol/L SC (对照组为DMSO)的培养基培养U-87 MG、LN-229细胞48 h后,显微镜拍照观察细胞形态。

1.2.9 基因富集

首先将转录组测得的数据输入GSEA软件中进行分析,将DMSO和SC处理组各自分为对照组和实验组,然后再利用基因集数据库(MsigDB数据库)中相对应的基因集进行基因集富集分析,设置置换检验的次数为1 000次。有意义的基因集的筛选条件:错误发现率(false discovery rate, FDR) < 25%,同时P < 0.05。

1.2.10 泛素化实验

向密度为90%的293 FT细胞中共转染HA标记的Ub质粒和Flag标记的β-catenin质粒,空载体作为对照。在收集细胞48 h前加入10 μmol/L的SC,对照组为DMSO。收集的细胞利用加有苯甲基磺酰氟的IP裂解液裂解1 h,加入兔抗人β-catenin抗体4 ℃孵育过夜,加入琼脂糖凝胶珠4 ℃孵育4 h,Western blotting检测β-catenin泛素化程度。

1.2.11 数据统计与分析

将数据导入Graphpad Prism软件进行定量处理,采用Student t-test进行统计学分析,数据均值表示为x±sP < 0.05视为有统计学差异。

2 结果与分析 2.1 SC影响胶质母细胞瘤的细胞形态

用SC浓度为0、10、15 μmol/L的DMEM培养基培养U-87 MG、LN-229 48 h后,显微镜拍摄发现细胞形态均有回缩(图 1),表明胶质母细胞瘤细胞的迁移侵袭能力受到SC浓度处理的影响。

图 1 SC影响胶质母细胞瘤的细胞形态 Fig. 1 SC affects the cell morphology of glioblastoma. The micrography of U-87 MG (A) and LN-229 (B) after the treatment with SC by a concentration gradient. Scale bars=20 μm.
2.2 SC影响胶质母细胞瘤细胞Paxillin蛋白的聚集

肌动蛋白(actin)组成真核生物的细胞骨架,鬼笔环肽是来自于鬼笔鹅膏的环状肽类,特异性结合F-actin蛋白,在激光下可展示微丝骨架的分布形态。浓度梯度处理U-87 MG、LN-229细胞48 h后共聚焦拍照,结果显示在加入SC后,Paxillin蛋白在细胞骨架末端的聚集明显减少(图 2),表明SC削弱了胶质母细胞瘤的迁移侵袭能力。

图 2 SC影响胶质母细胞瘤细胞Paxillin蛋白的聚集 Fig. 2 SC affects the protein aggregation of Paxillin in glioblastoma cells. After the treatment with SC by concentration gradient, U-87 MG (A) and LN-229 (B) were plated on glass slides and stained with anti-Paxillin (red) and anti-actin (green) antibodies. DAPI was used for nuclear staining. Scale bars=10 μm.
2.3 SC影响胶质母细胞瘤的细胞迁移侵袭能力

Transwell实验揭示了在胶质母细胞瘤中SC对其迁移侵袭能力的影响。显微镜拍照图像显示,当SC处理U-87 MG、LN-229的浓度增大时,穿过小室的细胞数量明显减少(图 3),与之前的实验结果相符合,表明SC能明显抑制胶质母细胞瘤的迁移侵袭能力。

图 3 SC影响胶质母细胞瘤的细胞迁移能力 Fig. 3 SC impacts the migration and invasion ability of glioblastoma. Transwell assays were performed to verify the effects of SC in glioblastoma. Transwells were used to detect the migration ability (A), and transwells with Matrigel were used to detect the invasion ability (B). Scale bars=50 μm. All data were expressed as x±s. Student's t-test was performed to analyze the significance. ***: P < 0.001.
2.4 SC调控胶质母细胞瘤细胞中迁移侵袭相关基因的表达

胶质母细胞瘤的迁移侵袭能力受到SC的调控,而基因富集分析(gene set enrichment analysis, GESA)结果显示SC与胶质瘤转移相关基因的表达呈现相关性(图 4A4B)。由此,收集经SC浓度为0、10、15 μmol/L处理48 h的U-87 MG、LN-229细胞,利用Western blotting检测迁移侵袭相关蛋白ZO-1、E-cadherin、N-cadherin和Snail的表达量。曝光结果显示随着SC浓度的增加,ZO-1、E-cadherin的蛋白表达量也随之增加,而N-cadherin和Snail蛋白表达量随之降低(图 4C4D),说明SC可调控胶质母细胞瘤细胞中迁移相关基因的表达。

图 4 SC调控胶质母细胞瘤细胞中迁移侵袭相关基因的表达 Fig. 4 SC regulates the expression of genes associated with migration and invasion in glioblastoma. GESA was used to analyze the expression of genes associated with metastasis genes in lymphedema (A) and malignant melanoma (B). Western blotting shows the level of metastasis-associated proteins in glioblastoma cells after feeding of SC (C−D). All data were expressed as x±s. Student's t-test was performed to analyze the significance. **: P < 0.01; ***: P < 0.001.
2.5 SC抑制β-catenin以及下游蛋白的表达

基因富集分析(图 5A)与Western blotting结果(图 5B5C)皆表明SC能抑制胶质母细胞瘤β-catenin的表达,并且下调下游c-Myc和MMP7的表达量。

图 5 SC抑制β-catenin以及下游蛋白的表达 Fig. 5 SC inhibits the expression of β-catenin and downstream protein. GESA displays the pertinence between SC and Wnt/β-catenin in glioblastoma (A). The protein expressions of β-catenin and downstream were evaluated through Western blotting analysis in glioblastoma cells (B and C). Tubulin was used as a control for normalization. All data were expressed as x±s. Student's t-test was performed to analyze the significance. **: P < 0.01; ***: P < 0.001.
2.6 SC通过影响β-catenin蛋白泛素化抑制β-catenin的表达

之前的实验数据表明,加入SC后,β-catenin蛋白表达明显受到抑制(图 5B),但是通过real-time qPCR实验检测,发现β-catenin的mRNA并未随SC浓度的增加而减少,其下游基因c-MycMMP7的mRNA表达量却均下降(图 6A),由此展开实验检测SC是否调控β-catenin蛋白的翻译后修饰。向加入药物SC的U-87 MG、LN-229细胞中加入MG132处理8 h,β-catenin的蛋白含量恢复,因SC处理而减少的蛋白也得到了挽救(图 6B6C),表明SC可能通过影响β-catenin蛋白泛素化下调β-catenin蛋白含量。泛素化实验验证了前期的猜测,在SC处理下,β-catenin蛋白的泛素分子聚集,泛素化程度明显增加(图 6D)。加入药物SC后,泛素分子在β-catenin蛋白上的聚集程度也明显增加(图 6E6F)。进一步进行real-time qPCR实验检测SC处理后E3泛素连接酶SIAH1BTRCE6APCBL,去泛素化酶USP9XJOSD2USP33OTUB2转录水平的变化。结果显示β-catenin蛋白的E3泛素连接酶SIAH1的mRNA表达量与SC处理浓度呈显著正相关,而去泛素化酶OTUB2的mRNA表达量与SC处理浓度呈显著负相关(图 6G6H),佐证了之前Western blotting的结果,SC通过影响β-catenin蛋白泛素化抑制β-catenin的表达。

图 6 SC通过影响β-catenin蛋白泛素化抑制β-catenin的表达 Fig. 6 SC inhibits the expression of β-catenin by regulating the ubiquitination level of β-catenin. Real-time q-PCR assay was used to show the mRNA expression of β-catenin in LN-229 and U-87 MG with SC concentration gradient (A). Western blotting shows the protein expression of β-catenin in glioblastoma with SC and MG132 (B and C). HA-tagged Ub plasmid and Flag-tagged β-catenin plasmid were co-transfected into the cells. Anti-HA antibody was added to the supernatant. Western blotting was used to detect the ubiquitination level of β-catenin. The grayscale values were marked on the WB band (D−F). E3 ubiquitin ligases and deubiquitinating enzymes gene expression were detected by real-time q-PCR assay in LN-229 and U-87 MG with SC concentration gradient (G and H). All data were expressed as x±s. Student's t-test was performed to analyze significance. ns: No significant difference; *: P < 0.05; **: P < 0.01; ***: P < 0.001.
3 讨论与结论

胶质母细胞瘤隶属于Ⅳ胶质瘤[15],约占恶性肿瘤的40%。虽然胶质母细胞瘤患者在手术切除后能得到较长的舒缓期[16-17],但是胶质母细胞瘤具有较强的侵袭能力、长期使用术后化疗药物机体容易产生耐药性[5-6]、部分药物对机体造成不可逆损伤等特点[6],使得胶质母细胞瘤具有较高复发率和致死率。目前,胶质母细胞瘤患者的中位生存期约为15个月,其总体生存率自1990年起就无明显变化[18]。因此,新药物的寻找与开发成为胶质母细胞瘤治疗的首要问题。

SC是一类黄酮类药物,主要从桑白皮中提取,具有抗炎、抗氧化特点[9]。目前研究发现SC能抑制胃癌细胞增殖[9],并促进结肠癌细胞以及前列腺癌细胞的凋亡[11-12],具有抗肿瘤的功效。唐文涵等[19]研究发现SC能影响肿瘤细胞的增殖、凋亡进而抑制胶质母细胞的发展,但是SC对胶质母细胞瘤迁移侵袭能力的影响尚未报道。本研究发现,SC通过抑制β-catenin蛋白的表达从而影响胶质母细胞瘤的迁移侵袭能力,抑制胶质母细胞瘤的发展,为胶质母细胞瘤的治疗提供了新方向。

细胞的形态与功能相对应,在迁移时,细胞前端伸出伪足,与环境建立新的黏附[20],形态呈梭形。本研究发现加入SC后胶质母细胞瘤细胞形态回缩。Paxillin是具有多个结构域的黏附蛋白,调控细胞的运动,参与神经系统发育、胚胎发育以及血管发育的过程。目前学者们发现,Paxillin的异常表达与恶性肿瘤的预后、侵袭、转移密切相关[21-24]。在SC处理下,胶质母细胞瘤细胞骨架末端的Paxillin聚集程度明显减少。

细胞发生迁移侵袭的标志事件为上皮-间充质转化(epithelial-mesenchymal transformation, EMT)过程,虽然胶质母细胞瘤细胞不同于上皮细胞,但其迁移侵袭过程与EMT类似[25]。Snail在结肠癌中过表达,促进间充质细胞分泌CXCL2并诱导M2巨噬细胞的活化,进而促进肿瘤的转移[26]。ZO-1蛋白参与紧密复合体的形成,当ZO-1蛋白表达下降时,细胞之间的紧密连接结构稳定性下降[27-28]。钙黏蛋白E-cadherin是黏附连接结构组成之一,维持粘连复合体的完整性。N-cadherin同属为钙黏蛋白,但其连接灵活性大,使得细胞迁移侵袭能力增强[29-30]。胶质母细胞瘤细胞内ZO-1以及E-cadherin的表达量随SC浓度的增加上调,而Snail和N-cadherin的蛋白含量随之降低。可见,SC通过增加ZO-1的蛋白表达增强细胞之间的紧密连接结构稳定性,同时E-cadherin蛋白含量的增加有助于粘连复合体结构的形成,而Snail和N-cadherin蛋白的减少,不利于肿瘤细胞EMT过程发生,进而抑制胶质母细胞瘤的迁移侵袭能力。

β-catenin是一种多功能蛋白,可连接E-cadherin和α-catenin蛋白,组成细胞骨架并维持正常细胞形态以及胞间黏附[31-32]。缺少或丢失β-catenin后,细胞骨架的完整性不能维持,稳定性削弱,细胞之间的黏附连接受到干扰,从而导致肿瘤细胞增殖、侵袭以及转移的发生[33-36],与本文中transwell实验、细胞骨架蛋白染色结果一致,表明SC能通过抑制β-catenin的表达,抑制胶质母细胞瘤的迁移侵袭。

Wnt信号通路在胚胎发育以及成人组织形态中起着重要的作用,而β-catenin作为Wnt信号通路的关键开关,与肿瘤的发生发展密切相关[37-38]。β-catenin在核内与共调节因子相结合,促进c-MycCyclinD1等癌基因的转录,在结肠癌、乳腺癌和肝癌等很多癌症病例中,β-catenin均聚集于核内或胞质内[39]。而β-catenin能上调c-Myc和MMP7,并与胰腺癌的病变及其转移密切相关[31],而在胶质母细胞瘤中,Western blotting结果显示的机制也与之一致。相关文献[39]表明,当β-catenin入核之后,与TCF/LEF家族蛋白结合,共同调节下游基因的转录。SC浓度增加,β-catenin蛋白含量减少,入核与TCF/LEF家族下游蛋白结合的β-catenin蛋白是否也随之减少,从而使得c-Myc和MMP7蛋白表达量减少,这仍需要高灵敏度的实验加以验证。

在无Wnt信号的情况下,AXIN、APC、GSK-3、CK-1α以及E3泛素连接酶TrCP组成β-catenin的毁灭复合体,参与β-catenin蛋白酶体途径的降解[38]。泛素化实验表明,加入SC后β-catenin蛋白稳定性受到泛素化调控,促进其降解。Real-time qPCR实验表明,加入药物SC后,胶质母细胞瘤SIAH1的mRNA水平明显上调,而去泛素化酶OTUB2的mRNA表达量随着SC浓度的增加而减少,表明SC可能通过影响β-catenin蛋白泛素化程度抑制β-catenin的表达。2001年SIAH1被报道为β-catenin的E3泛素连接酶,与APC互作,将P53活化与细胞周期调控相连接[40],因此,SC可能通过上调泛素酶SIAH1,下调OTUB2去泛素化酶的含量,从而调控β-catenin的泛素化水平,但这仍需要验证。此外,β-catenin的磷酸化修饰可以调节其泛素化修饰的稳定性,SC也可能通过影响β-catenin的磷酸化从而促进其泛素化。

桑根酮C通过调控β-catenin的泛素化水平,下调β-catenin的蛋白含量,从而影响胶质母细胞瘤迁移侵袭能力,抑制胶质母细胞瘤的发展。桑根酮C表现出来的抗肿瘤活性为胶质母细胞瘤的临床治疗提供了新的靶点和方向。

参考文献
[1]
MILLER KD, OSTROM QT, KRUCHKO C, PATIL N, TIHAN T, CIOFFI G, FUCHS HE, WAITE KA, JEMAL A, SIEGEL RL, BARNHOLTZ-SLOAN JS. Brain and other central nervous system tumor statistics, 2021[J]. CA: a Cancer Journal for Clinicians, 2021, 71(5): 381-406. DOI:10.3322/caac.21693
[2]
KHAN F, PANG LZ, DUNTERMAN M, LESNIAK MS, HEIMBERGER AB, CHEN PW. Macrophages and microglia in glioblastoma: heterogeneity, plasticity, and therapy[J]. The Journal of Clinical Investigation, 2023, 133(1): e163446. DOI:10.1172/JCI163446
[3]
WANG YC, SHENG JY, CHAI J, ZHU CL, LI X, YANG W, CUI RJ, GE TT. Filamentous bacteriophage—a powerful carrier for glioma therapy[J]. Frontiers in Immunology, 2021, 12: 729336. DOI:10.3389/fimmu.2021.729336
[4]
LI TZ, LI JF, CHEN Z, ZHANG SH, LI SL, WAGEH S, AL-HARTOMY OA, AL-SEHEMI AG, XIE ZJ, KANKALA RK, ZHANG H. Glioma diagnosis and therapy: current challenges and nanomaterial-based solutions[J]. Journal of Controlled Release: Official Journal of the Controlled Release Society, 2022, 352: 338-370. DOI:10.1016/j.jconrel.2022.09.065
[5]
DANIEL P, SABRI S, CHADDAD A, MEEHAN B, JEAN-CLAUDE B, RAK J, ABDULKARIM BS. Temozolomide induced hypermutation in glioma: evolutionary mechanisms and therapeutic opportunities[J]. Frontiers in Oncology, 2019, 9: 41. DOI:10.3389/fonc.2019.00041
[6]
REICHERT M, STEINBACH JP, SUPRA P, WELLER M. Modulation of growth and radiochemosensitivity of human malignant glioma cells by acidosis[J]. Cancer, 2002, 95(5): 1113-1119. DOI:10.1002/cncr.10767
[7]
FENG T, WEI YM, LEE RJ, ZHAO L. Liposomal curcumin and its application in cancer[J]. International Journal of Nanomedicine, 2017, 12: 6027-6044. DOI:10.2147/IJN.S132434
[8]
REN BX, KWAH MXY, LIU CL, MA ZW, SHANMUGAM MK, DING LW, XIANG XQ, HO PCL, WANG LZ, ONG PS, GOH BC. Resveratrol for cancer therapy: challenges and future perspectives[J]. Cancer Letters, 2021, 515: 63-72. DOI:10.1016/j.canlet.2021.05.001
[9]
CHEN XJ, CUI QX, WANG GL, LI XL, ZHOU XL, ZHAO HJ, ZHANG MQ, LI MJ, HE XJ, ZHENG QS, WANG YL, LI DF, HONG P. Sanggenon C suppresses tumorigenesis of gastric cancer by blocking ERK-Drp1-mediated mitochondrial fission[J]. Journal of Natural Products, 2022, 85(10): 2351-2362. DOI:10.1021/acs.jnatprod.2c00524
[10]
CHANG HB, HOU JB, SHAO YQ, XU MH, WENG XL, DU Y, SHI JB, ZHANG L, CUI HJ. Sanggenon C inhibits cell proliferation and induces apoptosis by regulating the MIB1/DAPK1 axis in glioblastoma[J]. MedComm, 2023, 4(4): e281. DOI:10.1002/mco2.281
[11]
CHEN LD, LIU ZH, ZHANG LF, YAO JN, WANG CF. Sanggenon C induces apoptosis of colon cancer cells via inhibition of NO production, iNOS expression and ROS activation of the mitochondrial pathway[J]. Oncology Reports, 2017, 38(4): 2123-2131. DOI:10.3892/or.2017.5912
[12]
ZHOU P, DONG XX, TANG P. Sanggenon C induces apoptosis of prostate cancer PC3 cells by activating caspase 3 and caspase 9 pathways[J]. Journal of Southern Medical University, 2017, 37(9): 1206-1210. DOI:10.3969/j.issn.1673-4254.2017.09.11
[13]
XIAO LL, GU YL, GAO L, SHANGGUAN JH, CHEN Y, ZHANG YZ, LI L. Sanggenon C protects against pressure overload-induced cardiac hypertrophy via the calcineurin/NFAT2 pathway[J]. Molecular Medicine Reports, 2017, 16(4): 5338-5346. DOI:10.3892/mmr.2017.7288
[14]
WANG HJ, FENG TT, GUO DG, ZHANG M, CHEN L, ZHOU Y. Sanggenon C stimulates osteoblastic proliferation and differentiation, inhibits osteoclastic resorption, and ameliorates prednisone-induced osteoporosis in zebrafish model[J]. Molecules (Basel, Switzerland), 2018, 23(9): 2343. DOI:10.3390/molecules23092343
[15]
STUPP R, BRADA M, van den BENT MJ, TONN JC, PENTHEROUDAKIS G, GUIDELINES WORKING GROUP EO. High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[J]. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 2014, 25(suppl 3): ⅲ93-ⅲ101.
[16]
DAVIS ME. Glioblastoma: overview of disease and treatment[J]. Clinical Journal of Oncology Nursing, 2016, 20(5 suppl): S2-S8.
[17]
TYKOCKI T, ELTAYEB M. Ten-year survival in glioblastoma. A systematic review[J]. Journal of Clinical Neuroscience, 2018, 54: 7-13. DOI:10.1016/j.jocn.2018.05.002
[18]
ANDERSON E, GRANT R, LEWIS SC, WHITTLE IR. Randomized phase Ⅲ controlled trials of therapy in malignant glioma: where are we after 40 years?[J]. British Journal of Neurosurgery, 2008, 22(3): 339-349. DOI:10.1080/02688690701885603
[19]
唐文涵, 张致宁, 蔡花蕊, 孙伟, 杨鹤, 赵二虎, 崔红娟. 桑树提取物桑根酮C影响神经胶质母细胞瘤细胞生长增殖的初步研究[J]. 中国中药杂志, 2023, 48(1): 211-219.
TANG WH, ZHANG ZN, CAI HR, SUN W, YANG H, ZHAO EH, CUI HJ. Effect of Morus alba extract sanggenon C on growth and proliferation of glioblastoma cells[J]. China Journal of Chinese Materia Medica, 2023, 48(1): 211-219 (in Chinese).
[20]
张宝平. 癌细胞力学性质测量及放射诱导下细胞损伤的生物力学研究[D]. 兰州: 兰州大学博士学位论文, 2016.
Zhang BP. Mechanical properties measurement of cancer cells and biomechanical study of radiation-induced cell damage[D]. Lanzhou: Doctoral Dissertation of Lanzhou University, 2016 (in Chinese).
[21]
CAI H, ZHANG T, TANG WX, LI SL. Expression of paxillin in breast cancer cell with high and low metastatic potentiality[J]. Journal of Sichuan University (Medical Sciences), 2010, 41(1): 91-94. DOI:10.3969/j.issn.1672-173X.2010.01.020
[22]
CHEN DL, WANG ZQ, REN C, ZENG ZL, WANG DS, LUO HY, WANG F, QIU MZ, BAI L, ZHANG DS, WANG FH, LI YH, XU RH. Abnormal expression of paxillin correlates with tumor progression and poor survival in patients with gastric cancer[J]. Journal of Translational Medicine, 2013, 11: 277. DOI:10.1186/1479-5876-11-277
[23]
VELASCO-VELÁZQUEZ MA, SALINAS-JAZMÍN N, MENDOZA-PATIÑO N, MANDOKI JJ. Reduced paxillin expression contributes to the antimetastatic effect of 4-hydroxycoumarin on B16-F10 melanoma cells[J]. Cancer Cell International, 2008, 8(1): 1-12. DOI:10.1186/1475-2867-8-1
[24]
YANG HJ, CHEN JZ, ZHANG WL, DING YQ. Focal adhesion plaque associated cytoskeletons are involved in the invasion and metastasis of human colorectal carcinoma[J]. Cancer Investigation, 2009, 28(2): 127-134. DOI:10.3109/07357900903147184
[25]
ZOTTEL A, NOVAK M, ŠAMEC N, MAJC B, COLJA S, KATRAŠNIK M, VITTORI M, HRASTAR B, ROTTER A, PORČNIK A, LAH TURNŠEK T, KOMEL R, BREZNIK B, JOVČEVSKA I. Anti-vimentin nanobody decreases glioblastoma cell invasion in vitro and in vivo[J]. Cancers, 2023, 15(3): 573. DOI:10.3390/cancers15030573
[26]
WANG JM, HE H, JIANG QC, WANG Y, JIA SZ. CBX6 promotes HCC metastasis via transcription factors snail/Zeb1-mediated EMT mechanism[J]. OncoTargets and Therapy, 2020, 13: 12489-12500. DOI:10.2147/OTT.S257363
[27]
KUO WT, ZUO L, ODENWALD MA, MADHA S, SINGH G, GURNIAK CB, ABRAHAM C, TURNER JR. The tight junction protein ZO-1 is dispensable for barrier function but critical for effective mucosal repair[J]. Gastroenterology, 2021, 161(6): 1924-1939. DOI:10.1053/j.gastro.2021.08.047
[28]
SCHWAYER C, SHAMIPOUR S, PRANJIC-FERSCHA K, SCHAUER A, BALDA M, TADA M, MATTER K, HEISENBERG CP. Mechanosensation of tight junctions depends on ZO-1 phase separation and flow[J]. Cell, 2019, 179(4): 937-952.e18. DOI:10.1016/j.cell.2019.10.006
[29]
ASSIDI M. High N-cadherin protein expression in ovarian cancer predicts poor survival and triggers cell invasion[J]. Frontiers in Oncology, 2022, 12: 870820. DOI:10.3389/fonc.2022.870820
[30]
UPADHAYA P, GIRI S, BARHOI D, BHATTACHARJEE A. Altered expression of junctional proteins as a potential biomarker in oral precancerous and cancerous patients[J]. Tissue Barriers, 2022, 10(2): 1973329. DOI:10.1080/21688370.2021.1973329
[31]
LI YJ, WEI ZM, MENG YX, JI XR. Beta-catenin up-regulates the expression of cyclinD1, c-myc and MMP-7 in human pancreatic cancer: relationships with carcinogenesis and metastasis[J]. World Journal of Gastroenterology, 2005, 11(14): 2117-2123. DOI:10.3748/wjg.v11.i14.2117
[32]
WIJNHOVEN BPL, DINJENS WNM, PIGNATELLI M. E-cadherin-catenin cell-cell adhesion complex and human cancer[J]. British Journal of Surgery, 2000, 87(8): 992-1005.
[33]
BREMNES RM, VEVE R, HIRSCH FR, FRANKLIN WA. The E-cadherin cell-cell adhesion complex and lung cancer invasion, metastasis, and prognosis[J]. Lung Cancer, 2002, 36(2): 115-124. DOI:10.1016/S0169-5002(01)00471-8
[34]
LI YJ, JI XR. Relationship between expression of E-cadherin-catenin complex and clinicopathologic characteristics of pancreatic cancer[J]. World Journal of Gastroenterology, 2003, 9(2): 368-372. DOI:10.3748/wjg.v9.i2.368
[35]
SONG BJ, PARK YJ, KIM HS, KIM CN, CHANG SH. Expression of beta-catenin and E-cadherin in early gastric cancer: correlation with clinicopathologic parameters[J]. The Korean Journal of Gastroenterology, 2004, 43(2): 82-89.
[36]
TANAKA N, ODAJIMA T, OGI K, IKEDA T, SATOH M. Expression of E-cadherin, α-catenin, and β-catenin in the process of lymph node metastasis in oral squamous cell carcinoma[J]. British Journal of Cancer, 2003, 89(3): 557-563. DOI:10.1038/sj.bjc.6601124
[37]
LIU JQ, XIAO Q, XIAO JN, NIU CX, LI YY, ZHANG XJ, ZHOU ZW, SHU G, YIN G. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities[J]. Signal Transduction and Targeted Therapy, 2022, 7: 3. DOI:10.1038/s41392-021-00762-6
[38]
NUSSE R, CLEVERS H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities[J]. Cell, 2017, 169(6): 985-999. DOI:10.1016/j.cell.2017.05.016
[39]
SHANG S, HUA F, HU ZW. The regulation of β-catenin activity and function in cancer: therapeutic opportunities[J]. Oncotarget, 2017, 8(20): 33972-33989. DOI:10.18632/oncotarget.15687
[40]
LIU J, STEVENS J, ROTE CA, YOST HJ, HU YX, NEUFELD KL, WHITE RL, MATSUNAMI N. Siah-1 mediates a novel β-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein[J]. Molecular Cell, 2001, 7(5): 927-936. DOI:10.1016/S1097-2765(01)00241-6