生物工程学报  2024, Vol. 40 Issue (1): 226-238
http://dx.doi.org/10.13345/j.cjb.230345
中国科学院微生物研究所、中国微生物学会主办
0

文章信息

王世泽, 李云, 韩玉翠, 余世洲, 王爽, 刘勇, 林小虎
WANG Shize, LI Yun, HAN Yucui, YU Shizhou, WANG Shuang, LIU Yong, LIN Xiaohu
烟草TCP家族成员鉴定及表达分析
Identification and expression analysis of TCP family members in tobacco (Nicotiana tabacum L.)
生物工程学报, 2024, 40(1): 226-238
Chinese Journal of Biotechnology, 2024, 40(1): 226-238
10.13345/j.cjb.230345

文章历史

Received: May 6, 2023
Accepted: August 9, 2023
Published: August 16, 2023
烟草TCP家族成员鉴定及表达分析
王世泽1,2 , 李云1 , 韩玉翠1 , 余世洲2 , 王爽1,2 , 刘勇2,3 , 林小虎1     
1. 河北科技师范学院农学与生物科技学院 河北省作物逆境生物学重点实验室, 河北 秦皇岛 066004;
2. 贵州省烟草科学研究院, 贵州 贵阳 550009;
3. 河南农业大学烟草学院, 河南 郑州 450002
摘要:TCP家族作为植物特有的转录因子,在植物发育的不同方面发挥着重要作用。为筛选烟草中TCP家族成员,本研究通过全基因组同源比对,鉴定烟草与拟南芥TCP家族同源序列。利用生物信息学的方法分析其理化性质、系统进化关系、顺式作用元件等;筛选AtTCP3/AtTCP4的同源基因,并利用RT-qPCR检测在20% PEG6000处理下的基因表达量变化。结果表明烟草中含有TCP家族成员63个,其氨基酸序列长度范围为89−596 aa,蛋白亲水性(grand average of hydropathicity, GRAVY)范围为−1.147−0.125,等电点(isoelectric point, pI)范围为4.42−9.94,内含子个数为0−3,亚细胞定位均位于细胞核。保守结构域和系统进化关系分析结果表明,烟草TCP家族可分为PCF、CIN和CYC/TB1这3个亚家族且每个亚家族具有稳定序列。基因启动子区顺式作用元件结果表明,TCP家族基因含有低温顺式作用元件(LTR)及多种胁迫及代谢调控相关的元件(MYB、MYC)等顺式作用元件。基因表达模式分析表明,AtTCP3/AtTCP4同源基因(NtTCP6NtTCP28NtTCP30NtTCP33NtTCP42NtTCP57NtTCP63)在20% PEG6000处理下表达量显著上调表达/下调表达,并发现NtTCP30NtTCP57基因对干旱胁迫响应较为明显。研究结果剖析了烟草基因组中的TCP家族,为烟草抗旱基因功能研究及品种培育提供了候选基因。
关键词烟草    TCP家族    干旱胁迫    表达分析    
Identification and expression analysis of TCP family members in tobacco (Nicotiana tabacum L.)
WANG Shize1,2 , LI Yun1 , HAN Yucui1 , YU Shizhou2 , WANG Shuang1,2 , LIU Yong2,3 , LIN Xiaohu1     
1. Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, China;
2. Guizhou Academy of Tobacco Science, Guiyang 550009, Guizhou, China;
3. College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
Abstract: TCP family as plant specific transcription factor, plays an important role in different aspects of plant development. In order to screen TCP family members in tobacco, the homologous sequences of tobacco and Arabidopsis TCP family were identified by genome-wide homologous alignment. The physicochemical properties, phylogenetic relationships and cis-acting elements were analyzed by bioinformatics. The homologous genes of AtTCP3/AtTCP4 were screened, and RT-qPCR was used to detect the changes of gene expression upon 20% PEG6000 treatment. The results show that tobacco contains 63 TCP family members. Their amino acid sequence length ranged from 89 aa to 596 aa, and their protein hydropathicity grand average of hydropathicity (GRAVY) ranged from −1.147 to 0.125. The isoelectric point (pI) ranges from 4.42 to 9.94, the number of introns is 0 to 3, and the subcellular location is all located in the nucleus. The results of conserved domain and phylogenetic relationship analysis showed that the tobacco TCP family can be divided into PCF, CIN and CYC/TB1 subfamilies, and each subfamily has a stable sequence. The results of cis-acting elements in gene promoter region showed that TCP family genes contain low docile acting elements (LTR) and a variety of stress and metabolic regulation related elements (MYB, MYC). Analysis of gene expression patterns showed that AtTCP3/AtTCP4 homologous genes (NtTCP6, NtTCP28, NtTCP30, NtTCP33, NtTCP42, NtTCP57, NtTCP63) accounted for 20% PEG6000 treatment significantly up-regulated/down-regulated expression, and NtTCP30 and NtTCP57 genes were selected as candidate genes in response to drought. The results of this study analyzed the TCP family in the tobacco genome and provided candidate genes for the study of drought-resistance gene function and variety breeding in tobacco.
Keywords: tobacco    TCP family    drought stress    expression analysis    

TCP家族作为植物特有的转录因子之一,最开始是在4个蛋白中发现:玉米中的TB1 (TEOSINTE BRANCHED1)、金鱼草中的CYC (CYCLOIDEA)和水稻中的PCF1, 2 (PROLIFERATING CELL FACTORS 1, 2),因而被命名为TCP[1]。TCP家族具有一个非典型的基本螺旋结构(basic helix-loop-helix, b HLH)和R结构域,其结构功能域高度保守,一般由60个氨基酸组成,按照结构功能域的相似性,TCP家族可分为PCF、CYC/TB1和CIN这3类亚家族,其中PCF亚家族主要参与细胞增殖与生长发育过程,并且受植物中氧化还原反应调控[2];CYC/TB1、CIN[3]亚家族与PCF亚家族成员相比,蛋白序列成员多插入了4个氨基酸[4],CYC/TB1亚家族被认为通过控制花的对称性影响花序类型[5-6]并主要存在于高等植物中[7]。CIN亚家族则被认为是双子叶植物分裂到扩增的关键调节器[8]

目前已在多种作物上证明TCP家族成员的功能,例如在拟南芥中异源表达月季RcTCP20基因,会对叶片、花序、果实造成影响[9],且CYC/TB1型TCP转录因子也可以控制大麦小穗分生组织特性[10]。过表达毛竹PeTCP10基因可增强转基因植株在营养生长期的耐盐性,提高萌发期和幼苗期的盐敏感性[11],在拟南芥中过表达玉米ZmTCP42基因也会导致种子萌发对脱落酸(abscisic acid, ABA)的超敏反应,从而增强耐旱性[12],海岛棉花的GbTCP4基因也被作为提高植物干旱和耐盐性的候选基因[13]。由此可见TCP家族可在干旱胁迫下发挥作用,且有研究指出TCP家族可用于开发耐旱作物的候选转录因子[14]

干旱胁迫下,根长是水分吸收的重要影响因素,研究表明长根或密集的根毛可以推迟干燥土壤的土壤限制[15]。在拟南芥TCP家族中,miR319可下调TCP4基因在叶和根中表达显著,且miR319-TCP4可能是黑麦草根系干旱损伤后的稳态因子[16],负调控根的生长[17]。已有研究证明在拟南芥中过表达AtTCP4基因株系会表现出较弱的抗旱性[18]。除此之外,AtTCP3AtTCP4基因可通过调节细胞分裂素控制新芽的生长[19]。针对AtTCP3AtTCP4基因的上下游调控基因也有初步的研究,例如AtTCP4基因可以结合LOX2功能基因启动子区域影响植物激素茉莉酸的生物合成,调控植物的生长发育过程[20]miR319可介导AtTCP2AtTCP3AtTCP4AtTCP10基因调控叶片发育、花瓣生长、细胞壁合成和茉莉酸(jasmonic acid, JA)合成[21-22]AtTCP3AtTCP4基因的功能较为丰富,且对干旱胁迫具有响应。因此其同源序列可能会对干旱胁迫产生响应,可初步作为筛选干旱基因的候选基因。

烟草作为重要的经济作物及模式植物,其生长发育及胁迫应答机制研究尚不完善。本文通过对拟南芥TCP家族进行同源基因比对,筛选烟草TCP家族并进行生物信息分析,测定AtTCP3AtTCP4同源基因干旱胁迫下的响应情况,为TCP家族的研究提供参考依据,并为植物生长发育及非生物胁迫研究提供理论支持。

1 材料与方法 1.1 烟草TCP家族成员的鉴定

在拟南芥基因组数据库(www.arabidopsis. org/index.jsp)中下载拟南芥的TCP家族序列,利用Perl脚本及Blastp软件与烟草基因组数据库Edwards 2017 (solgenomics.net/)进行比对筛选烟草TCP家族并提取开放阅读框(open reading frame, ORF)。从蛋白质家族数据库Pfam (http://pfam.xfam.org/)下载TCP结构域的隐马可夫模型(PF03634),通过HMMER软件[23]进行TCP基因初步蛋白序列比对,最后合并两种方法的结果作为候选基因家族成员。利用NCBI Conserved Domain Search (https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/ bwrpsb.cgi)将得到的基因序列进行功能域预测。

1.2 烟草TCP家族的理化性质分析

利用在线EXPASY (http://web.expasy.org/)网站预测蛋白质长度(amino acid, aa)、理论分子量(molecular weights, MW)、等电点(isoelectric point, PI)以及蛋白亲水性(grand average of hydropathicity, GRAVY)。使用在线Plant-PLoc serve (http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/)服务器预测亚细胞定位,利用TMHMM (http://www.cbs.dtu.dk/services/TMHMM/)网站进行跨膜结构域的预测。

1.3 烟草TCP家族系统进化树构建

使用MEGA 10软件[24]对拟南芥及烟草的TCP家族的氨基酸序列进行同源序列比对,并采用邻接法(neighbor-joining, NJ)构建系统进化树,bootstrap重复值为1 000,其他参数为默认值。

1.4 烟草TCP家族motif分析及染色体定位

使用MEME (meme-suite.org/meme/tools/meme)在线预测网站分析拟南芥及TCP蛋白序列结构域,motif值设置为15,保守基序设置为6−100个氨基酸;在烟草基因组数据库下载基因组注释文件,提取烟草TCP候选基因的基因结构及染色体位置信息,利用TBtools软件对保守基序、基因结构及染色体位置进行可视化。

1.5 烟草TCP家族顺式作用元件预测

使用TBtools软件对烟草TCP候选基因家族编码序列(coding sequence, CDS)区域上游的2 000 bp的序列提取,利用PlantCare (https://bioinformatics.psb.ugent.be/webtools/plantcare/html/)网站对顺式作用元件进行预测。

1.6 实验材料及处理

试验材料:烟草K326 (贵州省烟草科学研究院提供)。

试验处理:首先将K326种子进行催芽,待4真叶期移栽到Hoagland营养液中进行水培,待7真叶期时挑选长势一致的植株进行20% PEG6000模拟干旱处理,分别在0、1、3、6、12、24、36、48 h取根部样品,液氮速冻后放置−80 ℃保存备用。

1.7 实时荧光定量PCR

使用北京全式金生物EasyPure® Plant RNA Kit试剂盒提取植物根部RNA,并利用北京全式金生物TransScript® One-Step RT-PCR SuperMix试剂盒进行反转录。利用南京诺唯赞生物科技股份有限公司ChamQ Universal SYBR qPCR Master Mix试剂盒进行扩增,以烟草Actin基因作内参基因,设置3次生物学重复。本实验使用实时荧光定量PCR (real time quantitative PCR, RT-qPCR)引物见表 1

2 结果与分析 2.1 烟草TCP家族筛选

表 2所示,从Blastp和HMMER结果中共筛选得到63个TCP家族候选基因,根据TCP家族成员在连锁群的顺序命名为NtTCP1NtTCP63。结果表明,氨基酸长度及理化性质存在明显差异,其中氨基酸长度为89–596 aa,细胞亲水性在–1.147–0.125之间,等电点在4.42–9.94之间,内含子个数在0–3之间。其中NtTCP40的基因序列中存在未知的氨基酸序列,其分子量及等电点无法进行预测。结构域预测结果表明烟草TCP家族成员有TCP、TCPs、TCP2和TCP24这4个功能域,亚细胞定位结果均在细胞核内且仅有NtTCP52基因具有跨膜结构。

表 1 本实验所用引物序列 Table 1 Primers used in this experiment
Gene Gene ID Forward primer (5′→3′) Reverse primer (5′→3′)
Actin Nitab4.5_0004607g0020.1 TGGTTAAGGCTGGATTTGCT TGCATCCTTTGACCCATAC
qNtTCP6 Nitab4.5_0000246g0120.1 GGTTTGATACCTCGGGTTGC AGTCTTTGCACCCTCCCAAC
qNtTCP28 Nitab4.5_0002645g0010.1 CAAGTCGAAGGAGGGCGAAT TCGAGGTATGATCTCTTGGACC
qNtTCP30 Nitab4.5_0003077g0060.1 GATTGCTATTGCCACGGCTG TTGAAGTATAGTACCTTGGATTCGT
qNtTCP32 Nitab4.5_0003202g0050.1 ACCCCACTTGGGTTTGACAG GCTGCCCTGGTTGTGAATTG
qNtTCP33 Nitab4.5_0003291g0010.1 AAGCAAAGCTGTGGATTGGC AGGATTTCGAGGTATTTGAACCA
qNtTCP42 Nitab4.5_0005709g0020.1 GCACGAATCCAAGGAACAAGT CTCGACGATGAACCATTGCC
qNtTCP57 Nitab4.5_0010770g0010.1 AGGGAACCCCTTCAGTCCAA ACATATCTAATCGACCATGAATCCT
qNtTCP63 Nitab4.5_0014471g0010.1 GGAACCCCAGAATTGATGCAG CGACTGTGTTTCTCCTCCAG
表 2 烟草TCP家族基本信息 Table 2 TCP genes identified in tobacco
Genes Locus ID ORF length Introns Putative protein
Length (aa) MW (kDa) PI GRAVY Domains
NtTCP1 Nitab4.5_0000069g0220.1 744 0 247 25 894.84 7.93 −0.442 TCP, TCPs, TCP2, TCP24
NtTCP2 Nitab4.5_0000101g0370.1 633 0 210 22 117.01 8.95 −0.284 TCP, TCPs, TCP2, TCP24
NtTCP3 Nitab4.5_0000206g0010.1 1 329 0 442 48 501.86 8.55 −0.907 TCP2, TCPs, TCP, TCP24
NtTCP4 Nitab4.5_0000208g0150.1 1 586 3 296 34 453.79 9.37 −1.008 TCP, TCPs, TCP2, TCP24
NtTCP5 Nitab4.5_0000221g0100.1 923 1 291 33 591.37 9.37 −1.147 TCP, TCPs, TCP2, TCP24
NtTCP6 Nitab4.5_0000246g0120.1 1 272 0 423 46 666.03 6.43 −0.819 TCP, TCPs, TCP2, TCP24
NtTCP7 Nitab4.5_0000269g0060.1 1 520 1 367 39 853.82 7.37 −0.715 TCP, TCPs
NtTCP8 Nitab4.5_0000303g0270.1 981 0 326 34 960.47 6.87 −0.784 TCP, TCPs, TCP24, TCP2
NtTCP9 Nitab4.5_0000365g0240.1 1 670 1 412 44 289.96 8.99 −0.746 TCP, TCPs, TCP24, TCP2
NtTCP10 Nitab4.5_0000376g0110.1 1 101 0 366 41 248.74 5.47 −0.730 TCP, TCPs, TCP2, TCP24
NtTCP11 Nitab4.5_0000410g0060.1 1 384 1 345 39 155.55 8.46 −0.871 TCP, TCPs, TCP2, TCP24
NtTCP12 Nitab4.5_0000519g0050.1 1 137 1 222 24 004.21 9.82 −0.486 TCP, TCPs, TCP2, TCP24
NtTCP13 Nitab4.5_0000703g0090.1 1 041 0 346 37 508.40 8.33 −0.771 TCP, TCPs, TCP2
NtTCP14 Nitab4.5_0000832g0020.1 1 074 0 357 38 007.51 5.53 −0.448 TCP, TCPs, TCP24, TCP2
NtTCP15 Nitab4.5_0000948g0150.1 2 784 1 556 59 692.86 7.19 −0.758 TCP, TCPs, TCP24, TCP2
NtTCP16 Nitab4.5_0001082g0060.1 1 705 1 302 32 469.07 8.65 −0.669 TCP, TCPs, TCP24
NtTCP17 Nitab4.5_0001089g0050.1 786 0 261 27 524.97 9.90 −0.391 TCP, TCPs, TCP2, TCP24
NtTCP18 Nitab4.5_0001188g0020.1 1 605 1 399 43 838.03 6.89 −0.823 TCP, TCPs
NtTCP19 Nitab4.5_0001328g0060.1 1 002 0 333 36 834.87 8.80 −0.705 TCP, TCPs, TCP2, TCP24
NtTCP20 Nitab4.5_0001432g0020.1 1 117 1 229 25 932.05 5.23 −0.618 TCP, TCPs, TCP2, TCP24
NtTCP21 Nitab4.5_0001485g0060.1 984 0 327 36 470.55 7.88 −0.685 TCP, TCPs, TCP2, TCP24
NtTCP22 Nitab4.5_0001594g0010.1 1 510 1 420 46 362.15 5.98 −0.760 TCP2, TCPs, TCP, TCP24
NtTCP23 Nitab4.5_0001599g0190.1 1 458 1 316 35 460.90 8.80 −0.696 TCP, TCPs, TCP2, TCP24
NtTCP24 Nitab4.5_0001645g0060.1 1 101 0 366 41 395.79 5.41 −0.729 TCP, TCPs, TCP2, TCP24
NtTCP25 Nitab4.5_0001721g0060.1 19 770 1 101 10 984.18 6.07 −0.603 TCP2, TCPs, TCP24, TCP
NtTCP26 Nitab4.5_0002108g0090.1 843 1 246 27 543.15 9.67 −0.661 TCP, TCPs, TCP2, TCP24
NtTCP27 Nitab4.5_0002257g0150.1 1 159 1 294 32 330.92 8.71 −0.707 TCP, TCPs, TCP2
NtTCP28 Nitab4.5_0002645g0010.1 1 185 1 183 20 594.71 6.24 −0.795 TCP, TCPs, TCP2
NtTCP29 Nitab4.5_0002963g0020.1 633 0 210 22 362.35 9.51 −0.300 TCP, TCPs, TCP2, TCP24
NtTCP30 Nitab4.5_0003077g0060.1 2 171 2 596 66 701.56 6.14 −0.808 TCP, TCPs, TCP2, TCP24
NtTCP31 Nitab4.5_0003161g0070.1 2 488 2 318 36 366.35 9.91 −0.808 TCP, TCPs, TCP2, TCP24
NtTCP32 Nitab4.5_0003202g0050.1 1 263 0 420 46 356.81 6.57 −0.793 TCP, TCPs, TCP2, TCP24
NtTCP33 Nitab4.5_0003291g0010.1 1 210 2 262 29 581.09 8.95 −0.656 TCP, TCPs, TCP2, TCP24
NtTCP34 Nitab4.5_0003376g0090.1 903 0 300 32 098.86 8.45 −0.525 TCP, TCPs, TCP24, TCP2
NtTCP35 Nitab4.5_0003519g0080.1 6 842 1 193 21 658.17 8.69 −0.795 TCP2, TCPs, TCP, TCP24
NtTCP36 Nitab4.5_0004103g0020.1 1 337 1 362 38 597.00 6.02 −0.665 TCP, TCPs
NtTCP37 Nitab4.5_0004301g0070.1 903 0 300 31 547.45 8.65 −0.324 TCP, TCPs, TCP2, TCP24
NtTCP38 Nitab4.5_0004487g0030.1 1 180 1 262 29 767.49 9.94 −0.860 TCP, TCPs, TCP24, TCP2
NtTCP39 Nitab4.5_0004548g0010.1 1 323 0 440 48 080.36 7.74 −0.883 TCP2, TCPs, TCP, TCP24
NtTCP40 Nitab4.5_0004980g0010.1 1 161 0 386 null null −1.078 TCP, TCPs, TCP24, TCP2
NtTCP41 Nitab4.5_0005379g0040.1 1 080 0 359 38 205.63 5.43 −0.444 TCP, TCPs, TCP2
NtTCP42 Nitab4.5_0005709g0020.1 4 452 2 589 65 993.79 6.65 −0.817 TCP, TCPs, TCP2, TCP24
NtTCP43 Nitab4.5_0005803g0030.1 2 790 2 315 36 380.77 9.12 −1.027 TCP, TCPs, TCP24, TCP2
NtTCP44 Nitab4.5_0005897g0010.1 1 122 0 373 43 059.16 5.93 −1.007 TCP, TCPs, TCP2, TCP24
NtTCP45 Nitab4.5_0005910g0040.1 1 118 1 278 30 998.47 6.67 −0.675 TCP, TCPs, TCP2, TCP24
NtTCP46 Nitab4.5_0006712g0010.1 1 275 0 424 46 478.72 5.70 −0.821 TCP2, TCPs, TCP, TCP24
NtTCP47 Nitab4.5_0007019g0020.1 915 0 304 33 983.72 9.34 −0.763 TCP, TCPs, TCP2, TCP24
NtTCP48 Nitab4.5_0007105g0010.1 993 0 330 37 086.46 8.38 −0.810 TCP, TCPs, TCP2, TCP24
NtTCP49 Nitab4.5_0007160g0050.1 981 0 326 36 351.27 6.80 −0.730 TCP, TCPs, TCP2, TCP24
NtTCP50 Nitab4.5_0007375g0060.1 888 0 295 32 097.59 7.14 −0.744 TCP, TCPs, TCP2, TCP24
NtTCP51 Nitab4.5_0007913g0020.1 2 788 1 544 58 332.36 7.00 −0.761 TCP, TCPs, TCP24
NtTCP52 Nitab4.5_0008460g0020.1 287 1 89 9 677.11 4.42 0.125 TCP2, TCPs, TCP, TCP24
NtTCP53 Nitab4.5_0009198g0010.1 1 260 0 419 44 840.40 8.04 −0.804 TCP, TCPs, TCP24
NtTCP54 Nitab4.5_0010535g0030.1 1 670 1 274 30 436.80 7.96 −0.712 TCP, TCPs, TCP2, TCP24
NtTCP55 Nitab4.5_0010549g0020.1 1 068 0 355 40 833.80 6.36 −0.908 TCP, TCPs, TCP2, TCP24
NtTCP56 Nitab4.5_0010674g0010.1 3 145 1 322 35 945.67 9.63 −0.556 TCP, TCPs, TCP2, TCP24
NtTCP57 Nitab4.5_0010770g0010.1 1 689 2 326 37 075.10 6.68 −0.865 TCP, TCPs, TCP2, TCP24
NtTCP58 Nitab4.5_0010972g0020.1 1 065 1 202 21 856.01 8.46 −0.923 TCP, TCPs, TCP2, TCP24
NtTCP59 Nitab4.5_0011381g0030.1 873 0 290 31 278.79 8.91 −0.598 TCP, TCPs, TCP24, TCP2
NtTCP60 Nitab4.5_0011777g0010.1 786 0 261 27 538.91 9.71 −0.432 TCP, TCPs, TCP2, TCP24
NtTCP61 Nitab4.5_0011812g0020.1 1 218 2 224 25 740.21 9.75 −1.032 TCP, TCPs, TCP2, TCP24
NtTCP62 Nitab4.5_0011935g0010.1 1 902 3 306 35 162.39 9.17 −0.931 TCP, TCPs, TCP2, TCP24
NtTCP63 Nitab4.5_0014471g0010.1 942 0 313 35 705.17 6.57 −1.010 TCP, TCPs, TCP2, TCP24
2.2 烟草TCP家族进化树分析

为了进一步分析烟草TCP家族成员的关系,利用MEGA 10软件对拟南芥的24个TCP家族成员及烟草中的63个成员进行系统进化树分析。如图 1所示,烟草TCP家族成员的分类参考拟南芥TCP家族分类,分为3个亚家族,其中PCF亚家族中含有24个烟草基因、13个拟南芥基因,CYC亚家族中含有14个烟草基因、2个拟南芥基因,CIN亚家族中含有25个烟草基因、8个拟南芥基因。亲缘关系较近的基因可能会有相似的功能,在烟草中与AtTCP3AtTCP4基因亲缘关系较近有8个基因,分别为:NtTCP6NtTCP28NtTCP30NtTCP32NtTCP33NtTCP42NtTCP57NtTCP63,且8个基因与AtTCP3AtTCP4基因在系统发生树在同一个分支上,以供后续研究。

图 1 烟草及拟南芥中TCP家族系统发生树 Fig. 1 Phylogenetic tree of TCP gene family in tobacco and Arabidopsis thaliana.
2.3 烟草TCP家族的染色体分布

烟草TCP家族成员的注释文件中仅有28个基因有染色体位置信息,分散在14条染色体上,其中4号染色体上的基因数量较多含有4个基因,9、11、15、18、21、24号染色体仅含有1个基因(图 2)。

2.4 烟草TCP家族的结构域及保守基序预测

利用在线MEME程序对TCP家族蛋白序列进行分析,发现TCP家族成员由多种motif组成,见图 3A。其中63个基因家族成员均含有motif 1基序,说明motif 1基序具有较强的保守性,为TCP家族共有的蛋白质结构域。此外,每个TCP基因之间所含的结构域的种类及数目差异较大。烟草TCP家族含有1−7个保守基序,其中NtTCP25仅含有motif 1基序。基因结构分析结果表明,发现63个基因之间的排列存在显著差异,内含子数量在0−3之间,外显子数量在1−4之间,大部分基因的结构较为简单仅有一个外显子,但NtTCP25的结构较为特殊,其内含子长度较长,见图 3B。亲缘关系较近的基因有着相似的结构域,例如PCF亚家族多为motif 2+ motif 1+motif 3组合,CIN亚家族为motif 2+ motif 1+motif 5组合,CYC亚家族为motif 2+ motif 1+motif 4结构组合,表明在演化过程中,不同亚家族之间保守基序存在分化情况,不同保守基序的组合可能影响TCP亚家族成员的功能。拟南芥AtTCP3AtTCP4基因及烟草候选8个基因均含有motif 13,其存在的功能可能与此结构域有关。保守基序分析可知,motif 1和motif 2在TCP家族中保守,motif 3在PCF亚家族保守,motif 4在CYC亚家族保守,motif 5在CIN亚家族中保守,motif 13在AtTCP3AtTCP4分支上保守,基序信息见图 3C

2.5 顺式作用元件预测

对63个烟草TCP家族的启动子进行预测发现启动子区域含有较多的非生物胁迫响应元件,在启动子预测分析中,低温响应元件(LTR)、多种胁迫及代谢调控相关的元件(MYB、MYC)、应激反应元件(STRE)和ABA响应元件(ABRE)广泛分布在各个基因中,此外,响应干旱诱导信号传导及下游基因表达的MBS、G-box、DRE和W-box元件[25]也分布其中。如图 4所示,烟草TCP家族AtTCP3AtTCP4同源基因中有4个基因含有脱水响应元件DRE,分别在NtTCP63NtTCP57基因上游500 bp左右的位置,以及NtTCP30NtTCP28基因上游1 700 bp左右的位置。

图 2 烟草TCP家族染色体分布图 Fig. 2 Chromosome distribution map of TCP family in tobacco.
图 3 烟草TCP家族结构信息 Fig. 3 TCP family structure information in tobacco. A: Conservative motif of the TCP family of tobacco and Arabidopsis thaliana. B: TCP family gene structure map of tobacco and Arabidopsis thaliana. C: Partial motif sequence. A:烟草与拟南芥TCP家族保守基序. B:烟草与拟南芥TCP家族基因结构图. C:部分motif基序序列
图 4 烟草TCP家族顺式作用元件分布图 Fig. 4 Map of cis-acting elements in tobacco TCP gene family.
2.6 基因的表达量分析

图 5所示,在20% PEG6000模拟干旱胁迫处理下,8个烟草干旱响应候选基因的相对表达量表现出差异。其中NtTCP28NtTCP33NtTCP63基因表达量为先增加后减少的趋势,且NtTCP28NtTCP33在干旱胁迫下24 h表达量达到最高值,NtTCP63在36 h表达量达到最高。而NtTCP57基因的表达量随时间变化呈上升趋势,在48 h表达量达到最高。NtTCP6NtTCP30NtTCP42基因表达量随处理时间的增加呈下降趋势。NtTCP32基因表达量变化不显著。

图 5 基因相对表达量 Fig. 5 Relative gene expression. Different lowercase letters indicate significant difference in content or activity (P < 0.05). 不同小写字母表示含量或活性差异显著(P < 0.05)
3 讨论与结论

TCP家族除在玉米、金鱼草和水稻中发现外,多种植物也发现了同源基因,目前在小麦中筛选出66个TCP基因[26],玉米中29个[27],拟南芥中24个[28],但烟草的TCP家族仅有个别基因克隆及功能分析[29]。本文针对烟草TCP家族进行了初步筛选,利用模式植物拟南芥与烟草TCP家族构建系统进化树,并将烟草TCP家族分为3个亚家族,有研究表明不同亚家族成员的功能存在差异,且同源基因可能会存在相似功能。烟草TCP家族成员含有多种顺式作用元件,说明其会对不同的环境作出响应。目前TCP家族的研究大部分都基于拟南芥AtTCP3AtTCP4基因,其中AtTCP4基因可以抑制叶绿素的合成阻止拟南芥花瓣变绿[30]、参与叶片发育[31]及光反应等。通过系统进化树及保守结构域分析得到8个与AtTCP3AtTCP4基因同源性较高的烟草基因,RT-qPCR结果显示,在干旱胁迫下候选基因表达量存在显著差异,其中有4个基因出现上调,3个基因出现下调,1个基因变化不明显。其中含有干旱响应元件的NtTCP63NtTCP57NtTCP28表现出上升趋势,NtTCP30表现出下降趋势。有研究表明拟南芥AtTCP4转录因子也参与干旱胁迫调控,但不依赖ABA途径,而是通过调控主根伸长生长促使根系更好地吸收水分,使植物适应外界的干旱胁迫[18]。且miR319调控AtTCP4基因且AtTCP4基因负调控根的生长[17],因此推测TCP基因家族成员可能对干旱胁迫为负调控,但也不排除正向调控。由于筛选得到的候选基因可能对干旱胁迫的响应方式不同,还需进一步证明是否参与干旱胁迫应答。除此之外,AtTCP4同源基因也会响应生物胁迫,并已在番茄中提出miR319/TCP4介导的根结线虫抗性的预测模型[32]。发现的7个烟草TCP候选基因也可能会对生物胁迫作出响应,后续可进行下一步的研究。

本研究利用拟南芥TCP家族进行全基因组同源比对筛选得到63个烟草TCP家族成员。将63个基因分为了3个亚家族,不同亚家族的结构及保守基序差别较大,分散在14条染色体上且含有不同功能的顺式响应元件,并且发现了7个响应干旱胁迫的烟草TCP基因。本研究结果为烟草TCP家族分析提供了参考依据,为TCP家族功能研究开拓了新思路。

参考文献
[1]
CUBAS P, LAUTER N, DOEBLEY J, COEN E. The TCP domain: a motif found in proteins regulating plant growth and development[J]. The Plant Journal, 1999, 18(2): 215-222. DOI:10.1046/j.1365-313X.1999.00444.x
[2]
VIOLA IL, GÜTTLEIN LN, GONZALEZ DH. Redox modulation of plant developmental regulators from the class Ⅰ TCP transcription factor family[J]. Plant Physiology, 2013, 162(3): 1434-1447. DOI:10.1104/pp.113.216416
[3]
ZHOU HY, HWARARI D, MA HY, XU HB, YANG LM, LUO YM. Genomic survey of TCP transcription factors in plants: phylogenomics, evolution and their biology[J]. Frontiers in Genetics, 2022, 13: 1060546. DOI:10.3389/fgene.2022.1060546
[4]
VIOLA IL, REINHEIMER R, RIPOLL R, MANASSERO NGU, GONZALEZ DH. Determinants of the DNA binding specificity of class Ⅰ and class Ⅱ TCP transcription factors[J]. The Journal of Biological Chemistry, 2012, 287(1): 347-356. DOI:10.1074/jbc.M111.256271
[5]
BELLO MA, CUBAS P, ÁLVAREZ I, SANJUANBENITO G, FUERTES-AGUILAR J. Evolution and expression patterns of CYC/TB1 genes in Anacyclus: phylogenetic insights for floral symmetry genes in Asteraceae[J]. Frontiers in Plant Science, 2017, 8: 589. DOI:10.3389/fpls.2017.00589
[6]
LEVIN KA, BODEN SA. A new branch of understanding for barley inflorescence development[J]. Journal of Experimental Botany, 2020, 71(22): 6869-6871. DOI:10.1093/jxb/eraa464
[7]
QIN LY, HU YH, WANG JP, WANG XL, ZHAO R, SHAN HY, LI KP, XU P, WU HY, YAN XQ, LIU LM, YI X, WANKE S, BOWERS JE, LEEBENS-MACK JH, DEPAMPHILIS CW, SOLTIS PS, SOLTIS DE, KONG HZ, JIAO YN. Insights into angiosperm evolution, floral development and chemical biosynthesis from the Aristolochia fimbriata genome[J]. Nature Plants, 2021, 7(9): 1239-1253. DOI:10.1038/s41477-021-00990-2
[8]
SARVEPALLI K, NATH U. CIN-TCP transcription factors: transiting cell proliferation in plants[J]. IUBMB Life, 2018, 70(8): 718-731. DOI:10.1002/iub.1874
[9]
王榕, 牛晓茹, 陈己任. 月季RcTCP20基因的克隆及在拟南芥中的功能分析[J]. 植物生理学报, 2022, 58(10): 1907-1918.
WANG R, NIU XR, CHEN JR. Cloning of RcTCP20 of rose and function analysis in Arabidopsis thaliana[J]. Plant Physiology Journal, 2022, 58(10): 1907-1918 (in Chinese).
[10]
SHANG Y, YUAN L, DI ZC, JIA Y, ZHANG ZL, LI SJ, XING LP, QI ZJ, WANG XY, ZHU JH, HUA W, WU XJ, ZHU MQ, LI G, LI CD. A CYC/TB1-type TCP transcription factor controls spikelet meristem identity in barley[J]. Journal of Experimental Botany, 2020, 71(22): 7118-7131. DOI:10.1093/jxb/eraa416
[11]
XU YZ, LIU HL, GAO YM, XIONG R, WU M, ZHANG KM, XIANG Y. The TCP transcription factor PeTCP10 modulates salt tolerance in transgenic Arabidopsis[J]. Plant Cell Reports, 2021, 40(10): 1971-1987. DOI:10.1007/s00299-021-02765-7
[12]
DING SC, CAI ZZ, DU HW, WANG HW. Genome-wide analysis of TCP family genes in Zea mays L. identified a role for ZmTCP42 in drought tolerance[J]. International Journal of Molecular Sciences, 2019, 20(11): 2762. DOI:10.3390/ijms20112762
[13]
WANG Y, YU YH, WAN HN, TANG J, NI ZY. The sea-island cotton GbTCP4 transcription factor positively regulates drought and salt stress responses[J]. Plant Science, 2022, 322: 111329. DOI:10.1016/j.plantsci.2022.111329
[14]
MANNA M, THAKUR T, CHIROM O, MANDLIK R, DESHMUKH R, SALVI P. Transcription factors as key molecular target to strengthen the drought stress tolerance in plants[J]. Physiologia Plantarum, 2021, 172(2): 847-868. DOI:10.1111/ppl.13268
[15]
CAI GC, AHMED MA, ABDALLA M, CARMINATI A. Root hydraulic phenotypes impacting water uptake in drying soils[J]. Plant, Cell & Environment, 2022, 45(3): 650-663.
[16]
GUO MW, LI HY, ZHU L, WU ZN, LI J, LI ZY. Genome-wide identification of microRNAs associated with osmotic stress and elucidation of the role of miR319 in Medicago ruthenica seedlings[J]. Plant Physiology and Biochemistry, 2021, 168: 53-61. DOI:10.1016/j.plaphy.2021.09.033
[17]
KOYAMA T, FURUTANI M, TASAKA M, OHME-TAKAGI M. TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis[J]. The Plant Cell, 2007, 19(2): 473-484. DOI:10.1105/tpc.106.044792
[18]
雷其冬. 拟南芥miR319-TCP4调控植物应答干旱胁迫的分子机制研究[D]. 昆明: 昆明理工大学硕士学位论文, 2021.
LEI QD. The molecular mechanism of miR319-TCP4 regulating plant drought response in Arabidopsis thaliana[D]. Kunming Master's Thesis of Kunming University of Science and Technology, 2021 (in Chinese).
[19]
YANG W, CHOI MH, NOH B, NOH YS. De novo shoot regeneration controlled by HEN1 and TCP3/4 in Arabidopsis[J]. Plant & Cell Physiology, 2020, 61(9): 1600-1613.
[20]
雷其冬, 孙旭东, 徐慧妮. 拟南芥AtTCP4基因克隆及原核表达[J]. 华北农学报, 2021, 36(5): 24-28.
LEI QD, SUN XD, XU HN. Cloning and prokaryotic expression of Arabidopsis AtTCP4 gene[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(5): 24-28 (in Chinese).
[21]
BRESSO EG, CHOROSTECKI U, RODRIGUEZ RE, PALATNIK JF, SCHOMMER C. Spatial control of gene expression by miR319-regulated TCP transcription factors in leaf development[J]. Plant Physiology, 2018, 176(2): 1694-1708. DOI:10.1104/pp.17.00823
[22]
雷其冬, 孙旭东, 徐慧妮. 转录因子TCP4参与植物生长发育和抗逆调节研究进展[J]. 华北农学报, 2021, 36(S01): 210-214.
LEI QD, SUN XD, XU HN. Research progress in transcription factor TCP4 participating in plant growth, development and stress resistance regulation[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(S01): 210-214 (in Chinese).
[23]
PRAKASH A, JEFFRYES M, BATEMAN A, FINN RD. The HMMER web server for protein sequence similarity search[J]. Current Protocols in Bioinformatics, 2017, 60: 3.15.1-3.15.3.15.23.
[24]
KUMAR S, STECHER G, LI M, KNYAZ C, TAMURA K. MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6): 1547-1549. DOI:10.1093/molbev/msy096
[25]
NAKASHIMA K, JAN A, TODAKA D, MARUYAMA K, GOTO S, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Comparative functional analysis of six drought-responsive promoters in transgenic rice[J]. Planta, 2014, 239(1): 47-60. DOI:10.1007/s00425-013-1960-7
[26]
ZHAO JM, ZHAI ZW, LI YN, GENG SF, SONG GY, GUAN JT, JIA ML, WANG F, SUN GL, FENG N, KONG XC, CHEN L, MAO L, LI AL. Genome-wide identification and expression profiling of the TCP family genes in spike and grain development of wheat (Triticum aestivum L.)[J]. Frontiers in Plant Science, 2018, 9: 1282. DOI:10.3389/fpls.2018.01282
[27]
CHAI WB, JIANG PF, HUANG GY, JIANG HY, LI XY. Identification and expression profiling analysis of TCP family genes involved in growth and development in maize[J]. Physiology and Molecular Biology of Plants, 2017, 23(4): 779-791. DOI:10.1007/s12298-017-0476-1
[28]
LI ST. The Arabidopsis thaliana TCP transcription factors: a broadening horizon beyond development[J]. Plant Signaling & Behavior, 2015, 10(7): e1044192.
[29]
肖玉洁. 烟草响应低温胁迫的生化与分子基础及TCP基因编辑突变的初步研究[D]. 长沙: 湖南农业大学硕士学位论文, 2018.
XIAO YJ. Studies on physiological and molecular bases of cold response and preliminary research on editing mutation of TCP gene[D]. Changsha: Master's Thesis of Hunan Agricultural University, 2018 (in Chinese).
[30]
ZHENG XH, LAN JQ, YU H, ZHANG JZ, ZHANG Y, QIN YM, SU XD, QIN GJ. Arabidopsis transcription factor TCP4 represses chlorophyll biosynthesis to prevent petal greening[J]. Plant Communications, 2022, 3(4): 100309. DOI:10.1016/j.xplc.2022.100309
[31]
SAINI K, DWIVEDI A, RANJAN A. High temperature restricts cell division and leaf size by coordination of PIF4 and TCP4 transcription factors[J]. Plant Physiology, 2022, 190(4): 2380-2397. DOI:10.1093/plphys/kiac345
[32]
ZHAO WC, LI ZL, FAN JW, HU CL, YANG R, QI X, CHEN H, ZHAO FK, WANG SH. Identification of jasmonic acid-associated microRNAs and characterization of the regulatory roles of the miR319/TCP4 module under root-knot nematode stress in tomato[J]. Journal of Experimental Botany, 2015, 66(15): 4653-4667. DOI:10.1093/jxb/erv238