生物工程学报  2024, Vol. 40 Issue (1): 211-225
http://dx.doi.org/10.13345/j.cjb.230170
中国科学院微生物研究所、中国微生物学会主办
0

文章信息

姚遐俊, 谢津, 祁艳华, 汪斌, 房文霞, 陶刚, 蒋细良
YAO Xiajun, XIE Jin, QI Yanhua, WANG Bin, FANG Wenxia, TAO Gang, JIANG Xiliang
一株防治香蕉枯萎病的短密木霉筛选及代谢物木霉素作用评价
Screening and evaluation of the biocontrol efficacy of a Trichoderma brevicompactum strain and its metabolite trichodermin against banana Fusarium wilt
生物工程学报, 2024, 40(1): 211-225
Chinese Journal of Biotechnology, 2024, 40(1): 211-225
10.13345/j.cjb.230170

文章历史

Received: March 6, 2023
Accepted: May 22, 2023
Published: May 30, 2023
一株防治香蕉枯萎病的短密木霉筛选及代谢物木霉素作用评价
姚遐俊1 #, 谢津2 #, 祁艳华2 , 汪斌2 , 房文霞2 , 陶刚1 , 蒋细良3     
1. 贵州民族大学生态环境工程学院, 贵州 贵阳 550025;
2. 广西科学院非粮生物质酶解国家重点实验室, 广西 南宁 530007;
3. 中国农业科学院植物保护研究所, 北京 100193
摘要:由尖孢镰刀菌古巴专化型热带四号小种(Fusarium oxysporum f. sp. cubense tropical race4, FocTR4)引起的香蕉枯萎病(banana Fusarium wilt, BFW)是全世界范围内难以防治的真菌病害,给香蕉产业造成巨大的经济损失。本研究旨在筛选高效拮抗FocTR4的木霉生防菌株,并对其发酵代谢产物进行分离、提纯和鉴定,为香蕉枯萎病的高效生物防治提供重要生防菌株和活性化合物资源。从作物根际土壤中分离出木霉菌株,通过平板对峙培养、发酵液对病原菌孢子萌发及菌丝生长抑制,测试筛选出高效抑制FocTR4的生防木霉菌株;通过构建系统发育树明确生防菌株的分类地位;通过柱色谱法分离纯化菌株发酵液中活性成分,通过核磁共振波谱法(nuclear magnetic resonance spectroscopy, NMR)解析活性成分的结构;通过香蕉苗感病盆栽实验检测生防木霉菌株对香蕉枯萎病的防治效果。结果表明,本研究筛选到了1株拮抗FocTR4的菌株JSHA-CD-1003,平板对峙抑制率为60.6%;发酵液在24 h内能完全抑制FocTR4孢子萌发,7 d内对FocTR4菌丝生长的抑制率为52.6%;基于内转录间隔区(internal transcribed spacer, ITS)和tef1-α基因串联序列构建系统发育树,该菌株鉴定为短密木霉(Trichoderma brevicompactum),通过柱色谱法分离提纯和NMR鉴定单一活性化合物为木霉素(trichodermin),最小抑菌浓度(minimum inhibitory concentration, MIC)为25 μg/mL;盆栽生防实验表明,菌株JSHA-CD-1003发酵液对香蕉枯萎病的叶片黄化防治率为47.4%,球茎褐化防治率为52.0%。因此,JSHA-CD-1003通过产生木霉素有效抑制FocTR4孢子萌发和菌丝生长,对FocTR4引起的香蕉枯萎病具有良好的生物防治效果,是一株具有生防潜力的菌株。
关键词香蕉枯萎病    生物防治    短密木霉    柱色谱法    木霉素    
Screening and evaluation of the biocontrol efficacy of a Trichoderma brevicompactum strain and its metabolite trichodermin against banana Fusarium wilt
YAO Xiajun1 #, XIE Jin2 #, QI Yanhua2 , WANG Bin2 , FANG Wenxia2 , TAO Gang1 , JIANG Xiliang3     
1. College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, Guizhou, China;
2. State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China;
3. Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Abstract: The banana Fusarium wilt (BFW) caused by Fusarium oxysporum f. sp. cubense tropical race4 (FocTR4) is difficult to control worldwide, which causes a huge economic losse to banana industry. The purpose of this study was to screen Trichoderma strains with antagonistic activity against FocTR4, to isolate and purify the active compound from the fermentation broth, so as to provide important biocontrol strains and active compound resources. In this work, Trichoderma strains were isolated and screened from the rhizosphere soil of crops, and the strains capable of efficiently inhibiting FocTR4 were screened by plate confrontation, and further confirmed by testing inhibition for the conidial germination and mycelial growth of FocTR4. The phylogenetic tree clarified the taxonomic status of the biocontrol strains. Moreover, the active components in the fermentation broth of the strains were separated and purified by column chromatography, the structure of the most active component was analyzed by nuclear magnetic resonance spectroscopy (NMR), the BFW control effect was tested by pot experiments. We obtained a strain JSHA-CD-1003 with antagonistic activity against FocTR4, and the inhibition rate from plate confrontation was 60.6%. The fermentation broth of JSHA-CD-1003 completely inhibited the germination of FocTR4 conidia within 24 hours. The inhibition rate of FocTR4 hyphae growth was 52.6% within 7 d. A phylogenetic tree was constructed based on the ITS and tef1-α gene tandem sequences, and JSHA-CD-1003 was identified as Trichoderma brevicompactum. Purification and NMR identification showed that the single active compound was trichodermin, and the minimum inhibitory concentration (MIC) was 25 μg/mL. Pot experiments showed that the fermentation broth of strain JSHA-CD-1003 was effective against BFW. The control rate of leaf yellowing was 47.4%, and the rate of bulb browning was 52.0%. Therefore, JSHA-CD-1003 effectively inhibited FocTR4 conidial germination and mycelium growth through producing trichodermin, and showed biocontrol effect on banana wilt caused by FocTR4, thus is a potential biocontrol strain.
Keywords: banana Fusarium wilt    biological control    Trichoderma brevicompactum    column chromatography    trichodermin    

香蕉是热带、亚热带地区最受欢迎的水果之一,是我国台湾、福建、广东、广西和海南等省区重要的经济作物。香蕉枯萎病(banana Fusarium wilt, BFW)作为一种由尖孢镰刀菌古巴专化型(Fusarium oxysporum f. sp. cubense)引起的土传真菌病害,具有传播速度快、分布广、存活时间长和难根治等特点[1],在我国香蕉产区大面积发生,严重威胁着香蕉产业的发展[2]。根据宿主的特异性,尖孢镰刀菌古巴专化型主要分为4个生理小种(Foc1–Foc4),特别是古巴专化型热带4号小种(FocTR4)几乎可以感染现有的所有香蕉品种[3]。现行最常见种植品种Cavendish (AAA)型香蕉对Foc1号生理小种具有抗性,但面对FocTR4侵染发病率居高不下[4]

近年来,针对FocTR4的防治手段主要有4种:施用化学农药[5]、作物轮作[6]、香蕉抗病品种选育[7-8]和生物防治等。其中,生物防治具有安全及生态可持续等特点,是目前香蕉枯萎病防治的研究热点[9]。现已报道并用于防治作物病害生防菌主要包括链霉菌(Streptomyces spp.)[10]、芽孢杆菌(Bacillus spp.)[11]、假单胞菌(Pseudomonas spp.)[12]和木霉菌(Trichoderma spp.)[13]等。这些生防菌在香蕉枯萎病防控中发挥了一定的作用,但在针对FocTR4引起的香蕉枯萎病的防治上仍达不到预期。因此,筛选广谱、高效的生防菌菌株是目前香蕉枯萎病生物防治中最基础和最重要的工作[14]

木霉在自然界中分布广泛且具有重要的生防应用价值[15],其很多种类不仅能拮抗多种土传性真菌病原菌,还能促进植物生长[16]。由于其生防机制复杂多样,包括竞争、重寄生、抗生和诱导植物抗性等,使得木霉在植物病害可持续防控管理中占有无可替代的地位[17-18]。木霉的次生代谢产物种类丰富,主要包括聚酮、肽类、萜类和其他类型化合物等,这些次生代谢产物具有抑菌和抗病毒等多种活性,在抗微生物活性方面受到人们关注,有较强的潜在应用价值和资源价值[19]。Zhao等[20]从中国海南岛红树林分离的哈茨木霉(Trichoderma harzianum) D13分离出聚酮类物质(nafuredin C),对稻瘟病的最小抑菌浓度(minimum inhibitory concentration, MIC)值为8.63 μmol/L。Shi等[21]T. brevicompac-tum A-DL-9-2中分离出2种新的酮烯(cuparene)衍生物和14种单端孢霉(trichothecene)衍生物,其中单端孢霉衍生物木霉素(trichodermin)对5种病原真菌具有较强的抗真菌活性,对黄瓜专化尖孢镰刀菌的MIC值为4 μg/mL。这些化合物对农业致病病原真菌展现出良好的生物活性,具备广泛应用前景。因此,加强木霉菌次生代谢产物研究,对活性化合物生物农药的开发和应用具有十分重要的意义。

本文旨在筛选具有高效拮抗香蕉枯萎病专化类型古巴专化型热带四号小种(FocTR4)的木霉菌株,研究其次生代谢产物中抑制病原菌生长的活性化合物,以期为该类专化型香蕉枯萎病生物防治提供重要的生防菌株资源,为生物农药活性化合物筛选提供潜在高效活性化合物。

1 材料与方法 1.1 供试材料 1.1.1 根际土壤样品

土壤样品采集自江苏省淮安市金湖县(33.04°N, 118.99°E)蚕豆和香菜作物根际土壤,密封于自封袋,于4 ℃保存备用。

1.1.2 培养基

马铃薯葡萄糖液体培养基(potato dextrose broth, PDB) (g/L):马铃薯200,葡萄糖20,蒸馏水1 000 mL;马铃薯葡萄糖琼脂培养基(potato dextrose agar, PDA) (g/L):马铃薯200,葡萄糖20,琼脂粉15−20,蒸馏水1 000 mL。

木霉选择培养基[22]使用丙酸钠培养基(g/L):马铃薯200,葡萄糖20,琼脂粉15–20,丙酸钠0.05,庆大霉素0.05,蒸馏水1 000 mL;虎红钠盐培养基:马铃薯200,葡萄糖20,琼脂粉15–20,虎红钠盐0.02,氯霉素0.3,蒸馏水1 000 mL。

RPMI1640培养基(g/L)[23]:RPMI 1640粉末(北京诺为生物技术有限公司) 20.8、MOPS缓冲液69.08,葡萄糖36。实际操作时取800 mL蒸馏水,搅拌至完全溶解,常温下调节pH至7.0,定容至1 000 mL,并用0.22 μm滤膜无菌过滤至50 mL离心管内,4 ℃备用。用于培养病原真菌孢子。

1.1.3 供试菌株和香蕉苗品种

尖孢镰刀菌古巴专化型热带四号小种(FocTR4)由广西农业科学院植物保护所惠赠。

核盘菌(Sclerotinia sclerotiorum)、山茶刺盘孢菌(Colletotrichum camelliae)和灰葡萄孢菌(Botrytis cinerea)均由中国农业科学院植物保护研究所李世东实验室提供。

香蕉苗购自南宁组培苗公司,品种为威廉斯B6 (Musa AAA Cavendish subgroup)。

1.2 方法 1.2.1 木霉菌株的分离和筛选

采用浓度梯度稀释法,称取5 g土样放于装有45 mL灭菌水的锥形瓶中,28 ℃、150 r/min摇床振荡30 min制备土壤悬浮液。并采用平板涂布法,分离纯化单一木霉菌株[22]

1.2.2 木霉菌株发酵液制备

采用摇瓶发酵法,无菌条件挑取6个直径为5 mm的木霉菌菌饼,接入120 mL PDB培养基中,28 ℃、200 r/min摇瓶培养7 d。用4层灭菌纱布过滤发酵液,7 800 r/min室温离心10 min,并用0.22 μm滤膜过滤上清液,即得无菌发酵液放于4 ℃保存备用。

1.2.3 FocTR4病原菌孢子制备

采用摇瓶发酵法,无菌条件挑取6个直径为5 mm菌饼,接入120 mL PDB培养基中,25 ℃、150 r/min摇瓶培养3 d,4层纱布过滤发酵液,7 800 r/min离心10 min,去除上清液并用无菌水清洗底部孢子,血球板计数,最终得到109 CFU/mL病原菌孢子液,4 ℃保存备用[24]

1.2.4 木霉菌抑菌活性测定

采用平板对峙法,用打孔器分别取直径为5 mm的病原菌与待测木霉菌菌饼,两菌相距5 cm,接种于同一PDA培养基平板上,每组3个重复,以单接病原菌为对照。平板置于28 ℃黑暗培养7 d,测量病原菌的菌落半径(朝向木霉菌面),计算木霉菌的抑制率。公式如下:生长抑制率=[(CT)/C]×100%。其中CT分别代表对照组(control)和处理组(treatment)中被测病原菌的平均生长半径[25]

采用抑制菌丝生长速率法,取无菌过滤木霉发酵液按V木霉发酵液: VPDA=1:9充分混匀倒板,将FocTR4病原菌菌饼接种于培养皿中央,28 ℃黑暗培养7 d,十字交叉法测量病原菌菌落半径,计算其抑菌效果。公式如下:生长抑制率= [(CT)/C]×100%。其中CT分别代表对照组(control)和处理组(treatment)中被测病原菌的平均生长直径[22]

采用孢子萌发法,将无菌木霉发酵液过滤与病原菌孢子液按V木霉发酵液: VFocTR4=1:1均匀混合加入到96微孔板中,每个小孔200 μL,在28 ℃黑暗条件下,培养24 h。对照为添加同体积PDB溶液,FocTR4病原菌孢子液最终浓度为1×105 CFU/mL。

基于前期筛选,将木霉菌株JSHA-CD-1003 (下文简称1003)作为进一步研究材料。

1.2.5 菌株1003系统发育树构建及鉴定

采用TIANGEN试剂盒(北京天根生化科技有限公司)提取菌株1003基因组DNA,进行rDNA内转录间隔区(internal transcribed spacer, ITS)序列扩增和翻译延伸因子1-α (translation elongation factor 1-α, tef1-α)序列扩增。

ITS序列扩增通用引物为:ITS1 (5'-TCCGTA GGTGAACCTGCGG-3')和ITS4 (5'-TCCTCCGC TTATTGATATGC-3'),根据White等方法的反应体系和扩增程序进行PCR反应[26]

tef1-α基因扩增引物为:EF1-728F (5'-CAT CGAGAAGTTCGAGAAGG-3')和TEF1LLErev (5'-AACTTGCAGGCAATGTGG-3'),根据Jaklitsch等方法的反应体系和扩增程序进行PCR反应[27]

将测序序列与NCBI中GenBank的基因序列进行比对,选取与克隆序列同源性较高的序列作为参考,用BioEdit软件(version 7.0.9)进行序列比对并手动校正,使用DNAMAN软件进行正反序列拼接,处理好的数据通过MEGA 7.0软件进行碱基对校正,同时进行ITS与tef1-α序列联合拼接,最后采用邻接法(neighbor-joining method,自展数为1 000)构建物种系统发育树。

1.2.6 菌株1003生理生化特性测试

实验参照Bric等[28]、Glickmann等[29]、Schwyn等[30]和Dey等[31]进行菌株产吲哚乙酸(indoleacetic acid, IAA)、产氨、产铁载体和溶磷能力等对植株促生具有影响的生理生化特性测定;同时参照Singh等[12]方法进行菌株耐盐测定和最适温度测定。

1.2.7 菌株1003活性化合物分离纯化及鉴定

将菌株1003接种于10个锥形瓶中,每瓶200 mL PDB培养基,共2 L。于28 ℃、200 r/min条件下发酵7 d,然后用4层纱布滤去菌丝,并在50 ℃下用旋转蒸发仪将发酵液浓缩至500 mL。随后用等体积的乙酸乙酯连续萃取3次,并用旋转蒸发仪,控制温度在45 ℃下减压浓缩得到浸膏产物。

将浸膏(767.0 mg)用适量二氯甲烷甲醇溶液(VC: VM=1:1)溶解,用氯甲凝胶柱对样品进行分离,经薄层层析(thin layer chromatography, TLC)检测将含有相同Rf值和显色情况的组分合并,共分为Fr.1.1−Fr.1.4的4个组分。活性追踪(孢子萌发法)后,组分Fr.1.3 (232.8 mg)表现出活性。

将组分Fr.1.3 (232.8 mg)用硅胶(100−200目,400 mg)拌样,放于装有GF254硅胶洗脱柱中,经石油醚:丙酮(P: A)=(10:1、8:2、7:3、6:4)系统梯度洗脱,得到Fr.1.3.1至Fr.1.3.14共14个组分。组分Fr.1.3.3 (116.5 mg)表现出活性,用硅胶(100−200目,200 mg)拌样,洗脱柱装填GF254硅胶,经石油醚:丙酮(P: A)=(9.5:0.5、9:1、8:2)系统梯度洗脱,最终得到化合物1 (99.1 mg)[32]

活性化合物分离过程中均采用孢子萌发法验证活性,所得纯品活性化合物将作为后续木霉素MIC实验测定和盆栽实验对照处理。

活性化合物鉴定:对化合物1进行NMR测定以及质谱鉴定,并通过化合物1的1H、DEPT 135、DEPT 90、13C NMR谱图及其异核单量子关系(heteronuclear singular quantum correlation, HSQC)谱图进行数据整理及相关文献查阅,以此进行化合物结构解析并最终确定化合物结构。

1.2.8 活性化合物抑菌活性测试

采用二倍稀释法和孢子萌发法,测试活性化合物对FocTR4孢子萌发的MIC值[33]。用二甲基亚砜(dimethyl sulfoxide, DMSO)溶解活性化合物得到母液100 μg/mL,并进行6次二倍稀释,与浓度为2×105 CFU/mL的FocTR4病原菌孢子按比例混匀,即V活性化合物: VRPMI: VFocTR4=10 μL: 90 μL: 100 μL,28 ℃、黑暗培养24 h,显微镜下观察。以加10 μL DMSO和加10 μL RPMI1640为2个对照,3次重复处理。DMSO具有毒性,浓度最好控制在5%以内,以减少其对活性测试影响。

采用二倍稀释法,在PDA平板上测试2、1、0.5 mg/mL的3个浓度梯度活性化合物对1×106 CFU/mL病原菌孢子萌发及菌丝生长影响[34]。打孔器打取4个5 mm直径孔洞,每孔添加50 μL各浓度试剂溶液,对照为50 μL的DMSO溶剂,28 ℃、黑暗培养72 h,3次重复处理。

1.2.9 菌株1003防治FocTR4盆栽实验

选用3−4叶期及株高约10 cm的威廉斯B6香蕉苗进行盆栽实验。清水冲洗掉根部营养土,并对主根根须进行3处约3 mm深的均匀分布伤根处理。然后将处理蕉苗移栽至口径为11.5 cm、装有灭菌营养土(基质土:大田土=3:1)的苗盆中,FocTR4孢子液(1×106 CFU/g)提前一天接种于营养土中。实验组设置有阴性CK (Water)对照:土壤未经FocTR4孢子液处理,添加无菌水;阳性CK (FocTR4)对照:土壤经过FocTR4孢子液处理,添加无菌水;处理组T1:土壤经过FocTR4孢子液处理,且添加稀释10倍的菌株1003发酵液进行处理;处理组T2:土壤经过FocTR4孢子液处理,且添加浓度为25 μg/mL的木霉菌素(trichodermin)进行处理。处理组每盆添加50 mL处理液,CK组添加同等体积无菌水。每7天补加一次,所有处理6个重复,28 ℃、12 h光照/12 h黑暗条件生长[35]

香蕉苗进行上述处理盆栽培养30 d后,观察记录香蕉植株株高、香蕉植株鲜重、叶片发病情况和球茎发病情况。病情分级标准(表 1)、病情指数和防治效果分别为[36]:病情指数(%)=∑(各级别病株数×发病等级)/(总株数×最高等级)×100。防治效果(%)=(FocTR4病情指数–处理组病情指数)/(FocTR4病情指数)×100。

表 1 香蕉植株病情分级标准 Table 1 Grading standard of banana plant disease
Evaluation items Items evaluation degree Evaluation content description
Leaf yellowing degree: leaf symptoms 0 The leaves did not undergo yellowing and the plant grew well
1 The lower leaves turned yellow
2 The upper 1–2 functional leaves turned yellow
3 All leaves turned yellow
4 Plant dead
Bulb browning degree: bulb symptoms, about bulb longitudenal section area 0 No symptoms were found in the bulb, and the plant grew well
1 The browning area of the bulb was less than 10%
2 The browning area of the bulb ranged from 10% to 25%
3 The browning area of the bulb ranged from 26% to 50%
4 The browning area of the bulb ranged from 51% to 75%
5 The browning area of the bulb was over 76%
1.3 数据处理

采用Excel 2007、DPS数据处理系统和GraphPad Prism 7.00进行数据统计分析,通过单因素方法分析(analysis of variance, ANOVA)进行数据比较,最小显著差异法(least significant difference, LSD)检验进行多重比较(P < 0.05)。

2 结果与分析 2.1 菌株1003对FocTR4拮抗结果

通过对2份作物根际土样进行浓度梯度稀释,分离纯化后得到单一木霉菌落。经平板对峙双培养筛选获得5株拮抗效果较好的木霉菌株,其中菌株1003和菌株1005效果最好,其抑制率分别为60.6%±1.7%和59.6%±1% (表 2图 1A)。

表 2 五株木霉对FocTR4平板对峙抑制率 Table 2 Inhibition rates of five Trichoderma strains against FocTR4
Target strain FocTR4 colony radius (mm) Inhibition rate (%)
1001 14.7±0.7bc 55.6±2.0ab
1002 14.7±0.4bc 55.6±1.3ab
1003 13.0±0.6c 60.6±1.8a
1004 16.0±0.3b 51.5±0.9b
1005 13.3±0.3c 59.6±1.0a
CK 33.0±0a
同列数据后不同小写字母表示差异显著(P < 0.05)
Different lowercase letters in the same column represented significant difference (P < 0.05).
图 1 菌株1003对FocTR4拮抗活性 Fig. 1 Antifungal activity of 1003 against FocTR4. A:菌株1003对FocTR4平板对峙抑制效果. B:菌株1003发酵液对FocTR4孢子萌发抑制效果. C:10%浓度的菌株1003发酵液对4种植物真菌病原菌的抑菌活性. FocTR4表示尖孢镰刀菌古巴专化型热带4号小种、S. sclerotiorum为核盘菌、C. camelliae为山茶刺盘孢菌、B. cinerea为灰葡萄孢菌. 比例尺=40 μm A: Inhibitory effect of 1003 on FocTR4. B: Inhibition of FocTR4 conidial germination by fermentation broth (FB) 1003. C: Antagonistic activity of 10% concentration of strain 1003 fermentation broth against 4 fungal pathogens. Scale bar=40 μm.

菌株1003发酵液对FocTR4孢子萌发抑制测试表明,在24 h、28 ℃黑暗条件下,经1003发酵液处理的FocTR4孢子萌发率为0%,抑制效果明显(图 1B)。经抑制菌丝生长速率法检测,发现菌株1003的10%发酵液对4种供试植物病原菌均有强烈的抑制效果(图 1C)。其中,对核盘菌的抑制率为56.8%,明显高于FocTR4 (52.6%)和另外2种病原菌(山茶刺盘孢菌和灰葡萄孢菌),表明菌株1003发酵液对FocTR4和其他3种植物病原真菌均有很强的抑制作用,并且具有抗植物病原真菌广谱特性。

2.2 菌株1003的ITS与tef1-α联合序列位点测序及系统发育树构建

将菌株1003的ITS和tef1-α基因测序结果递交GenBank (ITS Accession No. OQ520280, tef1-α Accession No. OQ559936),并在NCBI数据库比对选取15个与菌株1003近源种类菌株序列,构建基于邻接法(neighbor-joining, NJ) ITS-tef1-α串联序列的物种系统发育树(图 2)。表明菌株1003与短密木霉(T. brevicompactum HZA12)处于同一分支,其自举支持率(bootstrap值1 000次)为100%,将该菌鉴定为T. brevicompactum (短密木霉)。

图 2 菌株1003的ITS与tef1-α基因联合序列木霉物种系统发育树 Fig. 2 Phylogenetic tree of Trichoderma species of strain 1003 based on concatenated ITS and tef1-α.
2.3 菌株1003生理生化特性

菌株溶磷解磷、产IAA、产氨及产铁载体能力是评价菌株促进宿主植株生长、提高植株抗生物及非生物胁迫能力重要指标。生理生化测试结果表明,菌株1003孢子在30 ℃萌发率最高(图 3A表 3),在NaCl浓度为5%时仍能萌发,具有一定耐盐胁迫能力(图 3B表 3),且产氨测试呈阳性(图 3C表 3)。解磷溶磷能力测试、产IAA测试、产铁载体测试与CK (OD)无差异,均呈阴性(表 3)。

图 3 菌株1003生理生化检测 Fig. 3 Physiological and biochemical tests of strain 1003. A:温度对菌株1003孢子萌发影响. B:NaCl含量对菌株1003孢子萌发影响. C:菌株1003产氨能力测试 A: Effect of temperature on conidial germination of strain 1003. B: Effect of NaCl concentration on conidial germination of strain 1003. C: The ammonia production test of strain 1003.
表 3 菌株1003的生理生化检测结果 Table 3 Physiological and biochemical characteristics of strain 1003
Item tested Reaction
The optimum temperature for conidial germination 30 ℃
The highest NaCl tolerance concentration of conidial germination 5%
Phosphate solubilizing ability test
IAA production test
Ammonia production test +
Siderophore production test
+:阳性;–:阴性
+: Positive; –: Negative.
2.4 菌株1003活性化合物鉴定

采用抑制孢子萌发法进行活性追踪,对1003发酵液中活性化合物进行分离纯化(图 4A,详见1.2.7),最终分离出活性最强组分Fr.1.3.3,并得到99.1 mg化合物1,该化合物为无色油状物。由质谱ESI-MS (m/z [M+Na]+, 292)结合1H NMR、13C NMR和DEPT谱,确定其分子式为C17H24O4 (图 4B)。1H NMR (CDCl3, 800 MHz): δ5.50 (1H, dd, J=7.8, 3.6 Hz, H-4), 5.33 (1H, d, J=4.4 Hz, H-10), 3.75 (1H, d, J=5.2 Hz, H-2), 3.53 (1H, d, J=5.4 Hz, H-11), 3.05 (1H, d, J=4.0 Hz, H-13a), 2.76 (1H, d, J=4.0 Hz, H-13b), 2.48 (1H, dd, J=15.4, 7.9 Hz, H-3b), 1.84–1.93 (4H, m, H-3a, H-7a, H-8a, H-8b), 1.64 (3H, s, H-16), 1.35 (1H, m, H-7b), 0.86 (3H, s, H-15), 0.64 (3H, s, H-14); 13C NMR (CDCl3, 800 MHz): δ 170.9 (s, C-1'), 140.2 (s, C-9), 118.5 (d, C-10), 79.1 (d, C-2), 75.0 (d, C-4), 70.4 (d, C-11), 65.5 (s, C-12), 48.9 (s, C-5), 47.8 (t, C-13), 40.4 (s, C-6), 36.6 (t, C-3), 27.9 (t, C-8), 24.4 (t, C-7), 23.2 (q, C-16), 21.1 (q, C-2'), 15.9 (q, C-15), 5.8 (q, C-14)。以上参数与Yang等所测定的木霉素一致[37],最终将化合物1鉴定为木霉素。

图 4 菌株1003活性化合物分离纯化与鉴定 Fig. 4 Isolation, purification and identification of active compounds of strain 1003. A:活性化合物1分离纯化流程. B:木霉素化学结构式. C:化合物11H NMR谱图. D:化合物1的DEPT135、DEPT90和13C NMR谱图. E:化合物1的HSQC谱图 A: Isolation and purification of active compound 1. B: Chemical structure of trichodermin. C: The 1H NMR of compound 1. D: The DEPT135, DEPT90 and 13C NMR of compound 1. E: The HSQC of compound 1.
2.5 活性化合物木霉素的MIC及活性梯度测试

通过二倍稀释法,在96微孔板中测试木霉素抑制1×105 CFU/mL的FocTR4孢子萌发效果(图 5A)。处理时间24 h,木霉素浓度为12.5 μg/mL,病原菌孢子膨大率18.8%,孢子不萌发;浓度为25 μg/mL,FocTR4孢子膨大率为0%,孢子不萌发。因此,木霉素的MIC值为25 μg/mL,即85.5 μmol/L。

图 5 活性化合物木霉素对FocTR4抑制效果 Fig. 5 The inhibitory effect of active compound of trichodermin against FocTR4. A:96孔板中木霉素对1×105 CFU/mL的FocTR4孢子萌发的抑制效果. B:PDA上木霉素对1×106 CFU/mL的FocTR4孢子萌发及菌丝生长的抑制效果. 比例尺=40 μm. 活性化合物需用DMSO溶解,CK (5% DMSO):200 μL实验体系中添加10 μL DMSO A: The inhibitory effect of trichodermin on FocTR4 conidial germination of 1×105 CFU/mL in 96-microwell-plate. B: The inhibitory effect of trichodermin against 1×106 CFU/mL FocTR4 conidial germination and mycelia growth on PDA. Scale bar=40 μm. The active compound needs to be dissolved in DMSO, CK (5% DMSO): Add 10 μL DMSO to the 200 μL experimental system.

通过二倍稀释法,在PDA平板测试木霉素抑制1×106 CFU/mL的FocTR4孢子萌发及菌丝生长活性(图 5B)。48 h后,各浓度均有微弱抑菌圈。72 h后,浓度为2 mg/mL有直径大小约为20 mm的明显抑制区域,1 mg/mL抑制区域不均匀且相对较小,而0.5 mg/mL基本无抑制作用。

96孔板测定结果表明,24 h内、25 μg/mL木霉素能完全抑制1×105 CFU/mL浓度FocTR4孢子萌发;PDA板测定结果表明,48–72 h,对1×106 CFU/mL的FocTR4孢子萌发及菌丝生长抑制,需高于0.5 mg/mL浓度才能起到效果。

2.6 菌株1003防治FocTR4盆栽实验

30 d盆栽结果表明,T1处理组正常生长香蕉植株生物量[株高(16.4±0.3) cm,鲜重(37.4±2.3) g]与阴性CK (Water)对照处理组香蕉植株生物量[株高(17.1±0.3) cm,鲜重(37.6±0.8) g]无显著差异,与阳性CK (FocTR4)对照组比较生物量[株高(11.5±0.4) cm,鲜重(14.6±2.2) g]差异显著(图 6B6C)。阳性CK (FocTR4)对照组香蕉植株叶片黄化明显(图 6A),黄化指数为79.2,球茎褐化指数为83.3,T1处理组香蕉植株,叶片黄化指数为41.7,球茎褐化指数为40.0。T1处理组相对CK (FocTR4)处理组香蕉植株叶片黄化防治效果47.4%,球茎褐化防治效果52.0% (图 6D)。需要指出的是,T2处理组,土壤被FocTR4孢子处理过,在添加2次25.0 μg/mL trichodermin 13 d后,比其他处理组的香蕉植株叶片黄化提前且球茎病灶呈干枯状(与香蕉枯萎病特征不一致)。该组处理实验将不再继续进行,生物量及感病程度数据不再计入。

图 6 菌株1003在香蕉植株盆栽实验中对FocTR4生防效果 Fig. 6 Biological effect of strain 1003 against FocTR4 in pot experiment of banana plant. A:盆栽实验香蕉植株叶片黄化、球茎褐化程度. B:各处理生防效果及香蕉植株株高. C:各处理生防效果及香蕉植株鲜重. D:各处理香蕉植株叶片黄化、球茎褐化病情指数. 图B和图C中不同小写字母表示差异显著(P < 0.05). 其中:CK (Water):不接菌处理;CK (FocTR4):土壤经FocTR4孢子液处理;T1处理组:土壤经FocTR4孢子液处理,且添加10倍稀释的1003菌株发酵液进行处理;处理组T2:土壤经FocTR4孢子液处理,且添加25 μg/mL的木霉素进行处理. 图A中T2处理组香蕉植株为13 d生长状况,该组植株因比同时期其他组植株提前发病,植株提前处理,不进行后续数据统计 A: The degree of leaf yellowing and bulb browning of banana plant in pot experiment. B: The plant height of banana under different treatments. C: The fresh weight of banana plant under different treatments. D: Disease index of leaf yellowing and bulb browning of banana plant under different treatments. Different lowercase letters indicated a significant difference (P < 0.05) in Figures B and C. CK (Water): Water treatment; CK (FocTR4): Soil treated with FocTR4 spore solution; Treatment group T1: The soil was treated with FocTR4 spore solution, and added with 10×diluted 1003 strain fermentation broth for treatment; Treatment group T2: Soil treated with FocTR4 spore solution and added with 25 μg/mL trichodermin for treatment. In Figure A, the growth status of the banana plants in T2 treatment group was 13 days. BecauseT2 group had earlier pathopoiesis than other groups in this experiment, the plants were treated in advance, and no subsequent data statistics were performed together.

上述结果表明,菌株1003发酵液在一定程度上能够有效防治香蕉枯萎病。根据1003发酵液活性化合物纯化鉴定所得木霉素,2 L共提取出99.1 mg,1003的10倍稀释发酵液中所含木霉素的浓度约为5.0 μg/mL。

3 讨论

香蕉枯萎病作为一种严重危害香蕉产业的土传真菌病害,对其采用生物防治手段是近年来的研究热点之一。本研究筛选出一株能有效防治香蕉枯萎病的短密木霉菌株,其次生代谢产物表现出很强的广谱性。非生物抗逆实验测试发现菌株有一定耐高温及盐胁迫能力,在亚热带地区的香蕉种植区有潜在的应用前景。同时,该菌株具有产氨能力,但产IAA能力、产铁载体能力及溶磷能力较低,致使其在促进宿主植物生长方面能力较弱,一定程度上会限制其在绿色农业实践中的应用。

本研究从2 L发酵液中分离纯化得到99.1 mg的木霉素,为一种有效抑制FocTR4孢子萌发的油状活性化合物,其对FocTR4孢子萌发的MIC值为25 μg/mL,具有较强抑制能力。Shentu等[38]从植物内生T. brevicompactum菌株0248次生代谢产物中分离出木霉素,对梨立枯丝核菌果腐病菌(Rhizoctonia solani) EC50为0.25 μg/mL,对灰霉病(B. cinerea) EC50为2.02 μg/mL,对菜豆炭疽菌(C. lindemuthianum) EC50为25.60 μg/mL,展现出较高的抗植物病原真菌活性。Wei等[34]用甲醇从链霉菌YYS-7发酵液中提取粗提物,对FocTR4的MIC值为6.25 μg/mL。这表明木霉素对抑制植物病原真菌生长具广谱性,对FocTR4萌发抑制虽较链霉菌粗提物活性低,但仍展现了较强的抗真菌活性。

本研究发现菌株1003的10倍稀释发酵液对香蕉植株叶片黄化防治率达47.4%,球茎褐化防治率达52.0%,对香蕉枯萎病有一定防效作用。在用浓度25 μg/mL的木霉素处理时,发现香蕉植株加速枯萎,蕉苗叶片黄化提前,球茎病灶处解剖发现呈干枯状,未达到预期效果。Tijerino等[39]通过番茄幼苗实验表明,T. brevicompactum影响番茄幼苗植株及根生长;tri5基因的过表达能提高木霉素的合成量,会进一步负面影响番茄幼苗植株大小和根长。Tijerino等采用的模式植物为3 cm左右大小的生长3 d的番茄发芽幼苗,接种的孢子量为1×106 CFU/mL,且并未针对木霉素浓度进行下一步论证,可能存在目标木霉孢子接种量或木霉素浓度远超模式植物承受范围等相关问题[39]。本研究植物材料为初始状况在3–4叶期及株高10 cm长势一致的香蕉苗植株,耐受能力相对较强。实验也证明,经过含木霉素浓度在5.0 μg/mL左右的菌株1003的10倍稀释发酵液处理后的感病香蕉苗,植株香蕉枯萎病感病程度得到控制,同时植株能健康生长。对比表明,木霉素对植物病原菌的孢子萌发有很强的抑制作用,对植物生长有一定的负面作用,同时菌株1003次生代谢产物中可能存在一种或多种其他产物与木霉素产生了协同作用,加强了对FocTR4病害的防治。

4 结论

本研究分离木霉菌株1003对FocTR4表现出较强的拮抗活性,其次生代谢产物木霉素能有效抑制FocTR4孢子萌发以及菌丝生长,生防盆栽实验使用10倍稀释发酵液(约5.0 μg/mL)能有效降低香蕉枯萎病病情指数。因此,木霉菌株1003可以作为防治香蕉枯萎病的重要生防微生物资源,木霉素可作为潜在的高效生物农药活性化合物。

参考文献
[1]
王振中. 香蕉枯萎病及其防治研究进展[J]. 植物检疫, 2006, 20(3): 198-200, F0004.
WANG ZZ. Research progress on banana Fusarium wilt and its control[J]. Plant Quarantine, 2006, 20(3): 198-200, F0004 (in Chinese). DOI:10.3969/j.issn.1005-2755.2006.03.038
[2]
苏琴, 谢玲, 陈艳露, 廖仕同, 张艳, 农倩. 香蕉枯萎病生防菌绿头枝孢菌LS1的筛选鉴定[J]. 微生物学通报, 2019, 46(12): 3248-3256.
SU Q, XIE L, CHEN YL, LIAO ST, ZHANG Y, NONG Q. Screen and identification of biocontrol strain Cladosporium chlorocephalum LS1 against banana Fusarium wilt[J]. Microbiology China, 2019, 46(12): 3248-3256 (in Chinese).
[3]
PLOETZ RC. Fusarium wilt of banana[J]. Phytopathology, 2015, 105(12): 1512-1521. DOI:10.1094/PHYTO-04-15-0101-RVW
[4]
杨静. 香蕉枯萎病菌进化研究和FocTR4致病相关效应蛋白的鉴定及功能分析[D]. 广州: 华南农业大学博士学位论文, 2016.
YANG J. Studies on the evolution of Fusarium oxysporum f. sp. cubense strains and identification and functional analyses of pathogenicity related effectors from FocTR4[D]. Guangzhou: Doctoral Dissertation of South China Agricultural University, 2016 (in Chinese).
[5]
EMMERT ABE, HANDELSMAN J. Biocontrol of plant disease: a (Gram-) positive perspective[J]. FEMS Microbiology Letters, 1999, 172: 1-9. DOI:10.1111/j.1574-6968.1999.tb13441.x
[6]
HUANG YH, WANG RC, LI CH, ZUO CW, WEI YR, ZHANG L, YI GJ. Control of Fusarium wilt in banana with Chinese leek[J]. European Journal of Plant Pathology, 2012, 134(1): 87-95. DOI:10.1007/s10658-012-0024-3
[7]
吴元立, 杨乔松, 李春雨, 黄秉智, 董涛, 盛鸥, 毕方铖, 邓贵明, 胡春华, 高慧君, 窦同心, 何维弟, 刘思文, 易干军. 香蕉-尖孢镰刀菌互作机理及抗病育种研究进展[J]. 广东农业科学, 2020, 47(11): 32-41.
WU YL, YANG QS, LI CY, HUANG BZ, DONG T, SHENG O, BI FC, DENG GM, HU CH, GAO HJ, DOU TX, HE WD, LIU SW, YI GJ. Research progress in the mechanisms of banana-Fusarium oxysporum f. sp. cubense interaction and genetic improvement for resistance to Fusarium wilt[J]. Guangdong Agricultural Sciences, 2020, 47(11): 32-41 (in Chinese).
[8]
MAXMEN A. CRISPR might be the banana's only hope against a deadly fungus[J]. Nature, 2019, 574(7776): 15. DOI:10.1038/d41586-019-02770-7
[9]
王海希, 郝志鹏, 张莘, 谢伟, 陈保冬. 丛枝菌根真菌防治尖孢镰孢枯萎病的效应、机制及其应用研究进展[J]. 微生物学通报, 2022, 49(7): 2819-2837.
WANG HX, HAO ZP, ZHANG X, XIE W, CHEN BD. Effect, mechanisms and application of arbuscular mycorrhizal fungi for biological control of Fusarium oxysporum-caused wilt: a review[J]. Microbiology China, 2022, 49(7): 2819-2837 (in Chinese).
[10]
CHEN YF, ZHOU DB, QI DF, GAO ZF, XIE JH, LUO YP. Growth promotion and disease suppression ability of a Streptomyces sp. CB-75 from banana rhizosphere soil[J]. Frontiers in Microbiology, 2018, 8: 2704. DOI:10.3389/fmicb.2017.02704
[11]
ZHANG L, ZHANG HX, HUANG YT, PENG J, XIE JH, WANG W. Isolation and evaluation of rhizosphere actinomycetes with potential application for biocontrol ling Fusarium wilt of banana caused by Fusarium oxysporum f. sp. cubense tropical race 4[J]. Frontiers in Microbiology, 2021, 12: 763038. DOI:10.3389/fmicb.2021.763038
[12]
SINGH P, XIE J, QI YH, QIN QJ, JIN C, WANG B, FANG WX. A thermotolerant marine Bacillus amyloliquefaciens S185 producing iturin A5 for antifungal activity against Fusarium oxysporum f. sp. cubense[J]. Marine Drugs, 2021, 19(9): 516. DOI:10.3390/md19090516
[13]
叶乃玮, 吴紫燕, 干华磊, 王承芳, 毛玮力. 组合木霉菌制剂防治香蕉枯萎病的研究[J]. 中国果树, 2019(2): 64-67.
YE NW, WU ZY, GAN HL, WANG CF, MAO WL. Study on the control of banana Fusarium wilt with combined Trichoderma preparation[J]. China Fruits, 2019(2): 64-67 (in Chinese).
[14]
AYYADURAI N, RAVINDRA NAIK P, SREEHARI RAO M, SUNISH KUMAR R, SAMRAT SK, MANOHAR M, SAKTHIVEL N. Isolation and characterization of a novel banana rhizosphere bacterium as fungal antagonist and microbial adjuvant in micropropagation of banana[J]. Journal of Applied Microbiology, 2006, 100(5): 926-937. DOI:10.1111/j.1365-2672.2006.02863.x
[15]
HARMAN G, HOWELL CR, VITERBO A, CHET I, LORITO M. Trichoderma species—opportunistic, avirulent plant symbionts[J]. Nature Reviews Microbiology, 2004, 2: 43-56. DOI:10.1038/nrmicro797
[16]
HERMOSA R, CARDOZA RE, NICOLÁS C, MONTE E, GUTIÉRREZ S. The contribution of Trichoderma to balancing the costs of plant growth and defense[J]. International Microbiology: the Official Journal of the Spanish Society for Microbiology, 2013, 16(2): 69-80.
[17]
MUKHERJEE PK, HORWITZ BA, HERRERA-ESTRELLA A, SCHMOLL M, KENERLEY CM. Trichoderma research in the genome era[J]. Annual Review of Phytopathology, 2013, 51: 105-129. DOI:10.1146/annurev-phyto-082712-102353
[18]
CHEMELTORIT PP, MUTAQIN KH, WIDODO W. Combining Trichoderma hamatum THSW13 and Pseudomonas aeruginosa BJ10-86: a synergistic chili pepper seed treatment for Phytophthora capsici infested soil[J]. European Journal of Plant Pathology, 2017, 147(1): 157-166. DOI:10.1007/s10658-016-0988-5
[19]
杨曦亮, 任梦瑶, 刘倩, 汪超, 王强. 近十年海洋来源木霉属真菌次生代谢产物研究进展[J]. 广西科学, 2021, 28(5): 440-450.
YANG XL, REN MY, LIU Q, WANG C, WANG Q. Research progress on secondary metabolites from marine-derived Trichoderma sp. in the past decade[J]. Guangxi Sciences, 2021, 28(5): 440-450 (in Chinese).
[20]
ZHAO DL, ZHANG XF, HUANG RH, WANG D, WANG XQ, LI YQ, ZHENG CJ, ZHANG P, ZHANG CS. Antifungal nafuredin and epithiodiketopiperazine derivatives from the mangrove-derived fungus Trichoderma harzianum D13[J]. Frontiers in Microbiology, 2020, 26(11): 1495.
[21]
SHI ZZ, LIU XH, LI XN, JI NY. Antifungal and antimicroalgal trichothecene sesquiterpenes from the marine algicolous fungus Trichoderma brevicompactum A-DL-9-2[J]. Agricultural and Food Chemistry, 2020, 68(52): 15440-15448. DOI:10.1021/acs.jafc.0c05586
[22]
赵兴丽, 张金峰, 周玉锋, 赵玳琳, 张莉, 周罗娜, 陶刚. 一株拮抗茶炭疽病菌的木霉菌的分离、筛选及鉴定[J]. 茶叶科学, 2019, 39(4): 431-439.
ZHAO XL, ZHANG JF, ZHOU YF, ZHAO DL, ZHANG L, ZHOU LN, TAO G. Isolation, screening and identification of a strain of Trichoderma antagonizing tea anthracnose[J]. Journal of Tea Science, 2019, 39(4): 431-439 (in Chinese). DOI:10.3969/j.issn.1000-369X.2019.04.008
[23]
侯捷, 唐春萍, 沈志滨, 陈艳芬, 丁慎, 张祉思, 李小英, 江涛. 异黄绵马酸PB对红色毛癣菌生物被膜黏附及甾醇代谢相关酶基因表达的影响[J]. 中国药房, 2021, 32(5): 584-589.
HOU J, TANG CP, SHEN ZB, CHEN YF, DING S, ZHANG ZS, LI XY, JIANG T. Effects of isoflavaspidic acid PB on the biofilm adhesion and gene expression of ergosterol metabolism related enzymes in Trichophyton rubrum[J]. China Pharmacy, 2021, 32(5): 584-589 (in Chinese).
[24]
TAN DG, FU LL, HAN BY, SUN XP, ZHENG P, ZHANG JM. Identification of an endophytic antifungal bacterial strain isolated from the rubber tree and its application in the biological control of banana Fusarium wilt[J]. PLoS One, 2015, 10(7): e0131974. DOI:10.1371/journal.pone.0131974
[25]
陈书华, 李梅, 蒋细良, 衣涛, 张念洁, 汪浩, 白龙律. 防治人参锈腐病木霉菌的筛选及防治效果[J]. 中国生物防治学报, 2016, 32(2): 265-269.
CHEN SH, LI M, JIANG XL, YI T, ZHANG NJ, WANG H, BAI LL. Selection of Trichoderma spp. antagonistic to Cylindrocarpon destructans, pathogen of ginseng root rot disease[J]. Chinese Journal of Biological Control, 2016, 32(2): 265-269 (in Chinese).
[26]
WHITE TJ, BRUNS T, LEE S, TAYLOR J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics[M]. PCR Protocols. Amsterdam: Elsevier, 1990: 315-322.
[27]
JAKLITSCH WM, SAMUELS GJ, ISMAIEL A, VOGLMAYR H. Disentangling the Trichodermaviridescens complex[J]. Persoonia-Molecular Phylogeny and Evolution of Fungi, 2013, 31(1): 112-146. DOI:10.3767/003158513X672234
[28]
BRIC JM, BOSTOCK RM, SILVERSTONE SE. Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane[J]. Applied and Environmental Microbiology, 1991, 57(2): 535-538. DOI:10.1128/aem.57.2.535-538.1991
[29]
GLICKMANN E, DESSAUX Y. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria[J]. Applied and Environmental Microbiology, 1995, 61(2): 793-796. DOI:10.1128/aem.61.2.793-796.1995
[30]
SCHWYN B, NEILANDS JB. Universal chemical assay for the detection and determination of siderophores[J]. Analytical Biochemistry, 1987, 160(1): 47-56. DOI:10.1016/0003-2697(87)90612-9
[31]
DEY R, PAL KK, Bhatt DM, Chauhan SM. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth promoting rhizobacteria[J]. Microbiological Research, 2004, 159: 371-394. DOI:10.1016/j.micres.2004.08.004
[32]
谢津. 黑老虎轮斑病的病原鉴定和毒素成分分析及病害防治研究[D]. 南宁: 广西大学博士学位论文, 2020.
XIE J. Pathogen identification, toxin composition analysis and disease control of black tiger ring spot disease[D]. Nanning: Doctoral Dissertation of Guangxi University, 2020 (in Chinese).
[33]
J. L. Rodriguez Tudela. EUCAST Technical Note on the method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for conidia-forming moulds[J]. Clinical Microbiology and Infection, 2008, 14(10): 982-984.
[34]
WEI YY, ZHAO YK, ZHOU DB, QI DF, LI K, TANG W, CHEN YF, JING T, ZANG X, XIE JH, WANG W. A newly isolated Streptomyces sp. YYS-7 with a broad-spectrum antifungal activity improves the banana plant resistance to Fusarium oxysporum f. sp. cubense tropical race 4[J]. Frontiers in Microbiology, 2020, 11: 1712.
[35]
FAN H, LI S, ZENG L, HE P, XU ST, BAI TT, HUANG YL, GUO ZX, ZHENG SJ. Biological control of Fusarium oxysporum f. sp. cubense tropical race 4 using natively isolated Bacillus spp. YN0904 and YN1419[J]. Journal of Fungi (Basel, Switzerland), 2021, 7(10): 795.
[36]
左存武, 李斌, 李春雨, 魏岳荣, 胡春华, 邓贵明, 邝瑞彬, 杨乔松, 易干军. 香蕉对尖孢镰刀菌热带4号小种的抗性评价方法的建立[J]. 园艺学报, 2016, 43(5): 876-884.
ZUO CW, LI B, LI CY, WEI YR, HU CH, DENG GM, KUANG RB, YANG QS, YI GJ. Establishment of resistance evaluation system of banana to Fusarium oxysporum f. sp. cubense tropical race 4[J]. Acta Horticulturae Sinica, 2016, 43(5): 876-884 (in Chinese).
[37]
YANG ZS, LI GH, ZHAO PJ, ZHENG X, LUO SL, LI L, NIU XM, ZHANG KQ. Nematicidal activity of Trichoderma spp. and isolation of an active compound[J]. World Journal of Microbiology and Biotechnology, 2010, 26: 2297-2302.
[38]
SHENTU X, ZHAN X, MA Z, YU XP, ZHANG CX. Antifungal activity of metabolites of the endophytic fungus Trichoderma brevicompactum from garlic[J]. Brazilian Journal of Microbiology, 2014, 45(1): 248-54.
[39]
TIJERINO A, HERMOSA R, CARDOZA RE, MORAGA J, MALMIERCA MG, ALEU J, COLLADO IG, MONTE E, GUTIERREZ S. Overexpression of the Trichoderma brevicompactum tri5 gene: effect on the expression of the trichodermin biosynthetic genes and on tomato seedlings[J]. Toxins (Basel), 2011, 3(9): 1220-1232.