生物工程学报  2024, Vol. 40 Issue (1): 35-52
http://dx.doi.org/10.13345/j.cjb.230298
中国科学院微生物研究所、中国微生物学会主办
0

文章信息

王淑叶, 伍国强, 魏明
WANG Shuye, WU Guoqiang, WEI Ming
WRKY转录因子调控植物逆境胁迫响应的作用机制
Functional mechanisms of WRKY transcription factors in regulating plant response to abiotic stresses
生物工程学报, 2024, 40(1): 35-52
Chinese Journal of Biotechnology, 2024, 40(1): 35-52
10.13345/j.cjb.230298

文章历史

Received: April 17, 2023
Accepted: June 12, 2023
WRKY转录因子调控植物逆境胁迫响应的作用机制
王淑叶 , 伍国强 , 魏明     
兰州理工大学生命科学与工程学院, 甘肃 兰州 730050
摘要:WRKYs是植物中特有的一类转录因子(transcription factor, TF)家族,属于典型的多功能调节因子,可参与调控多种信号途径。该类转录因子的显著特征是含有约由60个高度保守的氨基酸构成的WRKY结构域,通常还具有Cys2His2或Cys2His-Cys型锌指结构。WRKYs可与下游靶标基因启动子区域的W-box序列[(T)(T) TGAC (C/T)]相结合,或通过与靶标蛋白相互作用来激活或抑制靶基因的转录,整合脱落酸(abscisic acid, ABA)、活性氧(reactive oxygen species, ROS)等信号通路诱导胁迫相关基因表达,从而调控逆境胁迫应答。本文综述了WRKYs的结构和分类、调控方式及其参与干旱、盐等逆境胁迫响应的分子机制等方面的研究成果,并对其未来研究方向进行展望,以期为农作物抗逆性遗传改良提供理论支持。
关键词WRKYs    逆境胁迫    靶标基因    蛋白互作    基因表达    
Functional mechanisms of WRKY transcription factors in regulating plant response to abiotic stresses
WANG Shuye , WU Guoqiang , WEI Ming     
School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
Abstract: WRKYs is a unique family of transcription factors (TFs) in plants, and belongs to the typical multifunctional regulator. It is involved in the regulation of multiple signaling pathways. This type of transcription factor is characterized to contain about 60 highly conservative amino acids as the WRKY domain, and usually also has the Cys2His2 or Cys2His-Cys zinc finger structure. WRKYs can directly bind to the W-box sequence ((T)(T) TGAC (C/T)) in the promoter region of the downstream target gene, and activate or inhibit the transcription of the target genes by interacting with the target protein. They may up-regulate the expression of stress-related genes through integrating signal pathways mediated by abscisic acid (ABA) and reactive oxygen species (ROS), thus playing a vital role in regulating plant response to abiotic stresses. This review summarizes the advances in research on the structure and classification, regulatory approach of WRKYs, and the molecular mechanisms of WRKYs involved in response to drought and salt stresses, and prospects future research directions, with the aim to provide a theoretical support for the genetic improvement of crop in response to abiotic stresses.
Keywords: WRKYs    abiotic stress    target gene    protein interaction    gene expression    

干旱、盐分、低温和营养亏缺等是导致植物生长发育受抑制和农作物产量下降的主要环境因素[1-3]。为应对这些非生物胁迫,植物在长期进化过程中从形态、生理、生化、细胞和分子水平上逐渐形成了一系列胁迫应答机制。其中,转录因子在植物的生长发育以及非生物逆境胁迫响应过程中发挥着重要的作用。在逆境胁迫下,一些转录因子被激活,随后大量的防御相关基因被转录调控,这些变化对防御机制的建立至关重要[4]。WRKY、MYB、bZIP和NAC等转录因子家族均与植物的抗逆性有关。其中,WRKY是植物中最大的转录因子家族之一。该类转录因子不仅可以识别W-box序列[(T)(T) TGAC (C/T)],还可以与靶基因启动子中DNA的特定位点结合,进而调控其表达[5]。WRKY转录因子不仅在植物应对生物胁迫的应答调节过程中发挥着至关重要的作用,而且也参与调控许多非生物逆境胁迫反应,其结构多样性赋予调控网络的复杂性。本文对WRKYs转录因子的结构域和分类、调控方式及其参与干旱、盐分等逆境胁迫的调控机制等方面的研究成果加以综述,并对其未来研究方向进行展望,以期为农作物抗逆性遗传改良提供理论支持。

1 WRKYs转录因子结构域及分类 1.1 WRKYs的结构域

Ishiguro等[6]从甘薯(Ipomoea batatas)中克隆出WRKY家族的第一个编码WRKY的基因SPF1。随后,人们相继在拟南芥(Arabidopsis thaliana)、水稻(Oryza sativa)、甜菜(Beta vulgaris)等植物中鉴定到了WRKY家族成员(表 1)。结果表明,不同物种WRKY家族成员数量有所不同,其中人参(Panax ginseng)中最多,有119个成员,而银杏(Ginkgo biloba)中最少,只有37个(表 1)。WRKYs蛋白结构域包括DNA结合域、转录调控域、核定位信号和寡聚化位点这4个功能区域[27]。值得注意的是,WRKYs转录因子最重要的结构特征是其DNA结合域中至少含有一个大约由60个高度保守的氨基酸构成的WRKY结构域。WRKYs蛋白的N端含有7个保守的氨基酸残基WRKYGQK,C端含有C2H2 (Cx4‒5Cx22‒23Hx1H)或C2HC (Cx7Cx23HxC)型的锌指结构,均为维持DNA结合功能不可或缺的元件[28-29]。然而,也有一些植物存在特殊的WRKY七肽序列,即WRKYGQK被WRKYGKK、WRKYGEK所取代,或者“RK”残基被“RR、SK、KR、VK或KK”取代,锌指结构也可能会发生一些变异[30-31]。此外,WRKY结构域可以与顺式作用元件W-box序列[(T)(T) TGAC (C/T)]进行特异性结合,其中TGAC是W-box序列的核心序列,且该序列是关乎WRKY蛋白的结合和功能的重要因素。大量研究表明,与胁迫有关的基因启动子都含有1个或若干个W-box序列[32],这也是WRKYs能够广泛参与许多植物基因表达调控的原因。

表 1 不同植物WRKYs基因 Table 1 The WRKYs genes in different plants
Species Gene name Total number Classification References
Arabidopsis thaliana AtWRKYs 62 12 39 11 [7]
Oryza sativa OsWRKYs 99 12 48 39 [8]
Beta vulgaris BvWRKYs 58 11 40 7 [9]
Vigna unguiculata VuWRKYs 92 15 58 16 [10]
Solanum melongena SmWRKYs 58 13 37 6 [11]
Panax ginseng PgWRKYs 118 15 91 12 [12]
Lilium longiflorum LlWRKYs 38 7 22 9 [13]
Liriodendron chinense LchiWRKYs 44 8 28 8 [14]
Kandelia obovata KoWRKYs 64 18 39 7 [15]
Scutellaria baicalensis SbWRKYs 72 15 48 9 [16]
Acer truncatum AtruWRKYs 54 14 11 29 [17]
Xanthoceras sorbifolium XsWRKYs 65 12 45 8 [18]
Daucus carota DcsWRKYs 67 6 53 8 [19]
Ipomoea batatas IbWRKYs 84 15 56 10 [20]
Hordeum vulgare HvWRKYs 86 10 42 34 [21]
Taraxacum kok-saghyz TkWRKYs 72 16 43 12 [22]
Hylocereus undulatus HuWRKYs 70 14 44 11 [23]
Akebia trifoliata AktWRKYs 42 12 23 7 [24]
Petunia hybrida PhWRKYs 79 14 50 15 [25]
Ginkgo biloba GbWRKYs 37 9 26 2 [26]
1.2 WRKYs的分类

根据WRKYs结构域的数量和锌指结构的类型可以将WRKY家族分为3组(表 1)。其中,Ⅰ组转录因子含有2个WRKY结构域和1个C2H2型锌指结构,如小麦(Triticum aestivum) TaWRKY133[33]。Ⅰ组WRKY转录因子又可根据WRKY结构域分别命名为WRKY-N和WRKY-C,与N端WRKY结构域相比,和W-box相结合的主要是C端WRKY结构域[34]。Ⅱ组和Ⅲ组WRKY转录因子只包含一个结构域,两者的区别在于:Ⅱ组的锌指结构类型为C2H2型,如棉花(Gossypium hirsutum) GhWRKY28[35];Ⅲ组结构类型则为C2HC型,如茶(Camellia sinensis) CsWRKY70[36]。研究发现,Ⅰ组转录因子不仅存在于高等植物中,而且在蕨类植物和一些不能进行光合作用的真核细胞中也存在,说明Ⅰ组转录因子起源是最早的,Ⅱ组可能是植物在应对各种胁迫条件下进化而来的[37]。大量研究表明,大多数的WRKY转录因子属于Ⅱ组,Ⅱ组转录因子又根据结构特征的不同进一步分成Ⅱa、Ⅱb、Ⅱc、Ⅱd和Ⅱe这5个亚组。

为探究不同物种WRKY家族基因的系统发育及进化关系,本研究采用Clustal W软件对拟南芥、甜菜和茄子(Solanum melongena)的WRKY编码氨基酸序列进行比对,利用MEGA 11.0软件构建系统发育树(图 1)。结果表明,甜菜与茄子的Ⅲ组WRKY转录因子中均存在处于同一分支的成员,Ⅰ组成员BvWRKY41SmWRKY8亲缘性最高;Ⅱb组成员BvWRKY30SmWRKY14亲缘性最高;Ⅱc组成员BvWRKY36SmWRKY45亲缘性最高;Ⅲ组BvWRKY43SmWRKY53亲缘性最高(图 1)。

图 1 植物WRKYs家族基因系统发育树 Fig. 1 Phylogenetic tree of WRKYs gene family in plants. 利用甜菜基因组数据库(https://bvseq.boku.ac.at/)和NCBI (https://www.ncbi.nlm.nih.gov/)检索甜菜、拟南芥和茄子的WRKY家族基因序列,通过Clustal W进行序列比对,利用MEGA 11.0和邻接法(neighbor joining, NJ)构建系统发育树,共进行1 000次自助重复. WRKYs基因主要分为Ⅰ、Ⅱ和Ⅲ组. AtWRKYsBvWRKYsSmWRKYs分别用绿色、红色和蓝色表示 The predicted proteins sequences of Beta vulgaris, Arabidopsis thaliana and Solanum melongena were searched through Beta vulgaris genomic database (https://bvseq.boku.ac.at/) and NCBI (https://www.ncbi.nlm.nih.gov/). These sequences were aligned by the Clustal W and the phylogenetic tree was constructed using the MEGA 11.0 by the NJ method with 1 000 bootstrap replicates. The WRKYs genes were clustered into three major groups: Ⅰ, Ⅱ and Ⅲ. AtWRKYs, BvWRKYs, and SmWRKYs are represented in green, red, and blue, respectively.
2 WRKYs转录因子在逆境胁迫中的调控机制 2.1 WRKYs的调控方式

干旱等非生物胁迫及虫害等生物胁迫环境因子会刺激植物细胞膜受体蛋白或使膜受体受到丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)级联反应,通过一系列磷酸化反应向细胞内发出信号调控WRKY转录因子的表达,引发各种生理生化反应,进而响应逆境胁迫(图 2)。

图 2 WRKY转录因子调控植物逆境胁迫响应示意图 Fig. 2 The diagram of WRKY transcription factor regulating stress responses in plants. 黑色实线箭头表示WRKYs调控植物胁迫响应途径;黑色虚线箭头表示WRKY转录因子可能会受到MAPK级联激活,进而参与调控胁迫应答 The solid black arrows indicate that WRKYs regulating plant stress response pathway; The dotted black arrow indicates that WRKY transcription factors might be activated by the MAPK cascade and thus participates in the regulation of stress response.
2.1.1 WRKYs与自噬

WRKYs可通过自噬途径减轻植物在生长发育过程中不利环境影响因子的伤害。研究发现,马铃薯(Solanum tuberosum) StATG8与WKRY转录因子之间的蛋白相互作用是调控马铃薯生长发育成熟过程中的自噬的机制之一[38]。此外,过表达木薯(Manihot esculenta) MeWRKY20可上调MeATG8a的转录水平,而在感染葡萄孢菌(Botrytis cinerea)的拟南芥中突变WRKY33可下调ATG18a的转录水平,表明植物在遭受病原体侵害时,可通过正向调控自噬系统在植物抗病性过程中发挥重要作用[39]。这些结果表明,WRKY转录因子可通过调控自噬相关基因的转录,调节自噬系统,促进植物生长发育及增强逆境胁迫抗性。

2.1.2 WRKYs与上下游调控因子

WRKYs与下游靶基因启动子的结合可能会受到上游其与相关蛋白互作的影响。Tang等[40]采用酵母双杂交(yeast two-hybrid, Y2H)技术,发现WRKY33和WRKY12可以相互作用,促进其与下游靶基因RAP2.2启动子区域W-box结合,激活靶基因转录,提高拟南芥由水淹诱导的缺氧胁迫耐受性。此外,WRKY还可与MAPK等蛋白互作,调控下游靶基因表达。黄瓜(Cucumis sativus) CsWRKY23和27与CsMAPK6互作,增强与靶基因的结合,激活氧化胁迫反应系统[41]。橡胶树(Hevea brasiliensis) HbWRKY14与组蛋白去乙酰化酶HbHDA3互作作用于HbWRKY14上游,负向调节其对下游橡胶离子蛋白基因HbSRPP转录的抑制[42]。野生百合(Lilium henryi) LhWRKY44与LhMYBSPLATTER互作并和其启动子相结合,增强LhMYBSPLATTER和LhbHLH2的互作,激活下游靶基因DFRUFGTGST表达,从而促进花色素苷积累[43]。这些结果表明,WRKYs可以通过与其他蛋白互作,增强其与下游靶基因启动子结合,激活或抑制下游基因的转录,进而调控植物响应逆境胁迫和生长发育。

WRKYs可直接与下游靶基因启动子相结合,调控其转录。研究表明,烟草(Nicotiana attenuata) NaWRKY3NaWRKY6NaKTI2启动子区域顺式作用元件W-box结合,调节植物生长发育[44]。在芭蕉科小果野蕉(Musa acuminata)中,MaWRKY49通过直接激活MaPL3MaPL11表达,促进果实成熟[45]。类似地,苹果(Malus domestica) MdWRKY72通过与MdHY5启动子及MdMYB1启动子中的W-box元件结合,促进MdMYB1转录,提高花青素含量[46]。相反,大麦(Hordeum vulgare) HvWRKY2HvCEBiP启动子结合,并抑制其转录,负向调控大麦对白粉病菌的抗性[47]。茶树(Camellia sinensis) CsWRKY70通过抑制CsLARCsUGT84A的表达来降低表没食子儿茶酚没食子酸酯(epigallocatechin gallate, EGCG)的生物合成[48]。由此可见,WRKY转录因子通过激活或抑制下游靶基因转录,进而调控植物生长发育以及响应逆境胁迫。

2.1.3 WRKYs与信号通路

WRKYs参与调控激素、MAPK、ABA等信号通路。苹果(Malus domestica) MdWRKY61在水杨酸(salicylic acid, SA)和茉莉酸(jasmonic acid, JA)的作用下被快速诱导表达,并上调MdRboh基因的表达,进而提高MdWRKY61过表达苹果对暹罗炭疽病菌的防御反应[49]。脱落酸(abscisic acid, ABA)、SA、乙烯(ethylene, ET)和JA处理均可上调橡胶树HbWRKY27表达,进一步研究发现,HbWRKY27HbFPS1启动子结合,并激活其转录,正向调节天然橡胶的生物合成[50]。胰蛋白酶通过MAPK级联信号通路途径调节火龙果(Hylocereus undatus) HuWRKY40的活性,进一步促进黄酮类化合物的合成,延缓果实的腐败[51]。WRKY33可直接调控PIF4的表达,并通过介导H2O2稳态在调节拟南芥幼苗的生长发育过程中发挥重要作用[52]。此外,康乃馨(Dianthus caryophyllus) DcWRKY33可以整合ET、活性氧(reactive oxygen species, ROS)和ABA信号通路,调控相关基因的表达,加速花瓣的衰老[53]。相反,WRKY72通过整合GA途径与LRK1启动子相结合,进而下调OsKO2的表达水平来抑制水稻的生长[54]。由此可见,WRKY转录因子可通过参与单个信号通路或整合多个信号通路调控植物响应逆境胁迫和生长发育。

2.2 WRKYs在植物逆境胁迫响应中的作用机制

植物在长期的进化过程中,形成了独特的逆境适应机制。大量研究表明,WRKYs在调控植物逆境胁迫响应中发挥着重要功能(表 2)。

表 2 WRKYs转录因子响应非生物胁迫的调控机制 Table 2 Regulatory mechanisms of WRKYs transcription factors in response to abiotic stresses
Species Gene Regulatory mechanism Target gene Function References
Triticum aestivum TaWRKY53 ABA signaling pathway AtAREB Enhances resistance to drought stress [55]
Vitis vinifera VvWRKY18 ABA signaling pathway AAO2
CYP707A3
Reduces resistance to drought stress [56]
Gossypium hirsutum GhWRKY46 Activating the transcription of downstream genes AtRD22
AtCBL10
AtCPK3
Enhances resistance to drought and salt stresses [57]
Medicago sativa MsWRKY11 Interacting with MsWRKY22 protein Enhances resistance to drought stress [58]
Solanum lycopersicum SlWRKY81 Inhibiting the transcription of downstream genes SlP5CS1 Reduces resistance to drought stress [59]
Vitis vinifera VvWRKY13 Inhibiting the transcription of downstream genes P5CS1
BAM1
BAM4
SS1
Reduces resistance to drought stress [60]
Musa acuminata MaWRKY80 Activating the transcription of downstream genes AtNCED2
AtNCED3
AtNCED4
Enhances resistance to drought stress [61]
Malus domestica MdWRKY30 Interacting with MdWRKY28 protein Enhances resistance to salt and osmosis stresses [62]
Sorghum bicolor SbWRKY30 Activating the transcription of downstream genes SbRD19 Enhances resistance to drought stress [63]
Populus trichocarpa PtrWRKY75 Activating the transcription of downstream genes PAL1 Enhances resistance to drought stress [64]
Capsicum annuum CaWRKY27 ROS signaling pathway NtAPX1
NtSOD
NtPOX1
NtPOX2
Reduces resistance to salt and osmosis stresses [65]
Populus angustifolia PagWRKY75 ROS signaling pathway SODs
PODs
P5CS1
Reduces resistance to salt and osmosis stresses [66]
Prunus mume PmWRKY18 ABA signaling pathway PmLEA10
PmLEA29
Enhances resistance to cold stress [67]
Arabidopsis thaliana AtWRKY39 SA and JA signaling pathway AtPR1
AtMBF1c
Enhances resistance to heat stress [68]
Triticum aestivum TaWRKY70 SA and ET signaling pathway TaPR1.1
TaAOS
TaPIE1
Enhances resistance to heat stress [69]
Arabidopsis thaliana AtWRKY47 Activating the transcription of downstream genes ELP
XTH17
Enhances aluminum tolerance [70]
Solanum lycopersicum SlWRKY42 Activating the transcription of downstream genes SlAMT9 Reduces aluminum tolerance [71]
Arabidopsis thaliana AtWRKY13 Activating the transcription of downstream genes PDR8 Enhances cadmium tolerance [72]
–: No target gene.
2.2.1 WRKYs参与调控干旱胁迫响应

干旱是影响植物生长发育和作物产量的主要环境因素之一。研究表明,WRKYs可通过ROS清除系统降低H2O2含量来提高植物对干旱胁迫的耐受性。例如,在烟草中过表达MdWRKY70L以及在拟南芥中过表达密罗木(Myrothamnus flabellifolia) MfWRKY40MfWRKY7均降低H2O2和O2的积累,增强转基因植株的抗旱性[73-75]。此外,WRKYs还可通过ROS信号通路调控抗氧化酶相关基因的表达来响应干旱胁迫。过表达三浅裂野牵牛(Ipomoea trififida) ItfWRKY70的转基因甘薯及过表达小麦TaWRKY1-2D的转基因拟南芥中SODPODCAT的表达量均被激活上调,增强了转基因植株的耐旱性[76-77]。然而,在水稻和拟南芥中,过表达凤梨(Ananas comosus) AcWRKY31则抑制转基因植株CATPOD的表达,进而增强植物对干旱的敏感性[78]

另外,WRKYs也可通过ABA信号通路调控相关基因的表达来应答干旱胁迫。文冠果(Xanthoceras sorbifolium) XsWRKY20通过整合ROS稳态和ABA信号通路,进而调控抗氧化酶相关基因及与ABA信号通路相关基因的表达,来正向调控植物的耐旱性[79]。过表达毛竹(Phyllostachys edulis) PheWRKY86的转基因拟南芥和水稻中的NCED1的转录被激活,过表达红麻(Hibiscus cannabinus) HcWRKY50的转基因拟南芥通过促进RD29BCOR47表达来调控ABA信号通路,均增强了植株的抗旱性[80-81]。相反,OsWRKY5则抑制OsLEA3OsRAB16AOsDREB2A表达,而OsWRKY114则下调ABA信号通路OsPYL2OsPYL10转录水平,负调控水稻对干旱胁迫的耐受性[82-83]

此外,WRKYs还可通过调控胁迫相关基因的表达来响应干旱胁迫。过表达马尾松(Pinus massoniana) PmWRKY31通过正向调控转基因烟草NtAPXNtCBLNtCAT的表达来提高耐旱性[84]。过表达德国鸢尾(Iris germanica) IgWRKY50IgWRKY32则使转基因拟南芥促进RD29ADREB2APP2CAABA2等胁迫相关基因表达上调,增强植株耐旱性[85]。这些结果表明,WRKY转录因子通过调控H2O2的积累,单独参与或整合多信号通路,调节植物对干旱胁迫作出应答响应。

2.2.2 WRKYs参与调控盐胁迫响应

土壤盐渍化是作物生长所受非生物胁迫因素之一,可破坏细胞结构,对细胞膜渗透性造成影响,限制作物对水分及营养物质的吸收。WRKY转录因子可与下游靶标基因启动子区域顺式作用元件W-box相结合来响应盐胁迫。例如,过表达虎杖(Polygonum cuspidatum) PcWRKY11及过表达菊叶薯蓣(Dioscorea composita) DcWRKY12的转基因拟南芥中,PcWRKY11DcWRKY12可分别与LacZAtRCI2A启动子区域W-box结合,并激活其表达,进而提高转基因植株的耐盐性[86-87]。类似地,过表达玉米和菊叶薯蓣WRKYs分别调控SOD4P5CS1表达,进而增强转基因植株对盐胁迫的耐受性[88-89]。另外,杜梨(Pyrus betulaefolia) PbWRKY40PbVHA-B1启动子区域W-box元件结合,提高转基因拟南芥植株的耐盐性[90]。在苹果中,MdWRKY55与MdNAC17-L互作并激活MdNHX1表达来增强苹果耐盐性[91]。相反,玉米(Zea mays) ZmWRKY86能与盐胁迫相关基因Zm00001d020840Zm00001d046813启动子区域直接互作,而ZmWRKY17与ZmNECD5启动子结合并调控其表达,降低玉米对盐胁迫的耐受性[92-93]

WRKYs可通过自噬途径响应盐胁迫。盐胁迫可促进水稻幼苗自噬,激活WRKY53ATG1等自噬相关基因的表达,并整合JA信号通路提高其耐盐性[94]。此外,WRKYs还可通过调控胁迫相关基因的表达量来响应盐胁迫。在拟南芥中,过表达小麦(Triticum aestivum) TaWRKY75-A或苦荞麦(Fagopyrum tataricum) FtWRKY46后,转基因植株PDAT2SSL7AT4G36010NUDT8AtRD29AAtDREB2BAtRAB18AtSOS1AtNHX1等基因表达上调,耐盐性显著增强[95-96]。类似地,过表达长叶红砂(Reaumuria trigyna) RtWRKY23RtWRKY1使得转基因拟南芥AtP5CS1、AtP5CS2AtPRODH2的表达量显著上调,耐盐性明显增强[97-98]

WRKYs也通过调控ROS、SOS信号通路相关基因的表达来响应盐胁迫。例如,过表达花生(Arachis hypogaea) AhWRKY75上调AhCSD1AhCSD2AhPODAhCAT表达水平,增强花生的耐盐性[99]。类似地,过表达洋麻(Hibiscus cannabinus) HcWRKY44可通过正向调控SOS1的表达来提高拟南芥的耐盐性[100]。然而,过表达狗牙根草(Cynodon dactylon) CdWRKY50和菊花(Chrysanthemum morifolium) CmWRKY17使转基因拟南芥AtSOS1AtSOS3的表达受到抑制,对盐胁迫的敏感性增强[101-102]。进一步研究发现,WRKYs可整合多信号通路参与调控盐胁迫。在楸树(Catalpa bungei)中过表达CbWRKY27使得其整合ABA和ROS信号通路,增强植株对ABA的敏感性,降低抗氧化酶活性,提高O2和H2O2含量,负向调控楸树的耐盐性[103]。另外,过表达甜菜BvWRKY16使得转基因烟草植株的耐盐性显著增强(本课题组未发表数据)。这些结果表明,WRKY转录因子还可通过蛋白互作或与下游靶基因启动子区域的W-box相结合,参与SOS信号通路或自噬途径,调控植物对盐胁迫的耐受性。

2.2.3 WRKYs参与调控极端温度响应

WRKY在调节植物响应高温或冷害胁迫中发挥重要作用。研究表明,WRKYs通过调控ABA响应相关基因的表达来应答极端温度胁迫。在高温条件下,过表达ZmWRKY106的转基因拟南芥及过表达LlWRKY22的麝香百合(Lilium longiflorum)中DREB基因的表达量均上调,植株的耐热性均增强[104-105]。然而,在低温条件下,过表达西瓜(Citrullus lanatus) ClWRKY20的转基因拟南芥植株ABI5表达上调,对低温胁迫的耐受性显著增强[106]

WRKYs通过植物激素信号通路或调控胁迫相关基因的表达来应答极端温度胁迫。在高温条件下,拟南芥AtWRKY25AtWRKY26AtWRKY33被乙烯诱导表达,反馈因子EIN2则受到转录调控,促使乙烯信号转导激活,进而激活氧化胁迫反应,提高拟南芥的耐热性[107]。此外,在低温胁迫下,WRKY53与赤霉素(gibberellin, GA)合成相关基因的启动子结合并抑制其表达,降低水稻的耐寒性[108]。相反,拟南芥中WRKY42可与RHD6启动子结合,并激活其表达,进而提高植株耐寒性[109]。此外,在拟南芥中过表达PmWRKY57或秋茄(Kandelia obovata) KoWRKY40分别提高低温响应基因AtCOR6.6AtCOR47以及抗氧化酶相关基因AtMnSOD的表达水平,进而增强拟南芥对低温胁迫的耐受性[110-111]。这些结果表明,WRKY转录因子不仅调控ABA及胁迫响应相关基因,还可整合激素信号通路,从而对极端温度作出应答响应。

2.2.4 WRKYs参与调控营养元素胁迫响应

磷(phosphorus, Pi)元素的缺乏会对植物的生长发育造成严重影响。研究发现,大豆(Glycine max) GmWRKY46AtAED1启动子区域顺式作用元件W-box结合并激活其表达,进而提高转基因拟南芥植株对磷亏缺胁迫的耐受性[112]。此外,低磷胁迫可以提高辣椒(Capsicum annuum) CaWRKY58转录丰度;进一步研究表明,Ca14-3-3蛋白与CaWRKY58互作,正向调节辣椒对Pi饥饿响应[113]。另外,过表达OsWRKY108的转基因植株通过影响油菜素内酯(brassinosteroid, BR)生物合成及信号转导,进而正向调控水稻在磷亏缺条件下的叶片倾斜程度[114]。相反,在磷亏缺条件下,拟南芥AtWRKY33可调控AtALMT1转录表达,负调控根系结构重建,进一步介导Fe3+在根尖的积累,使根系生长受到抑制[115]

此外,在铝(aluminum, Al)胁迫下,过表达GmWRKY81的转基因大豆中丙二醛(malondialdehyde, MDA)和过氧化氢含量均显著低于野生型(wild type, WT)植株,而过氧化物酶(peroxidase, POD)活性高于WT植株;进一步研究表明,过表达GmWRKY81可调控Al3+转运和抗氧化酶相关基因的表达来提高大豆对Al3+胁迫的耐受性[116]。相反,在铝胁迫下,番茄(Solanum lycopersicum) SlALMT3受到WRKY转录因子6个成员(SlWRKY3SlWRKY6SlWRKY16SlWRKY37SlWRKY39SlWRKY71)的调控,整合JA信号通路,从而抑制根系的生长[117]

WRKYs还可参与调控植物响应其他营养元素胁迫。例如,在小麦中,WRKY68a与其他WRKYs、钙调蛋白结合激活转录因子(calmodulin-binding transcription activator, CAMTA)、MAPK蛋白激酶、锌指同源结构域(zinc finger-homeodomain, ZF-HD)蛋白和乙烯响应因子互作,从而调节中度和重度氮(nitrogen, N)缺乏条件下小麦幼苗的生长[118]。此外,过表达WRKY25WRKY33通过介导AGB1下游锌(zinc, Zn)胁迫基因ZIP3ZIP4转录调控,进而提高转基因拟南芥对锌亏缺的耐受性[119]。土壤发生铁(iron, Fe)毒害会限制作物的产量,铁毒害作用下水稻幼苗中自噬相关(autophagy- related)基因OsATGs的转录水平明显上调;进一步研究发现,OsATG基因启动子含有WRKY靶向的W-box顺式作用元件,受WRKY转录因子的诱导,增强水稻的抗性[120]。另外,在铁胁迫下,过表达小金海棠(Malus xiaojinensis) MxWRKY64的转基因拟南芥可通过提高ROS清除能力来调控植株对铁胁迫的应答反应[121]。这些结果表明,WRKYs不仅可参与多种信号通路,还可能会受到多个WRKYs的调控作用,进而应答植物对营养元素亏缺的耐受性。

2.2.5 WRKYs参与调控其他胁迫

WRKY转录因子除了参与干旱、盐害、极端温度和营养元素胁迫外,还参与其他的非生物胁迫反应。在镉(cadmium, Cd)胁迫下,过表达GmWRKY172可降低转基因植株中H2O2的积累,并进一步通过H2O2信号通路提高过氧化物酶活性,增强大豆对镉的耐受性[122]。类似地,过表达滇杨(Populus yunnanensis) PyWRKY75的转基因植株对镉的耐受性也明显增加[123]。此外,Shi等[124]发现UV-B/可见光处理可诱导杧果(Mangifera indica) MiWRKY1MiWRKY8的表达,促进杧果中花青素的合成。相反,拟南芥wrky23突变体诱导铵态氮转运蛋白AMT1;2表达,导致NH4+在根中积累,抑制主根生长[125]。这些结果表明,WRKY转录因子还可参与调控植物对重金属、紫外线等的胁迫响应。

3 展望

WRKY转录因子参与植物多种逆境胁迫反应,并且在植物的生长发育过程中发挥着重要的作用。目前,有关WRKY调控植物应答非生物胁迫的分子机制研究的报道越来越多,研究技术也日趋成熟。然而,WRKYs的结构具有多样性,保守结构域和锌指结构域均存在变异体,其参与的调控途径也十分复杂,可能会受到上游因子的激活,并整合信号通路通过蛋白互作或结合下游靶基因启动子区域W-box,进一步调控胁迫相关基因的表达,进而调节植物响应不同逆境胁迫。此外,同一WRKYs转录因子可调控多种胁迫响应,而同一种胁迫响应又可能会受到多种WRKYs的调控,其是否通过目前所报道的信号通路以外的其他途径来调节植物抗逆性,还有待深入探究。

因此,WRKY转录因子未来研究可从以下4个方面着手:(1) 利用已有的技术手段挖掘逆境胁迫下WRKYs参与的其他调控途径;(2) 进一步探究WRKYs上下游调控因子和靶标基因,解析逆境胁迫响应调控网络;(3) 挖掘更多物种中WRKYs结构域新型变异体并深入探索是否会对其参与调控逆境胁迫响应造成影响;(4) 利用过量表达、基因编辑、RNA干扰等技术,培育抗逆优良作物新品种,促进农业可持续发展。

参考文献
[1]
HUSSEIN HA A, MEKKI BB, EL-SADEK MEA, EL LATEEF EE. Effect of l-ornithine application on improving drought tolerance in sugar beet plants[J]. Heliyon, 2019, 5(10): e02631. DOI:10.1016/j.heliyon.2019.e02631
[2]
LEE FC, YEAP WC, APPLETON DR, HO CL, KULAVEERASINGAM H. Identification of drought responsive Elaeis guineensis WRKY transcription factors with sensitivity to other abiotic stresses and hormone treatments[J]. BMC Genomics, 2022, 23(1): 164. DOI:10.1186/s12864-022-08378-y
[3]
GOYAL P, MANZOOR MM, VISHWAKARMA RA, SHARMA D, DHAR MK, GUPTA S. A comprehensive transcriptome-wide identification and screening of WRKY gene family engaged in abiotic stress in Glycyrrhiza glabra[J]. Scientific Reports, 2020, 10: 373. DOI:10.1038/s41598-019-57232-x
[4]
CUI XX, YAN Q, GAN SP, XUE D, WANG HT, XING H, ZHAO JM, GUO N. GmWRKY40, a member of the WRKY transcription factor genes identified from Glycine max L., enhanced the resistance to Phytophthora sojae[J]. BMC Plant Biology, 2019, 19(1): 598. DOI:10.1186/s12870-019-2132-0
[5]
GOYAL P, DEVI R, VERMA B, HUSSAIN S, ARORA P, TABASSUM R, GUPTA S. WRKY transcription factors: evolution, regulation, and functional diversity in plants[J]. Protoplasma, 2023, 260(2): 331-348. DOI:10.1007/s00709-022-01794-7
[6]
ISHIGURO S, NAKAMURA K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5ʹ upstream regions of genes coding for sporamin and β-amylase from sweet potato[J]. Molecular and General Genetics MGG, 1994, 244(6): 563-571. DOI:10.1007/BF00282746
[7]
WANG QS, WANG MH, ZHANG XZ, HAO BJ, KAUSHIK SK, PAN YC. WRKY gene family evolution in Arabidopsis thaliana[J]. Genetica, 2011, 139(8): 973-983. DOI:10.1007/s10709-011-9599-4
[8]
ROSS CA, LIU Y, SHEN QJ. The WRKY gene family in rice (Oryza sativa)[J]. Journal of Integrative Plant Biology, 2007, 49(6): 827-842. DOI:10.1111/j.1744-7909.2007.00504.x
[9]
WU GQ, LI ZQ, CAO H, WANG JL. Genome-wide identification and expression analysis of the WRKY genes in sugar beet (Beta vulgaris L.) under alkaline stress[J]. PeerJ, 2019, 7: e7817. DOI:10.7717/peerj.7817
[10]
DA SILVA MATOS MK, BENKO-ISEPPON AM, BEZERRA-NETO JP, FERREIRA-NETO JRC, WANG Y, LIU H, PANDOLFI V, AMORIM LLB, WILLADINO L, DO VALE AMORIM TC, KIDO EA, VIANELLO RP, TIMKO MP, BRASILEIRO-VIDAL AC. The WRKY transcription factor family in cowpea: genomic characterization and transcriptomic profiling under root dehydration[J]. Gene, 2022, 823: 146377. DOI:10.1016/j.gene.2022.146377
[11]
YANG Y, LIU J, ZHOUXH, LIU SY, ZHUANG Y. Identification of WRKY gene family and characterization of cold stress-responsive WRKY genes in eggplant[J]. PeerJ, 2020, 8: e8777. DOI:10.7717/peerj.8777
[12]
LIU T, YU E, HOU LH, HUA PP, ZHAO MZ, WANG YF, HU J, ZHANG MP, WANG KY, WANG Y. Transcriptome-based identification, characterization, evolutionary analysis, and expression pattern analysis of the WRKY gene family and salt stress response in Panax ginseng[J]. Horticulturae, 2022, 8(9): 756. DOI:10.3390/horticulturae8090756
[13]
KUMARI S, KANTH BK, AHN JY, KIM JH, LEE GJ. Genome-wide transcriptomic identification and functional insight of lily WRKY genes responding to Botrytis fungal disease[J]. Plants, 2021, 10(4): 776. DOI:10.3390/plants10040776
[14]
WU WH, ZHU S, XU L, ZHU LM, WANG DD, LIU Y, LIU SQ, HAO ZD, LU Y, YANG LM, SHI JS, CHEN JH. Genome-wide identification of the Liriodendron chinense WRKY gene family and its diverse roles in response to multiple abiotic stress[J]. BMC Plant Biology, 2022, 22(1): 25. DOI:10.1186/s12870-021-03371-1
[15]
DU ZK, YOU SX, ZHAO X, XIONG LH, LI JM. Genome-wide identification of WRKY genes and their responses to chilling stress in Kandelia obovata[J]. Frontiers in Genetics, 2022, 13: 875316. DOI:10.3389/fgene.2022.875316
[16]
ZHANG CJ, WANG WT, WANG DH, HU SY, ZHANG Q, WANG ZZ, CUI LJ. Genome-wide identification and characterization of the WRKY gene family in Scutellaria baicalensis Georgi under diverse abiotic stress[J]. International Journal of Molecular Sciences, 2022, 23(8): 4225. DOI:10.3390/ijms23084225
[17]
LI Y, LI X, WEI JT, CAI KW, ZHANG HZ, GE LL, REN ZJ, ZHAO CL, ZHAO XY. Genome-wide identification and analysis of the WRKY gene family and cold stress response in Acer truncatum[J]. Genes, 2021, 12(12): 1867. DOI:10.3390/genes12121867
[18]
LIU Z, SAIYINDULENG, CHANG QY, CHENG CW, ZHENG ZM, YU S. Identification of yellowhorn (Xanthoceras sorbifolium) WRKY transcription factor family and analysis of abiotic stress response model[J]. Journal of Forestry Research, 2021, 32(3): 987-1004. DOI:10.1007/s11676-020-01134-6
[19]
NAN H, GAO LZ. Genome-wide analysis of WRKY genes and their response to hormone and mechanic stresses in carrot[J]. Frontiers in Genetics, 2019, 10: 363. DOI:10.3389/fgene.2019.00363
[20]
LIUSY, ZHANG CB, GUO F, SUN Q, YU J, DONG TT, WANG X, SONG WH, LI ZY, MENG XQ, ZHU MK. A systematical genome-wide analysis and screening of WRKY transcription factor family engaged in abiotic stress response in sweetpotato[J]. BMC Plant Biology, 2022, 22(1): 1-19. DOI:10.1186/s12870-021-03391-x
[21]
ZHENG JJ, ZHANG ZL, TONG T, FANG YX, ZHANG X, NIU CY, LI J, WU YH, XUE DW, ZHANG XQ. Genome-wide identification of WRKY gene family and expression analysis under abiotic stress in barley[J]. Agronomy, 2021, 11(3): 521. DOI:10.3390/agronomy11030521
[22]
CHENG YF, LUO JX, LI H, WEI F, ZHANG YQ, JIANG HY, PENG XJ. Identification of the WRKY gene family and characterization of stress-responsive genes in Taraxacum kok-saghyz Rodin[J]. International Journal of Molecular Sciences, 2022, 23(18): 10270. DOI:10.3390/ijms231810270
[23]
CHEN CB, XIE FF, SHAH K, HUA QZ, CHEN JY, ZHANG ZK, ZHAO JT, HU GB, QIN YH. Genome-wide identification of WRKY gene family in pitaya reveals the involvement of HmoWRKY42 in betalain biosynthesis[J]. International Journal of Molecular Sciences, 2022, 23(18): 10568. DOI:10.3390/ijms231810568
[24]
WEN F, WU XZ, LI TJ, JIA ML, LIAO L. Characterization of the WRKY gene family in Akebia trifoliata and their response to Colletotrichum acutatum[J]. BMC Plant Biology, 2022, 22(1): 1-16. DOI:10.1186/s12870-021-03391-x
[25]
YAO HY, YANG TY, QIAN J, DENG XY, DONG LL. Genome-wide analysis and exploration of WRKY transcription factor family involved in the regulation of shoot branching in Petunia[J]. Genes, 2022, 13(5): 855. DOI:10.3390/genes13050855
[26]
LI WX, XIAO N, WANG YW, LIU XM, CHEN ZY, GU XY, CHEN YD. Genome-wide identification, evolutionary and functional analyses of WRKY family members in Ginkgo biloba[J]. Genes, 2023, 14(2): 343. DOI:10.3390/genes14020343
[27]
HSIN KT, HSIEH MC, LEE YH, LIN KC, CHENG YS. Insight into the phylogeny and binding ability of WRKY transcription factors[J]. International Journal of Molecular Sciences, 2022, 23(5): 2895. DOI:10.3390/ijms23052895
[28]
DAI LQ, XU YP, DU ZW, SU XD, YU J. Revealing atomic-scale molecular diffusion of a plant-transcription factor WRKY domain protein along DNA[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(23): e2102621118.
[29]
DING WJ, OUYANG QX, LI YL, SHI TT, LI L, YANG XL, JI KS, WANG LG, YUE YZ. Genome-wide investigation of WRKY transcription factors in sweet osmanthus and their potential regulation of aroma synthesis[J]. Tree Physiology, 2020, 40(4): 557-572. DOI:10.1093/treephys/tpz129
[30]
WANG C, HAO XL, WANG Y, MAOZ I, ZHOU W, ZHOU ZG, KAI GY. Identification of WRKY transcription factors involved in regulating the biosynthesis of the anti-cancer drug camptothecin in Ophiorrhiza pumila[J]. Horticulture Research, 2022, 9: uhac099. DOI:10.1093/hr/uhac099
[31]
QU RJ, CAO YW, TANG XQ, SUN LQ, WEI L, WANG KC. Identification and expression analysis of the WRKY gene family in Isatis indigotica[J]. Gene, 2021, 783: 145561. DOI:10.1016/j.gene.2021.145561
[32]
GRZECHOWIAK M, RUSZKOWSKA A, SLIWIAK J, URBANOWICZ A, JASKOLSKI M, RUSZKOWSKI M. New aspects of DNA recognition by group Ⅱ WRKY transcription factor revealed by structural and functional study of AtWRKY18 DNA binding domain[J]. International Journal of Biological Macromolecules, 2022, 213: 589-601. DOI:10.1016/j.ijbiomac.2022.05.186
[33]
LV MC, LUO W, GE MM, GUAN YJ, TANG Y, CHEN WM, LV JY. A group Ⅰ WRKY gene, TaWRKY133, negatively regulates drought resistance in transgenic plants[J]. International Journal of Molecular Sciences, 2022, 23(19): 12026. DOI:10.3390/ijms231912026
[34]
XU YP, XU H, WANG B, SU XD. Crystal structures of N-terminal WRKY transcription factors and DNA complexes[J]. Protein & Cell, 2020, 11(3): 208-213.
[35]
BAI H, SI HL, ZANG JP, PANG X, YU L, CAO HZ, XING JH, ZHANG K, DONG JG. Comparative proteomic analysis of the defense response to Gibberella stalk rot in maize and reveals that ZmWRKY83 is involved in plant disease resistance[J]. Frontiers in Plant Science, 2021, 12: 694973. DOI:10.3389/fpls.2021.694973
[36]
EHSAN A, NAQVI RZ, AZHAR M, AWAN MJA, AMIN I, MANSOOR S, ASIF M. Genome-wide analysis of WRKY gene family and negative regulation of GhWRKY25 and GhWRKY33 reveal their role in whitefly and drought stress tolerance in cotton[J]. Genes, 2023, 14(1): 171. DOI:10.3390/genes14010171
[37]
VILLANO C, ESPOSITO S, D'AMELIA V, GARRAMONE R, ALIOTO D, ZOINA A, AVERSANO R, CARPUTO D. WRKY genes family study reveals tissue-specific and stress-responsive TFs in wild potato species[J]. Scientific Reports, 2020, 10: 7196. DOI:10.1038/s41598-020-63823-w
[38]
SONG I, HONG SJ, HUH SU. Identification and expression analysis of the Solanum tuberosum StATG8 family associated with the WRKY transcription factor[J]. Plants, 2022, 11(21): 2858. DOI:10.3390/plants11212858
[39]
SUWL, BAO Y, YU XQ, XIA XL, LIU C, YIN WL. Autophagy and its regulators in response to stress in plants[J]. International Journal of Molecular Sciences, 2020, 21(23): 8889. DOI:10.3390/ijms21238889
[40]
TANG H, BI H, LIU B, LOU SL, SONG Y, TONG SF, CHEN NN, JIANG YZ, LIU JQ, LIU HH. WRKY33 interacts with WRKY12 protein to up-regulate RAP2. 2 during submergence induced hypoxia response in Arabidopsis thaliana[J]. New Phytologist, 2021, 229(1): 106-125. DOI:10.1111/nph.17020
[41]
GOVARDHANA M, KUMUDINI BS. In-silico analysis of cucumber (Cucumis sativus L.) genome for WRKY transcription factors and cis-acting elements[J]. Computational Biology and Chemistry, 2020, 85: 107212. DOI:10.1016/j.compbiolchem.2020.107212
[42]
LI HL, QU L, GUO D, WANG Y, ZHU JH, PENG SQ. Histone deacetylase interacts with a WRKY transcription factor to regulate the expression of the small rubber particle protein gene from Hevea brasiliensis[J]. Industrial Crops and Products, 2020, 145: 111989. DOI:10.1016/j.indcrop.2019.111989
[43]
BI MM, LIANG R, QU YX, WANG JW, CAO YW, LIU X, HE GR, ZHANG WL, YANG Y, TANG YC, YANG PP, XU LF, MING J. Multifaceted roles of a light-responsive factor LhWRKY44 in promoting anthocyanin accumulation in Asiatic hybrid lilies (Lilium spp.)[J]. BioRxiv, 2023, 09: 523317.
[44]
YIN M, SONG N, CHEN SY, WU JS. NaKTI2, a Kunitz trypsin inhibitor transcriptionally regulated by NaWRKY3 and NaWRKY6, is required for herbivore resistance in Nicotiana attenuata[J]. Plant Cell Reports, 2021, 40(1): 97-109. DOI:10.1007/s00299-020-02616-x
[45]
LIU F, DOU TX, HU CH, ZHONG QF, SHENG O, YANG QS, DENG GM, HE WD, GAO HJ, LI CY, DONG T, LIU SW, YI GJ, BI FC. WRKY transcription factor MaWRKY49 positively regulates pectate lyase genes during fruit ripening of Musa acuminata[J]. Plant Physiology and Biochemistry, 2023, 194: 643-650. DOI:10.1016/j.plaphy.2022.12.015
[46]
YUDS, FAN RC, ZHANG L, XUE PY, LIAO LB, HU MZ, CHENG YJ, LI JN, QI T, JING SJ, WANG QY, BHATT A, SHEN QH. HvWRKY2 acts as an immunity suppressor and targets HvCEBiP to regulate powdery mildew resistance in barley[J]. The Crop Journal, 2023, 11(1): 99-107. DOI:10.1016/j.cj.2022.05.010
[47]
HU JF, FANG HC, WANG J, YUE XX, SU MY, MAO ZL, ZOU Q, JIANG HY, GUO ZW, YU L, FENG T, LU L, PENG ZG, ZHANG ZY, WANG N, CHEN XS. Ultraviolet B-induced MdWRKY72 expression promotes anthocyanin synthesis in apple[J]. Plant Science, 2020, 292: 110377. DOI:10.1016/j.plantsci.2019.110377
[48]
SONG XF, HUANG XX, LI Q, LIN HY, BAI SL, ZHU MZ, LI J, WANG KB. The WRKY transcription factor CsWRKY70 regulates EGCG biosynthesis by affecting CsLAR and CsUGT84A expressions in tea leaves (Camellia sinensis)[J]. Horticulturae, 2023, 9(1): 120. DOI:10.3390/horticulturae9010120
[49]
GUO W, CHEN W, GUO N, ZANG J, LIU L, ZHANG ZH, DAI HY. MdWRKY61 positively regulates resistance to Colletotrichum siamense in apple (Malus domestica)[J]. Physiological and Molecular Plant Pathology, 2022, 117: 101776. DOI:10.1016/j.pmpp.2021.101776
[50]
QU L, LI HL, GUO D, WANG Y, ZHU JH, YIN LY, PENG SQ. HbWRKY27, a group IIe WRKY transcription factor, positively regulates HbFPS1 expression in Hevea brasiliensis[J]. Scientific Reports, 2020, 10: 20639. DOI:10.1038/s41598-020-77805-5
[51]
ZHANG YY, LI BR, ZHANG M, JIA JY, SUN SL, CHEN XX, YUAN JF, BI XC, PANG XY, LI X. Transcriptome analyses and virus-induced gene silencing identify HuWRKY40 acting as a hub transcription factor in the preservation of Hylocereus undatus by trypsin[J]. Journal of Food Biochemistry, 2022, 46(12): e14437.
[52]
SUN YJ, LIU ZX, GUO JG, ZHU ZN, ZHOU YP, GUO CX, HU YH, LI JA, YAN SG, LI T, HU YJ, WU R, LI WQ, ROCHAIX JD, MIAO YC, SUN XW. WRKY33-PIF4 loop is required for the regulation of H2O2 homeostasis[J]. Biochemical and Biophysical Research Communications, 2020, 527(4): 922-928. DOI:10.1016/j.bbrc.2020.05.041
[53]
WANG T, SUN Z, WANG SQ, FENG S, WANG RM, ZHU CL, ZHONG LL, CHENG YJ, BAO MZ, ZHANG F. DcWRKY33 promotes petal senescence in carnation (Dianthus caryophyllus L.) by activating genes involved in the biosynthesis of ethylene and abscisic acid and accumulation of reactive oxygen species[J]. The Plant Journal, 2023, 113(4): 698-715. DOI:10.1111/tpj.16075
[54]
WANG HM, HOU YX, WANG S, TONG XH, TANG LQ, AJADI AA, ZHANG J, WANG YF. WRKY72 negatively regulates seed germination through interfering gibberellin pathway in rice[J]. Rice Science, 2021, 28(1): 1-5. DOI:10.1016/j.rsci.2020.11.001
[55]
YU YG, ZHANG L. Overexpression of TaWRKY53 enhances drought tolerance in transgenic Arabidopsis plants[J]. South African Journal of Botany, 2022, 148: 605-614. DOI:10.1016/j.sajb.2022.04.050
[56]
ZHANG LL, ZHANG R, YE X, ZHENG XB, TAN B, WANG W, LI ZQ, LI JD, CHENG J, FENG JC. Overexpressing VvWRKY18 from grapevine reduces the drought tolerance in Arabidopsis by increasing leaf stomatal density[J]. Journal of Plant Physiology, 2022, 275: 153741. DOI:10.1016/j.jplph.2022.153741
[57]
LI Y, CHEN H, LI ST, YANG CL, DING QY, SONG CP, WANG DJ. GhWRKY46 from upland cotton positively regulates the drought and salt stress responses in plant[J]. Environmental and Experimental Botany, 2021, 186: 104438. DOI:10.1016/j.envexpbot.2021.104438
[58]
WEN WW, WANG RY, SU LT, LV AM, ZHOU P, AN Y. MsWRKY11, activated by MsWRKY22, functions in drought tolerance and modulates lignin biosynthesis in alfalfa (Medicago sativa L.)[J]. Environmental and Experimental Botany, 2021, 184: 104373. DOI:10.1016/j.envexpbot.2021.104373
[59]
AHAMMED G J, LI X, WAN HJ, ZHOU GZ, CHENG Y. SlWRKY81 reduces drought tolerance by attenuating proline biosynthesis in tomato[J]. Scientia Horticulturae, 2020, 270: 109444. DOI:10.1016/j.scienta.2020.109444
[60]
HOU LX, FAN XX, HAO J, LIU GC, ZHANG Z, LIU X. Negative regulation by transcription factor VvWRKY13 in drought stress of Vitis vinifera L.[J]. Plant Physiology and Biochemistry, 2020, 148: 114-121. DOI:10.1016/j.plaphy.2020.01.008
[61]
LIU GY, LI B, LI X, WEI YX, HE CZ, SHI HT. MaWRKY80 positively regulates plant drought stress resistance through modulation of abscisic acid and redox metabolism[J]. Plant Physiology and Biochemistry, 2020, 156: 155-166. DOI:10.1016/j.plaphy.2020.09.015
[62]
DONG QL, ZHENG WQ, DUAN DY, HUANG D, WANG Q, LIU CH, LI C, GONG XQ, LI CY, MAO K, MA FW. MdWRKY30, a group Ⅱa WRKY gene from apple, confers tolerance to salinity and osmotic stresses in transgenic apple callus and Arabidopsis seedlings[J]. Plant Science, 2020, 299: 110611. DOI:10.1016/j.plantsci.2020.110611
[63]
YANG Z, CHI XY, GUO FF, JIN XY, LUO HL, HAWAR A, CHEN YX, FENG KK, WANG B, QI JL, YANG YH, SUN B. SbWRKY30 enhances the drought tolerance of plants and regulates a drought stress-responsive gene, SbRD19, in sorghum[J]. Journal of Plant Physiology, 2020, 246/247: 153142. DOI:10.1016/j.jplph.2020.153142
[64]
ZHANG Y, ZHOU YY, ZHANG D, TANG XL, LI Z, SHEN C, HAN X, DENG WH, YIN WL, XIA XL. PtrWRKY75 overexpression reduces stomatal aperture and improves drought tolerance by salicylic acid-induced reactive oxygen species accumulation in poplar[J]. Environmental and Experimental Botany, 2020, 176: 104117. DOI:10.1016/j.envexpbot.2020.104117
[65]
LIN JH, DANG FF, CHEN YP, GUAN DY, HE SL. CaWRKY27 negatively regulates salt and osmotic stress responses in pepper[J]. Plant Physiology and Biochemistry, 2019, 145: 43-51. DOI:10.1016/j.plaphy.2019.08.013
[66]
ZHAO K, ZHANG DW, LV KW, ZHANG XM, CHENG ZH, LI RH, ZHOU BR, JIANG TB. Functional characterization of poplar WRKY75 in salt and osmotic tolerance[J]. Plant Science, 2019, 289: 110259. DOI:10.1016/j.plantsci.2019.110259
[67]
BAO F, DING AQ, CHENG TR, WANG, ZHANG QX. Genome-wide analysis of members of the WRKY gene family and their cold stress response in Prunus mume[J]. Genes, 2019, 10(11): 911. DOI:10.3390/genes10110911
[68]
FINATTO T, VIANA VE, WOYANN LG, BUSANELLO C, MAIA LC, OLIVEIRA AC. Can WRKY transcription factors help plants to overcome environmental challenges?[J]. Genetics and Molecular Biology, 2018, 41(3): 533-544. DOI:10.1590/1678-4685-gmb-2017-0232
[69]
WANG JJ, TAO F, AN F, ZOU YP, TIAN W, CHEN XM, XU XM, HU XP. Wheat transcription factor TaWRKY70 is positively involved in high-temperature seedling plant resistance to Puccinia striiformis f. sp. tritici[J]. Molecular Plant Pathology, 2017, 18(5): 649-661. DOI:10.1111/mpp.12425
[70]
LI CX, YAN JY, REN JY, SUN L, XU C, LI GX, DING ZJ, ZHENG SJ. A WRKY transcription factor confers aluminum tolerance via regulation of cell wall modifying genes[J]. Journal of Integrative Plant Biology, 2020, 62(8): 1176-1192. DOI:10.1111/jipb.12888
[71]
YE J, WANG X, HU TX, ZHANG FX, WANG B, LI CX, YANG TX, LI HX, LU YE, GIOVANNONI JJ, ZHANG YY, YE ZB. An InDel in the promoter of Al-ACTIVATED MALATE TRANSPORTER9 selected during tomato domestication determines fruit malate contents and aluminum tolerance[J]. The Plant Cell, 2017, 29(9): 2249-2268. DOI:10.1105/tpc.17.00211
[72]
SHENG YB, YAN XX, HUANG Y, HAN YY, ZHANG C, REN YB, FAN TT, XIAO FM, LIU YS, CAO SQ. The WRKY transcription factor, WRKY13, activates PDR8 expression to positively regulate cadmium tolerance in Arabidopsis[J]. Plant Cell & Environment, 2019, 42(3): 891-903.
[73]
QIN Y, YU HX, CHENG SY, LIU Z, YU C, ZHANG XL, SU XJ, HUANG JW, SHI ST, ZOU YJ, MA FW, GONG XQ. Genome-wide analysis of the WRKY gene family in Malus domestica and the role of MdWRKY70L in response to drought and salt stresses[J]. Genes, 2022, 13(6): 1068. DOI:10.3390/genes13061068
[74]
HUANG Z, WANG JT, LI Y, SONG L, CHEN DE, LIU L, JIANG CZ. A WRKY protein, MfWRKY40, of resurrection plant Myrothamnus flabellifolia plays a positive role in regulating tolerance to drought and salinity stresses of Arabidopsis[J]. International Journal of Molecular Sciences, 2022, 23(15): 8145. DOI:10.3390/ijms23158145
[75]
HUANG Z, LIU L, JIAN LL, XU WX, WANG JT, LI YX, JIANG CZ. Heterologous expression of MfWRKY7 of resurrection plant Myrothamnus flabellifolia enhances salt and drought tolerance in Arabidopsis[J]. International Journal of Molecular Sciences, 2022, 23(14): 7890. DOI:10.3390/ijms23147890
[76]
SUN SF, LI X, GAO SP, NIE N, ZHANG H, YANG YF, HE SZ, LIU QC, ZHAI H. A novel WRKY transcription factor from Ipomoea trifida, ItfWRKY70, confers drought tolerance in sweet potato[J]. International Journal of Molecular Sciences, 2022, 23(2): 686. DOI:10.3390/ijms23020686
[77]
YU Y, SONG TQ, WANG YK, ZHANG MF, LI N, YU M, ZHANG SX, ZHOU HW, GUO SH, BU YN, WANG TT, XIANG JS, ZHANG XK. The wheat WRKY transcription factor TaWRKY1-2D confers drought resistance in transgenic Arabidopsis and wheat (Triticum aestivum L.)[J]. International Journal of Biological Macromolecules, 2023, 226: 1203-1217. DOI:10.1016/j.ijbiomac.2022.11.234
[78]
HUANG YM, CHEN FQ, CHAI MN, XI XP, ZHU WH, QI JG, LIU KC, MA SZ, SU H, TIAN YR, ZHANG HY, QIN Y, CAI HY. Ectopic overexpression of pineapple transcription factor AcWRKY31 reduces drought and salt tolerance in rice and Arabidopsis[J]. International Journal of Molecular Sciences, 2022, 23(11): 6269. DOI:10.3390/ijms23116269
[79]
XIONG CW, ZHAO S, YU X, SUN Y, LI H, RUAN CJ, LI JB. Yellowhorn drought-induced transcription factor XsWRKY20 acts as a positive regulator in drought stress through ROS homeostasis and ABA signaling pathway[J]. Plant Physiology and Biochemistry, 2020, 155: 187-195. DOI:10.1016/j.plaphy.2020.06.037
[80]
WU M, ZHANG KM, XU YZ, WANG LN, LIU HX, QIN ZL, XIANG Y. The moso bamboo WRKY transcription factor, PheWRKY86, regulates drought tolerance in transgenic plants[J]. Plant Physiology and Biochemistry, 2022, 170: 180-191. DOI:10.1016/j.plaphy.2021.10.024
[81]
NIU XP, CHEN MX, SHE ZY, ASLAM M, QI JM, QIN Y. Ectopic expression of kenaf (Hibiscus cannabinus L.) HcWRKY50 improves plants' tolerance to drought stress and regulates ABA signaling in Arabidopsis[J]. Agronomy, 2022, 12(5): 1176. DOI:10.3390/agronomy12051176
[82]
LIM C, KANG K, SHIM Y, YOO SC, PAEK NC. Inactivating transcription factor OsWRKY5 enhances drought tolerance through abscisic acid signaling pathways[J]. Plant Physiology, 2022, 188(4): 1900-1916. DOI:10.1093/plphys/kiab492
[83]
SONG G, SON S, LEE KS, PARK YJ, SUH EJ, LEE SI, PARK SR. OsWRKY114 negatively regulates drought tolerance by restricting stomatal closure in rice[J]. Plants, 2022, 11(15): 1938. DOI:10.3390/plants11151938
[84]
SUN S, CHEN H, YANG ZQ, LU JY, WU DS, LUO QF, JIA J, TAN JH. Identification of WRKY transcription factor family genes in Pinus massoniana Lamb. and their expression patterns and functions in response to drought stress[J]. BMC Plant Biology, 2022, 22(1): 424. DOI:10.1186/s12870-022-03802-7
[85]
ZHANG JW, HUANG DZ, ZHAO XJ, ZHANG M, WANG Q, HOU XY, DI DL, SU BB, WANG SK, SUN P. Drought-responsive WRKY transcription factor genes IgWRKY50 and IgWRKY32 from Iris germanica enhance drought resistance in transgenic Arabidopsis[J]. Frontiers in Plant Science, 2022, 13: 983600. DOI:10.3389/fpls.2022.983600
[86]
WANG GW, WANG XW, MA HP, FAN HL, LIN F, CHEN JH, CHAI TY, WANG H. PcWRKY11, an Ⅱ-d WRKY transcription factor from Polygonum cuspidatum, enhances salt tolerance in transgenic Arabidopsis thaliana[J]. International Journal of Molecular Sciences, 2022, 23(8): 4357. DOI:10.3390/ijms23084357
[87]
YU SJ, HE ZX, GAO KX, ZHOU JC, LAN X, ZHONG CM, XIE J. Dioscorea composita WRKY12 is involved in the regulation of salt tolerance by directly activating the promoter of AtRCI2A[J]. Plant Physiology and Biochemistry, 2023, 196: 746-758. DOI:10.1016/j.plaphy.2023.02.020
[88]
YAN JW, LI J, ZHANG HP, LIU Y, ZHANG AY. ZmWRKY104 positively regulates salt tolerance by modulating ZmSOD4 expression in maize[J]. The Crop Journal, 2022, 10(2): 555-564. DOI:10.1016/j.cj.2021.05.010
[89]
YU SJ, LAN X, ZHOU JC, GAO KX, ZHONG CM, XIE J. Dioscorea composita WRKY3 positively regulates salt-stress tolerance in transgenic Arabidopsis thaliana[J]. Journal of Plant Physiology, 2022, 269: 153592. DOI:10.1016/j.jplph.2021.153592
[90]
LIN LK, YUAN KL, HUANG YD, DONG HZ, QIAO QH, XING CH, HUANG XS, ZHANG SL. A WRKY transcription factor PbWRKY40 from Pyrus betulaefolia functions positively in salt tolerance and modulating organic acid accumulation by regulating PbVHA-B1 expression[J]. Environmental and Experimental Botany, 2022, 196: 104782. DOI:10.1016/j.envexpbot.2022.104782
[91]
SU MY, WANG S, LIU WJ, YANG M, ZHANG ZY, WANG N, CHEN XS. Interaction between MdWRKY55 and MdNAC17-L enhances salt tolerance in apple by activating MdNHX1 expression[J]. Plant Science, 2022, 320: 111282. DOI:10.1016/j.plantsci.2022.111282
[92]
FANG X, LI W, YUAN HT, CHEN HW, BO C, MA Q, CAI RH. Mutation of ZmWRKY86 confers enhanced salt stress tolerance in maize[J]. Plant Physiology and Biochemistry, 2021, 167: 840-850. DOI:10.1016/j.plaphy.2021.09.010
[93]
MA ZX, JIA Y, HUANG WC, WU H, FANG X, MA Q, CAI RH. ZmWRKY17 negatively regulates salt tolerance through ABA signaling pathway in maize[J]. Social Science Research Network, 2022, 82: 1215-1231.
[94]
KHAN MS, HEMALATHA S. Autophagy and programmed cell death are critical pathways in jasmonic acid mediated saline stress tolerance in Oryza sativa[J]. Applied Biochemistry and Biotechnology, 2022, 194(11): 5353-5366. DOI:10.1007/s12010-022-04032-1
[95]
YE H, QIAO LY, GUO HY, GUO LP, REN F, BAI JF, WANG YK. Genome-wide identification of wheat WRKY gene family reveals that TaWRKY75-A is referred to drought and salt resistances[J]. Frontiers in Plant Science, 2021, 12: 663118. DOI:10.3389/fpls.2021.663118
[96]
LV BB, WU Q, WANG AH, LI Q, DONG QX, YANG JJ, ZHAO HX, WANG XL, CHEN H, LI CL. A WRKY transcription factor, FtWRKY46, from Tartary buckwheat improves salt tolerance in transgenic Arabidopsis thaliana[J]. Plant Physiology and Biochemistry, 2020, 147: 43-53. DOI:10.1016/j.plaphy.2019.12.004
[97]
DU C, MA BJ, WU ZG, LI NN, ZHENG LL, WANG YC. Reaumuria trigyna transcription factor RtWRKY23 enhances salt stress tolerance and delays flowering in plants[J]. Journal of Plant Physiology, 2019, 239: 38-51. DOI:10.1016/j.jplph.2019.05.012
[98]
DU C, ZHAO PP, ZHANG HR, LI NN, ZHENG LL, WANG YC. The Reaumuria trigyna transcription factor RtWRKY1 confers tolerance to salt stress in transgenic Arabidopsis[J]. Journal of Plant Physiology, 2017, 215: 48-58. DOI:10.1016/j.jplph.2017.05.002
[99]
ZHU H, JIANG YN, GUO Y, HUANG JB, ZHOU MH, TANG YY, SUI JM, WANG JS, QIAO LX. A novel salt inducible WRKY transcription factor gene, AhWRKY75, confers salt tolerance in transgenic peanut[J]. Plant Physiology and Biochemistry, 2021, 160: 175-183. DOI:10.1016/j.plaphy.2021.01.014
[100]
CHEN MX, SHE ZY, ASLAM M, LIU T, WANG ZR, QI JM, NIU XP. Genomic insights of the WRKY genes in kenaf (Hibiscus cannabinus L.) reveal that HcWRKY44 improves the plant's tolerance to the salinity stress[J]. Frontiers in Plant Science, 2022, 13: 984233. DOI:10.3389/fpls.2022.984233
[101]
HUANG XB, AMEE M, CHEN L. Bermudagrass CdWRKY50 gene negatively regulates plants' response to salt stress[J]. Environmental and Experimental Botany, 2021, 188: 104513. DOI:10.1016/j.envexpbot.2021.104513
[102]
LI PL, SONG AP, GAO CY, WANG LX, WANG YJ, SUN J, JIANG JF, CHEN FD, CHEN SM. Chrysanthemum WRKY gene CmWRKY17 negatively regulates salt stress tolerance in transgenic Chrysanthemum and Arabidopsis plants[J]. Plant Cell Reports, 2015, 34(8): 1365-1378. DOI:10.1007/s00299-015-1793-x
[103]
GU JJ, LV FN, GAO LL, JIANG SJ, WANG Q, LI SM, YANG RT, LI Y, LI SF, WANG P. A WRKY transcription factor CbWRKY27 negatively regulates salt tolerance in Catalpa bungei[J]. Forests, 2023, 14(3): 486. DOI:10.3390/f14030486
[104]
WANG CT, RU JN, LIU YW, LI M, ZHAO D, YANG JF, FU JD, XU ZS. Maize WRKY transcription factor ZmWRKY106 confers drought and heat tolerance in transgenic plants[J]. International Journal of Molecular Sciences, 2018, 19(10): 3046. DOI:10.3390/ijms19103046
[105]
WU Z, LI T, CAO X, ZHANGDH, TENG NJ. Lily WRKY factor LlWRKY22 promotes thermotolerance through autoactivation and activation of LlDREB2B[J]. Horticulture Research, 2022, 9: uhac186. DOI:10.1093/hr/uhac186
[106]
ZHU L, LI SL, OUYANG MZ, YANG LM, SUN SR, WANG YJ, CAI XX, WU GX, LI YM. Overexpression of watermelon ClWRKY20 in transgenic Arabidopsis improves salt and low-temperature tolerance[J]. Scientia Horticulturae, 2022, 295: 110848. DOI:10.1016/j.scienta.2021.110848
[107]
ZHOU TT, YANG XM, WANG GB, CAO FL. Molecular cloning and expression analysis of a WRKY transcription factor gene, GbWRKY20, from Ginkgo biloba[J]. Plant Signaling & Behavior, 2021, 16(10): 1930442.
[108]
TANG JQ, TIAN XJ, MEI EY, HE ML, GAO JW, YU J, XU M, LIU JL, SONG L, LI XF, WANG ZY, GUAN QJ, ZHAO ZG, WANG CM, BU QY. WRKY53 negatively regulates rice cold tolerance at the booting stage by fine-tuning anther gibberellin levels[J]. The Plant Cell, 2022, 34(11): 4495-4515. DOI:10.1093/plcell/koac253
[109]
MOISON M, PACHECO JM, LUCERO L, FONOUNI-FARDE C, RODRÍGUEZ-MELO J, MANSILLA N, CHRIST A, BAZIN J, BENHAMED M, IBAÑEZ F, CRESPI M, ESTEVEZ JM, ARIEL F. The lncRNA APOLO interacts with the transcription factor WRKY42 to trigger root hair cell expansion in response to cold[J]. Molecular Plant, 2021, 14(6): 937-948. DOI:10.1016/j.molp.2021.03.008
[110]
WANG YG, DONG B, WANG NN, ZHENG ZF, YANG LY, ZHONG SW, FANG Q, XIAO Z, ZHAO HB. A WRKY transcription factor PmWRKY57 from Prunus mume improves cold tolerance in Arabidopsis thaliana[J]. Molecular Biotechnology, 2022, 1-10.
[111]
FEI J, WANG YS, CHENG H, SU YB, ZHONG YJ, ZHENG L. The Kandelia obovata transcription factor KoWRKY40 enhances cold tolerance in transgenic Arabidopsis[J]. BMC Plant Biology, 2022, 22(1): 1-15. DOI:10.1186/s12870-021-03391-x
[112]
LI C, LI KN, LIU XY, RUAN H, ZHENG MM, YU ZJ, GAI JY, YANG SP. Transcription factor GmWRKY46 enhanced phosphate starvation tolerance and root development in transgenic plants[J]. Frontiers in Plant Science, 2021, 12: 700651. DOI:10.3389/fpls.2021.700651
[113]
CAI JS, CAI WW, HUANG XY, YANG S, WEN JY, XIA XQ, YANG F, SHI YY, GUAN DY, HE SL. Ca14-3-3 interacts with CaWRKY58 to positively modulate pepper response to low-phosphorus starvation[J]. Frontiers in Plant Science, 2021, 11: 607878. DOI:10.3389/fpls.2020.607878
[114]
WANG SC, ZHANG J, GU M, XU GH. OsWRKY108 is an integrative regulator of phosphorus homeostasis and leaf inclination in rice[J]. Plant Signaling & Behavior, 2021, 16(11): 1976545.
[115]
SHEN N, HOU SF, TU GQ, LAN WZ, JING YP. Transcription factor WRKY33 mediates the phosphate deficiency-induced remodeling of root architecture by modulating iron homeostasis in Arabidopsis roots[J]. International Journal of Molecular Sciences, 2021, 22(17): 9275. DOI:10.3390/ijms22179275
[116]
SHU WJ, ZHOU QH, XIAN PQ, CHENG YB, LIAN TX, MA QB, ZHOU YG, LI HY, NIAN H, CAI ZD. GmWRKY81 encoding a WRKY transcription factor enhances aluminum tolerance in soybean[J]. International Journal of Molecular Sciences, 2022, 23(12): 6518. DOI:10.3390/ijms23126518
[117]
WANG ZJ, LIU L, SU H, GUO LQ, ZHANG JL, LI YF, XU JY, ZHANG XC, GUO YD, ZHANG N. Jasmonate and aluminum crosstalk in tomato: identification and expression analysis of WRKYs and ALMTs during JA/Al-regulated root growth[J]. Plant Physiology and Biochemistry, 2020, 154: 409-418. DOI:10.1016/j.plaphy.2020.06.026
[118]
POLL AA, LEE J, SANDERSON RA, BYRNE E, GATEHOUSE JA, SADANANDOM A, GATEHOUSE AMR, EDWARDS MG. Septoria leaf blotch and reduced nitrogen availability alter WRKY transcription factor expression in a codependent manner[J]. International Journal of Molecular Sciences, 2020, 21(11): 4165. DOI:10.3390/ijms21114165
[119]
WU TY, KRISHNAMOORTHI S, GOH H, LEONG R, SANSON AC, URANO D. Crosstalk between heterotrimeric G protein-coupled signaling pathways and WRKY transcription factors modulating plant responses to suboptimal micronutrient conditions[J]. Journal of Experimental Botany, 2020, 71(10): 3227-3239. DOI:10.1093/jxb/eraa108
[120]
MALTZAHN LE, VIANA VE, BUSANELLO C, VENSKE E, GIRARDI CL, COSTA de OLIVEIRA A, PEGORARO C. ATG genes, new players on early Fe toxicity response in rice (Oryza sativa)[J]. Plant Breeding, 2020, 139(6): 1090-1102. DOI:10.1111/pbr.12860
[121]
HAN DG, HAN JX, XU TL, LI TM, YAO CY, WANG YJ, LUO DJ, YANG GH. Isolation and preliminary functional characterization of MxWRKY64, a new WRKY transcription factor gene from Malus xiaojinensis Cheng et Jiang[J]. In Vitro Cellular & Developmental Biology-Plant, 2021, 57(2): 202-213.
[122]
XIAN PQ, YANG Y, XIONG CW, GUO ZB, ALAM I, HE ZH, ZHANG YK, CAI ZD, NIAN H. Overexpression of GmWRKY172 enhances cadmium tolerance in plants and reduces cadmium accumulation in soybean seeds[J]. Frontiers in Plant Science, 2023, 14: 1133892. DOI:10.3389/fpls.2023.1133892
[123]
WU XL, CHEN Q, CHEN LL, TIAN FF, CHEN XX, HAN CY, MI JX, LIN XY, WAN XQ, JIANG BB, LIU QL, HE F, CHEN LH, ZHANG F. A WRKY transcription factor, PyWRKY75, enhanced cadmium accumulation and tolerance in poplar[J]. Ecotoxicology and Environmental Safety, 2022, 239: 113630. DOI:10.1016/j.ecoenv.2022.113630
[124]
SHI B, WU HX, ZHU WC, ZHENG B, WANG SB, ZHOU KB, QIAN MJ. Genome-wide identification and expression analysis of WRKY genes during anthocyanin biosynthesis in the mango (Mangifera indica L.)[J]. Agriculture, 2022, 12(6): 821. DOI:10.3390/agriculture12060821
[125]
GAO K, ZHOU T, HUA YP, GUAN CY, ZHANG ZH. Transcription factor WRKY23 is involved in ammonium-induced repression of Arabidopsis primary root growth under ammonium toxicity[J]. Plant Physiology and Biochemistry, 2020, 150: 90-98. DOI:10.1016/j.plaphy.2020.02.034