生物工程学报  2024, Vol. 40 Issue (1): 15-34
http://dx.doi.org/10.13345/j.cjb.230108
中国科学院微生物研究所、中国微生物学会主办
0

文章信息

张乐欢, 邹昌玉, 朱天翔, 杜美霞, 邹修平, 何永睿, 陈善春, 龙琴
ZHANG Lehuan, ZOU Changyu, ZHU Tianxiang, DU Meixia, ZOU Xiuping, HE Yongrui, CHEN Shanchun, LONG Qin
茉莉酸在植物抗逆性中的研究进展
The role of jasmonic acid in stress resistance of plants: a review
生物工程学报, 2024, 40(1): 15-34
Chinese Journal of Biotechnology, 2024, 40(1): 15-34
10.13345/j.cjb.230108

文章历史

Received: February 15, 2023
Accepted: May 29, 2023
茉莉酸在植物抗逆性中的研究进展
张乐欢 , 邹昌玉 , 朱天翔 , 杜美霞 , 邹修平 , 何永睿 , 陈善春 , 龙琴     
西南大学 中国农业科学院柑桔研究所, 重庆 400712
摘要:茉莉酸(jasmonic acid, JA)是一种植物内源合成的脂类激素,在植物响应胁迫的调控中发挥着重要作用。本文概括了JA的生物合成与代谢途径及其调控机制;总结了JA信号的传导通路;系统归纳了JA在植物响应生物和非生物胁迫应答中的作用机制和调控网络,重点关注了最新的研究进展。此外,本文梳理了JA与其他植物激素在植物抗逆性调节过程中的信号交流。最后讨论了JA信号通路介导的植物抗逆性研究中亟待解决的问题,并展望了新的分子生物学技术在调控JA信号通路增强作物抗性中的应用前景,以期为植物的抗逆性研究和改良提供参考。
关键词茉莉酸    生物胁迫    非生物胁迫    植物抗逆性    
The role of jasmonic acid in stress resistance of plants: a review
ZHANG Lehuan , ZOU Changyu , ZHU Tianxiang , DU Meixia , ZOU Xiuping , HE Yongrui , CHEN Shanchun , LONG Qin     
Citrus Research Institute, Chinese Academy of Agricultural Sciences, Southwest University, Chongqing 400712, China
Abstract: Jasmonic acid (JA), a plant endogenously synthesized lipid hormone, plays an important role in response to stress. This manuscript summarized the biosynthesis and metabolism of JA and its related regulatory mechanisms, as well as the signal transduction of JA. The mechanism and regulatory network of JA in plant response to biotic and abiotic stresses were systematically reviewed, with the latest advances highlighted. In addition, this review summarized the signal crosstalk between JA and other hormones in regulating plant resistance to various stresses. Finally, the problems to be solved in the study of plant stress resistance mediated by JA were discussed, and the application of new molecular biological technologies in regulating JA signaling to enhance crop resistance was prospected, with the aim to facilitate future research and application of plant stress resistance.
Keywords: jasmonic acid    biotic stress    abiotic stress    plant resistance    

植物在面对复杂且不断变化的生活环境时,经常会遇到多种生存挑战,这些挑战主要来自生物和非生物两个方面[1]。面对这些挑战,植物已进化出复杂的防御机制来抵抗、缓解或恢复正常生长[2]。在过去几十年的研究中,植物中重要的调节因子——植物激素在植物抗性扮演的角色[3],受到了众多研究者的青睐,并得到了广泛的关注。目前,有9种植物激素被认为与植物抗逆性相关[4],其中茉莉酸(jasmonic acid, JA)在植物抗逆性方面的作用引起了极大的关注。

JA及其衍生物是一类重要的脂基植物激素,普遍存在于高等植物中[5],统称为茉莉素(jasmonate, JAs)[2]。JAs作为信号分子或诱导剂,控制着许多植物生理过程,具有多种生理功能,不仅在抑制种子萌发、促进根生长[6-7]、延迟开花[8]、影响叶片衰老黄化[9]和果实成熟[10]等诸多方面起着关键作用,还参与植物响应低温、干旱、机械损伤、食草动物取食和病原菌侵染等非生物和生物胁迫的抗性反应,增强或降低植物对各种胁迫的耐受性。近年来,JA在植物抗性方面的研究已经取得了许多重要的进展。如,植物受到胁迫后,首先通过两个自身免疫系统来抵御胁迫,即病原相关分子模式激发的免疫反应(PAMP-triggered immunity, PTI)和效应蛋白激发的免疫反应(effector-triggered immunity, ETI),且已建立了植物与胁迫(环境)相互作用的一些分子模型,包括识别微生物相关分子模式(pathogen-associated molecular patterns/microbe- associated molecular patterns, PAMPs/MAMPs)、损伤相关分子模式(damage-associated molecular patterns, DAMPs)和线虫相关分子模式(nematode- associated molecular patterns, NAMPs)[11-13]。前人的研究表明,这些分子模型与JA信号通路有关[11, 14],尤其是DAMPs可快速合成JA并激活JA信号[15-16]。胁迫刺激被植物细胞受体识别后,JA信号通路的核心成分茉莉酸异亮氨酸(jasmonoyl-isoleucine, JA-Ile)的合成被激活,并通过下游转录因子的相互作用,促进植物生长发育和启动特定保护机制[17]。因此,JA在植物抗性方面扮演的重要角色,引起了广泛的研究。

本文将回顾JA的生物合成、代谢和信号传导通路,总结JA参与调控植物抵抗各种胁迫的分子机制,重点关注最新研究进展,并对JA在植物抵御胁迫过程中发挥的功能进行了总结和展望,并进一步整理了JA与其他植物激素相互作用的分子网络及其在植物抗性调节过程中的作用。

1 茉莉酸的生物合成与代谢 1.1 茉莉酸的生物合成

JA的合成过程发生在植物细胞叶绿体、过氧化物酶体和细胞质中,其合成过程本质上是以细胞膜释放的亚麻酸为底物的一系列酶促反应,亚麻酸进入叶绿体,即开启了JA的合成过程[18]。研究表明,α-亚麻酸在叶绿体中经脂氧合酶(lipoxygenase, LOX)催化合成13S-氢过氧亚麻酸(13S-hydroperoxylinolenic acid, 13-HPOT),13-HPOT在丙二烯氧化物合酶(allene oxide synthase, AOS)和丙二烯氧化物环化酶(allene oxide cyclase, AOC)的作用下转化为12-氧-植物二烯酸(12-oxo-phytodienoic acid, OPAD);之后OPDA被转运至过氧化物酶体中,经还原酶3 (12-oxophytodienoate reductase, OPR3)和3次β-氧化后转化为(+)-7-Iso-JA[6, 19];之后(+)-7-Iso-JA被运输到细胞质,在依赖ATP的腺苷酸形成酶(jasmonic acid resistant 1, JAR1)的催化下与异亮氨酸(l-isoleucine, Ile)结合,形成公认最具生物活性的茉莉酸类化合物(+)-7-Iso-JA-Ile[7, 20],最终形成具有生物活性的JA-Ile,除此之外,JAR1还催化JA与其他氨基酸形成共轭复合物,之后这些复合物被茉莉酸转运蛋白1 (jasmonic acid transporter 1, JAT1)运输到细胞核中发挥功能[21]。也有报道称,在过氧化物酶体中OPDA也可先经过3次β-氧化后合成4, 5-双脱氢茉莉酸(4, 5-didehydro-JA, 4, 5-ddh-JA),之后经OPR2催化合成JA[22-23]。ABC转运蛋白(comatose, CTS)被认为部分参与OPDA输入过氧化物酶体的过程[24],Guan等[25]研究表明,在叶绿体外膜上存在一种OPDA输出蛋白,并将其命名为JASSY,但OPDA从叶绿体向过氧化物酶体运输的机制尚不清楚(图 1)[21-25]

图 1 JA及其衍生物的生物合成[2, 21-25] Fig. 1 Biosynthesis of JA and its derivatives[2, 21-25]. JA: Jasmonic acid; JASSY: Chloroplast outer membrane protein; CTS: ABC transporter of peroxisome membrance; OPR2: OPDA reductase 2; OPR3: OPDA reductase 3; (+)-7-iso-JA: Jasmonic; (+)-7-iso-JA-Ile: Jasmonic acid isoleucine conjugate; JAR1: JA-amino acid synthetase; JAT1: Jasmonate transporter 1; CYP94B3: JA-Ile-12-hydroxylase.
1.2 茉莉酸的代谢

JA代谢转化产生茉莉酸盐的过程,主要通过以JA和JA-Ile为底物的至少12条代谢途径实现[26]。JA通过茉莉酸羧甲基转移酶(jasmonic acid carboxyl methyltransferase, JMT)合成茉莉酸甲酯(methyl jasmonate, MeJA);通过JA葡糖基酯,脱羧形成顺式茉莉酸酮(cis-jasmone);被JAR1催化与氨基酸结合,首选Ile合成JA-Ile,JA-Ile被JA-Ile-12羟化酶(CYP94B3)羟化形成12-OH-JA-Ile,被甲基化形成JA-Me-Ile,12-OH-JA-Ile被12-OH-JA-Ile羧化酶(CYP94C1)羧化形成12-COOH-JA-Ile,被酰胺水解酶(ILL6和IAR3)水解为12-OH-JA,12-COOH-JA-Ile之后也被IAR3水解为12-COOH-JA;通过JOX家族氧化酶生成12-OH-JA,12-OH-JA被ST2A硫酸化合成12-HSO4-JA。此外,还有JA-Ile葡萄糖基化和葡萄糖基酯的形成(图 2)[26-27]。这也说明JA正是通过这些复杂的合成和降解网络,参与维持植物体内的平衡。

图 2 JA及其主要的代谢产物[26-27] Fig. 2 JA and its main metabolites[26-27]. JA-Ile: Jasmonyl isoleucine; JMT: JA methyltransferase; CYP94C1: 12-OH-JA-Ile carboxylase; IAR3 and ILL6: The amidohydrolases; ST2A: 12-OH-JA sulfotransferase. Red font indicates known enzyme. Biologically active compounds are in black solid wireframe and inactive compounds are indicated with black dotted outlines. Partially active compounds are shown in red solid outlines, and unknown compounds in black breakpoint outlins.
2 茉莉酸信号

植物在理想的生活环境中,内源JA含量非常低,且缺乏生物活性;此时,下游转录因子被茉莉酸ZIM域(Jasmonate ZIM-domain, JAZ)蛋白抑制,导致JA应答基因启动子的激活被抑制,从而阻止JA应答基因的激活;同时参与JA合成、信号转导和代谢转化的相关基因也基本处于失活状态[28-29]。当植物受到胁迫时,由于植物体内JAs缺乏活性,无法直接响应胁迫,调控植物生长;此时,释放到细胞质中的JA会通过JAR1蛋白与ATP和Ile结合,合成最具生物活性的JA类物质——JA-Ile,并迅速在植物细胞中积累[28, 30-31];之后JA-Ile通过JAT1转运穿过质膜来到细胞核,被SCF-COI1复合体(由1个F-box蛋白COI1、SKP、CUL1和RBX1等蛋白组成)中的JAs受体COI1蛋白识别从而发挥作用[29, 32]。COI1-JAZ复合体通过共同感受JA-Ile,促进JAZ和COI1的相互作用,而这种相互作用导致26S蛋白酶体中JAZ的降解,从而激活TFs的转录和JA应答基因的表达(图 3)[7, 27, 33-34]

图 3 JA信号的转导模型[7, 27, 33-34] Fig. 3 The model of jasmonic acid signal transduction[7, 27, 33-34]. JAZ: Jasmonate ZIM domain; Ub: Ubiquitin; E2: Ubiquitin-conjugating enzymes; RBX1: Ring box 1; CUL1: Cullin 1; ASK1: Arabidopsis SKP1 honolog; COI1: Coronatine insensitive 1; MED25: Mediator 25.

前人的研究表明,由JAZ降解启动的JA信号级联,对于植物面对昆虫取食、病原菌侵染和机械损伤时具有至关重要的作用;当植物受到胁迫刺激时,受损伤部位和未受到损伤的部位中JA和JA-Ile的水平均增加,诱导植物产生响应胁迫的系统免疫(wound induced systemic response/resistance, WRS)[15, 35-36]。一般来说,JA在没有中间媒介时不容易通过细胞膜,但有研究提出其可以通过维管束和空气传播[37-38]。因此,对于胁迫诱导的信号如何从损伤部位转移到未损伤部位的问题,研究者们通过大量实践,提出JA信号是通过长距离运输转移至植物各个部位[39-40]。如谷氨酸受体样蛋白GLR3属于JA非依赖性信号,植物叶片受到损伤后,它将损伤诱导的谷氨酸积累转化为电信号和Ca2+振荡,并将胁迫信号传递给远端的叶片,使JA在未受伤的远端侧叶中积累[40-41]。此外,JA依赖性信号可能通过特定的JA分子运输[42]。如植物叶片受到损伤后,JA从损伤部位转移到远端非受损伤部位的过程,由2个茉莉酸转运蛋白AtJAT3和AtJAT4驱动,在转移过程中JA转化为JA-Ile,从而激活JA信号传导途径[43]。虽然JA在没有中间媒介时不能穿过细胞膜,但JA衍生物MeJA具有高挥发性,可通过空气将胁迫信号从受伤的植物传播到相邻的植物[44],或通过受伤叶片将胁迫信号传播到健康的叶片[45]

3 茉莉酸对植物抗逆性的作用 3.1 茉莉酸在植物生物和非生物胁迫应答中的作用 3.1.1 生物胁迫

前人的研究已经表明,JA在植物抵御食草动物取食、病原菌和病毒侵染等生物胁迫反应中发挥着重要作用[46]。然而,昆虫攻击和多种病原微生物为促进自身的繁殖和侵染,通过激活或抑制JA途径,进化出多种策略来操控JA途径[2]

(1) 昆虫胁迫。作为固着生物,植物在生长过程中常常受到昆虫攻击,尤其是食草动物的取食。经过数年的研究发现,虽然JA本身无毒,但当植物喷施JA时,植物次生代谢和系统抗性会被激活以抵御昆虫伤害[47-48]。植物体内防御蛋白的积累可以影响害虫消化,从而保护植物免受危害,而JAs可以诱导这些防御蛋白的积累[49]。如多酚氧化酶(polyphenol oxidase, PPO)作为重要的植物防御蛋白,可被外源JA或MeJA诱导[50];外源MeJA通过增强玉米体内有毒蛋白的产生,激活对玉米螟的防御机制[51];水稻CORONATINE INSENSITIVE1 (OsCOI1)蛋白作为一种不可或缺的信号成分,通过控制胰蛋白酶抑制剂(trypsin protease inhibitor, TRIPPI)、PPO和过氧化物酶(peroxidase, POD)的活性,控制着JA诱导的水稻对咀嚼昆虫攻击的防御的能力[52]。近年来,对JA在植物抗性中所起作用的研究,主要集中在JA作为植物内源激素,在植物抵御昆虫破坏防御反应中的作用[47, 53]。如健康植物中,磷酸化标记的JAV1 (a VQ domain protein)、JAZ8和WRKY51会形成一种新的复合物JAV1-JAZ8-WRKY51 (JJW),抑制JA合成基因的表达,使植物体内JA含量维持较低水平,保证植物的正常生长;而棉铃虫攻击分泌的HAPR1,与JAZ直接相互作用抑制JA途径JAZ的降解,快速诱导JAV1的Ca2+/钙调素依赖性磷酸化,瓦解JJW复合物,导致JA快速暴发响应胁迫(图 4)[54]S1JIG是MeJA诱导基因,敲除S1JIG导致番茄中JA相关防御基因的表达减弱,降低了植株对棉铃虫的抗性[55];提高马铃薯中内源JA-Ile的含量能够增强马铃薯对甜菜夜蛾(Beet armyworm, BAW)的抗性[56]。此外,Mao等[57]的研究表明,植物对JA介导的防御会随着植株的长大而减弱,但抗虫成分(如芥子糖苷)的积累,可抵消JA防御机制的减弱,而增强植物的抗虫性。

图 4 JA应答植物生物胁迫[19, 54, 66] Fig. 4 JA responds to plant biological stress[19, 54, 66]. HARP1: Caterpillar-derived effector; JAV1: Jasmonate- associated VQ domain protein 1; Bgt: Blumeria graminis f. sp. tritici; NINJA: Novel interactor of JAZ; TPL: Topless; ROS: Reactive oxygen species; PRs: Pathogenesis-related genes; RSV: Rice stripe viurs; CP: Coat protein.

(2) 病原菌胁迫。纵观人类栽培的历史,不难发现病原菌给许多经济作物的生长带来了多种毁灭性打击。JAs作为一种重要的植物内源信号分子,在植物应对病原菌侵染的防御反应中具有十分重要的作用。

施用外源JAs可诱导植物防御基因和JA信号途径相关基因的表达,从而提高植物对病原菌的抗性。如外源MeJA处理,使JA合成和信号通路相关的基因显著上调,增强了油菜对菌核菌的抗性和三七对镰刀菌的抗性[58-59];外源JAs处理,诱导小麦中PR4、PR5PEROX的显著上调,增强小麦对禾谷镰刀菌的抗性[60];外源MeJA处理柑橘果实,显著增强PEROX和PPO的活性,从而有效抑制了绿霉菌和蓝霉菌的发生[61];OPDA是JA生物合成途径中重要的中间产物,在番茄抵御坏死性病原菌过程中起着重要的防御作用,它也可以通过增加胼胝质的沉积,在番茄防御灰霉菌中发挥作用[62]

JA合成和信号途径的相关基因在植物的防御反应中也起着重要的作用。如,JA合成酰基辅酶A氧化物(ACX2、ACX3)突变体中JA水平的下降,增加了突变体对灰霉病菌的敏感性[63]CATALASE2 (CAT2)与ACX的相互作用,促进了ACX的活性,激活了JA的生物合成,从而提高植物对灰霉病的抗性[63-64];进一步的研究发现,在拟南芥中过表达截短的CAT2-N末端(CAT2-N),使植物对灰霉病具有更强的抗性[65]。正常条件下,JAZ1、NINJA和TPL形成复合物抑制MYC4的转录活性;而当JA响应白粉病菌(Blumeria graminis f. sp. tritici, Bgt)侵染而积累时,TaJAZ2降解以释放TaMYC4和其他转录因子,导致活性氧(reactive oxygen species, ROS)积累和发病机制相关基因(pathogenesis-related genes, RPs)的表达被抑制,从而增强植物对Bgt的抗性(图 4)[66]。黄单胞菌水稻致病变种[Xanthomonas oryzae pv. oryzae (Ishiyama) Swings, Xoo]对水稻具有极强的破坏力,其通过抑制水稻中JA合成相关基因OsAOS1表达,降低内源JA的含量,从而降低水稻对白叶枯病的抗性[67];OsVQ13是JA应答性缬氨酸-谷氨酰胺(valine-glutamine, VQ)基序蛋白,通过激活水稻中的OsMPK6-OsWRKY45信号通路积极调节JA信号,从而调控水稻对白叶枯病的抗性[68];OsEDS1在调节JA介导的水稻抗白叶枯病中也起着积极的作用[69]。壁相关受体样激酶WAKL08过表达植株中JA水平、JA生物合成和JA应答基因表达水平均显著升高,提高了柑橘对溃疡病的抗性[70]。然而,受溃疡病菌侵染的柑橘叶片,在外源MeJA处理后,叶片中JA合成和信号通路相关基因AOS1-2、COI1的表达均显著增强,但溃疡病的发病症状反而有所加重[71]。此外,Brenya等[72]证明,提前将拟南芥幼苗暴露在机械胁迫下,可增强JA介导的对坏死性病原菌的抗性。以上结果表明,JA及JA途径相关基因在植物对病原菌的防御反应中具有不可忽视的重要作用。

(3) 病毒胁迫。近几十年来,针对植物抗病毒防御机制,研究的最清楚的是RNA沉默,但JA在植物抗病毒防御中的作用始终存在争议[73]

前人在模式植物拟南芥和水稻中的研究表明,JA对植物抗病毒防御具有积极的调节作用。如,JA信号传导激活RNA沉默,并协同促进水稻抗病毒防御[19];水稻受到稻瘟病侵染后,会积累较高水平的JA,增强水稻对稻瘟病的抗性[74];水稻条纹病毒(rice stripe virus, RSV)的侵染可增加宿主JA水平,JAZ6的泛素化和蛋白酶体依赖性的降解,释放出JAMYBAGO18启动子结合,增强水稻的抗病毒机制(图 4)[19]。然而,也有一些研究表明,病毒的感染抑制了JA介导的防御机制,增强了植物对病毒的敏感性。如水稻齿叶矮缩病毒(rice ragged stunt virus, RRSV)在水稻中积累miR319,抑制JA介导的防御,从而促进病毒感染和症状的发展[75];病毒转录抑制因子劫持并抑制JA通路,从而有利于病毒的致病性和媒介传播[76];最近的一篇报道同样表明,OsNF-YAs家族基因通过破坏OsMYCs-OsMED25复合物之间的相互作用,抑制OsMYC2/3的转录活性,从而损害JA介导的抗病毒防御[77]。这些研究表明,JA信号在植物的抗病毒防御中起着重要作用。

3.1.2 非生物胁迫

JA及其衍生物是植物响应非生物胁迫的重要信号分子,根据目前的研究可认为其在响应低温、盐、干旱、重金属和其他非生物胁迫的过程中发挥着十分重要的作用,主要通过生理和分子机制两方面实现[78]。生理机制主要通过控制气孔的关闭、有机物积累和抗氧化途径等方式调控;分子机制主要通过JA相关基因的表达、与其他植物激素串扰和JA转录因子的相互作用进行调控。

(1) 低温胁迫。低温胁迫会对植物的生长发育产生不利影响,同时低温也限制了植物的地理分布,植物为了适应或降低低温的伤害,已进化出复杂的防御机制。前人的研究表明,低温下,ICE-CBF转录调控的信号通路,在维持植物发育和存活中起着核心作用[79],适宜的生长环境条件下,ICE-CBF参与转录调控的信号途径中,相关的转录活性受到JAZ1/2和ICE1/2复合物的抑制;而在低温胁迫下,ICE-CBF信号途径被激活,并诱导冷相关基因的表达,以增强植物的耐寒能力[26, 80]。如JAs可能作为ICE-CBF/DREB1途径的上游信号,正调节苹果的耐寒性[81]

低温胁迫可诱导水稻中JA合成和信号传导途径相关基因(AOC、AOS1、AOS2LOX2,以及COIabHLH148)的表达,正调控植物细胞对冷胁迫的响应[80]。此外,JA调节的耐寒性可诱导许多次生代谢产物的产生。如青蒿中低温胁迫诱导的内源JA含量增加,促进了青蒿素的生物合成[82]。有研究表明,MeJA也可以促进植物的耐寒性。如外源喷施MeJA可以促进辣椒中JA和抗氧化代谢产物(蔗糖、半乳糖醇)含量的增加,有效缓解低温造成的损伤[83]

(2) 干旱胁迫。干旱是导致很多作物减产或欠收最严重和最普遍的非生物胁迫。植物气孔是植物与环境之间进行H2O和CO2交换的渠道[84],因此控制植物气孔的开关、减少自身蒸腾作用,是一直以来提高植物抗旱性的主要研究思路[85]

植物受到干旱胁迫时,内源JA含量增加,但当植物适应这种胁迫,内源JA含量会重新回到正常水平。前人的研究表明,JA可以通过调节拟南芥的气孔开闭,减少水分损失,许多JA合成途径中的代谢产物和相关基因响应这种胁迫[86]。拟南芥中OPDA的积累与气孔开度减小和抗旱能力的增强相关[87]。干旱胁迫下,通过阻止OPDA向JA转化积累大量的OPDA,从而促进气孔关闭减少水分流失[86]JAZ9的过表达通过降低叶片宽度和气孔密度,降低了叶片蒸腾速率,提高了水稻对干旱的耐受性[88]。然而,JA信号途径相关基因的表达在植物抗旱过程中也起着重要作用。如水稻JAZ1在水稻抗旱过程中起负调控作用[89];干旱胁迫激活水稻bHLH148的转录,促进其与JAZ1的相互作用,从而激活DREB1的表达以抵抗胁迫[90];干旱胁迫诱导了枳中PtAOS的表达和内源JA的积累,从而提高了枳的耐旱能力[91]。施用外源茉莉酸类物质可提高植物的耐旱性。如喷施外源JA可减轻干旱胁迫对杏树造成的损害[92];喷施外源MeJA可通过增加次生代谢产物(如酚类和黄酮类化合物)和糖,从而提高大豆对干旱胁迫的耐受能力[93]。外源喷施JAs后,植物中总可溶性蛋白质、脯氨酸(proline, Pro)、丙二醛(malondialdehyde, MDA)的含量和抗氧化酶的活性均显著增加,从而提高对干旱的耐受能力[93]

(3) 盐胁迫。盐胁迫严重影响植物的生长发育,且已在全球范围内对植物正常的生长造成严重的影响,特别是在干旱和半干旱地区[94]。为了适应高盐的生长环境,植物进化出了复杂的机制来抵御盐胁迫。内源JA含量的增加和喷施外源JA皆可增强植物的耐盐性[95]。如盐胁迫激活了拟南芥根中伸长区JA信号途径,抑制了细胞的伸长[96];盐胁迫促进了水稻体内活性氧(ROS)的积累引起细胞损伤,而OPDA突变体植株中ROS清除活性的增强与JA合成途径的激活有关[97];内源JA主要通过维持细胞内ROS的稳态,增强番茄的耐盐性[98]。JA也可以通过提高抗氧化化合物的浓度和抗氧化酶的活性来增强植物的耐盐能力。如喷施外源JA 3 d后,小麦幼苗中的MDA和H2O2浓度显著降低,提高小麦幼苗的抗盐能力[99];在大豆叶面喷施JA增强了大豆幼苗的耐盐能力,这一过程可能是通过调节生长素信号和气孔关闭实现的[100],但盐度和MeJA的叠加抑制了植物的生长和衰老[101]。最近的研究表明,施用褪黑素(melatonin, MT)可显著降低盐胁迫对小麦种子萌发的抑制,同时MT处理的小麦幼苗中JA和赤霉素3 (gibberellin 3, GA3)的含量增加[102]

(4) 重金属胁迫。铅(Pb)、镉(Cd)、汞(Hg)、铜(Cu)、锰(Mn)和镍(Ni)等重金属,即使在含量非常低的情况下,也可能对植物产生毒害作用[103]。镉胁迫下,拟南芥根中内源JA迅速增加,且外源施用MeJA不仅降低了根和地上部组织中Cd的浓度,还抑制了AtIRT1AtHMA2AtHMA4基因的表达,从而降低根中Cd的浓度,缓解Cd胁迫的危害[104],Zhao等[105]提出缺乏内源JA会减弱番茄对Cd的耐受性。此外,外源JA也可以通过调节抗氧化酶的活性、增加叶绿素含量和诱导次生代谢产物减轻重金属对植物的危害[26]。如玉米经外源JA处理增强了抗氧化酶的活性,减轻了Ni对植物的不利影响[106];外源JA通过增强渗透和抗氧化活性,抑制H2O2和MDA的积累,最大限度地降低蚕豆中Cd的积累率[107];施用外源JA增加了Pb胁迫下番茄幼苗中次生代谢产物的产生,包括总酚、多酚、黄酮和花青素等化合物,从而降低了Pb的毒害作用[108];不同浓度的Cu胁迫下,JA处理增加了苜蓿叶片中叶绿素、MDA和H2O2含量、增强了抗氧化酶活性,从而有效缓解了Cu胁迫的不利影响[109]。虽然已有大量的研究表明,JA广泛参与植物对重金属的胁迫反应,但其作用的潜在分子机制仍不清楚。

3.2 茉莉酸和其他激素的相互作用在植物抗性中的研究进展

不同的植物激素信号在植物生长、发育以及遭受生物和非生物胁迫期间,存在协同或拮抗作用[110]。研究表明,不同激素信号传导途径之间存在着重叠,从而使这些信号途径介导的植物抗性受到精细调控[111]。而JA信号作为一种重要的胁迫响应信号,与其他植物激素相互作用,从而与其他植物激素信号形成复杂的信号网络,在植物抗性方面发挥重要作用。研究比较多的是JA与生长素(auxin, IAA)、水杨酸(salicylic acid, SA)和脱落酸(abscisic acid, ABA)之间的相互作用及其在植物抗性中发挥的功能。

3.2.1 IAA与JA的相互作用

吲哚乙酸(indoleacetic acid, IAA)作为第一个被发现的植物激素家族成员,与JA的相互作用参与调控植物生长的诸多方面,包括种子萌发、花和幼苗发育,以及根生长等[112]。近年来,JA-IAA的相互作用在植物抗性中的研究成为热点。

IAA在植物抵御胁迫过程中起着重要作用。拟南芥IAA缺陷型突变体比野生型植株更容易受到坏死性病原体的影响[113];拟南芥WRKY57甚至具有负调控叶片衰老和病原体防御的双功能属性[114]。叶片衰老中WRKY57是JA-IAA途径相互拮抗的汇聚点,JA通过触发WRKY57的降解以激活衰老相关基因SEN4SAG12的表达,而通常IAA增加WRKY57表达,直接抑制SEN4SAG12的表达[115]WRKY57通过激活2个JAZ阻遏基因JAZ1JAZ5的表达,负调控植物对坏死性病原体和灰霉病的防御(图 5)[116]。JA信号途径在水稻防御水稻黑条纹病毒(rice black-streaked dwarf virus, RBSDV)中发挥了积极的作用[117],抑制IAA信号传导促进了水稻对RBSDV侵染的敏感性;进一步研究发现,IAA信号阻碍物(OsIAA20OsIAA31)过表达植株中IAA信号的减弱,使突变体植株对RBSDV的敏感性增强;进一步分析发现突变体植株中JA信号通路也受到抑制,表明IAA通路的破坏导致JA通路受到抑制。以上研究说明,JA通路的激活可能是IAA介导的水稻对RBSDV防御的一部分[118]。此外,在Cd存在下,JA-IAA的相互作用参与水稻根系的发育,而施用外源JAs仅能轻微减轻污染物的毒性[119]

3.2.2 SA与JA的相互作用

植物激素JA和SA是植物免疫的主要参与者,许多研究证明了JA-SA介导的信号途径相互作用,参与协调植物对病原体的防御反应,同时病原体经常利用JA-SA相互作用来提高其毒力[120]。经过多年的研究已确认JA-SA的相互作用可能发生在所有植物中[121]。如拟南芥中JA-SA相互作用的主要模式是相互拮抗,且可能在许多植物中保守[122]。褐飞虱(nilaparvata lugens, BPH)侵染水稻后,BRs通过调节SA-JA的拮抗作用,促进水稻对BPH的敏感性[123];对蚜虫敏感的辣椒品种受到蚜虫危害后,激活SA通路并显著抑制JA通路,从而降低辣椒对蚜虫的抗性[124]。此外,前人的研究已经确定了几种在JA-SA拮抗中起作用的成员,包括MYC2、PDF1.2 (植物防御激素1.2)、TF家族、丝裂原激活蛋白激酶(mitogen activates protein kinases, MAPK)、NPR1、WRKY62、WRKY70、GRX480、ORA59 (AP2/ERF59)和JAZs[125-126]。其中,MYC2是JA-SA途径拮抗的主要调节因子(图 5)[121]。通过调节JA途径MYC2的释放,直接激活3个同源NAC转录因子(ANAC019、ANAC055和ANAC072)的表达,进而抑制SA合成基因ICS1和代谢基因BSMT1的激活,降低SA的积累和对病原体的抗性[127];HSP17.4 (热激蛋白基因)参与SA信号通路下游应答基因NPR1、TGA (TF家族)和PR1表达的激活,并协同抑制JA下游核心转录因子MYC2的表达,从而提高草莓对炭疽病菌的抗性(图 5)[124]。MPK4作为SA信号通路GRX480的正调节器,负调控JA信号通路的MYC2,且GRX基因可以阻断JA应答基因ORA59的表达,从而诱导植物对胁迫产生抗性(图 5)[7]

图 5 JA与IAA、SA和ABA在植物中的相互作用模型 Fig. 5 Interaction model of JA with IAA, SA and ABA in plant. SEN4: Senescence 4; SAG12: Senescence-associated gene 12; NPR1: Pathogenesis-related protein 1; AFR6: Auxin response factor 6; PYL/RCAR: Pybabactin resistance/Regulatory component of abscisic acid receptor; HSP17.4: sHSP family members; MPK4: Mitogen-activated protein kinase 4; GRX480: Redox regulators glutathione; TGAs: TGACG-binding factors.

然而,JA-SA的相互作用并不总是拮抗的,也存在协同作用。例如,最近一项全基因转录组的研究揭示了JA-SA在拟南芥中除了拮抗作用外,还具有广泛的协同作用[128]。同样在其他植物中也观察到了2种植物激素之间的合作。如通过转录组分析发现,植物激素JA和SA途径在杨树抵御真菌感染的过程中具有协同作用[129];在SA超积累转基因杨树植株中,检测到JA和类黄酮含量均升高,说明JA-SA协同使类黄酮植物抗毒素积累,提高了杨树对锈病的抗性[130]。因此,JA-SA的相互作用在植物抗性反应中的作用并不是简单的相互拮抗而是复杂的。

3.2.3 ABA与JA的相互作用

通过对JA诱导的ABA受体PYL4的鉴定,证明ABA和JA信号途径存在一定的联系[131]。ABA受体(PYL4和PYL5)突变体表现出的JA超敏芽生长,以及PYL6和MYC2之间直接相互作用的报道,表明JA信号的传导依赖于ABA[131-132]。据近年的报道,ABA-JA的相互作用在植物抵御生物和非生物胁迫的过程中扮演重要角色[71]。如ABA可抑制JA信号途径中防御基因PDF1.2的转录,促进拟南芥对尖孢镰刀菌的易感性[133];Long等[71]的研究发现,ABA可能是通过调节易感柑橘中JA的合成,促进晚锦橙对溃疡病菌的易感性。此外,通过敲除拟南芥MYC2,发现突变体中JA应答基因和ABA响应基因的表达均受到抑制,降低了突变体对干旱的耐受能力,说明JA-ABA在非生物胁迫反应和耐受中存在相互作用[134-135];沉默VvPYL4可抑制MYC2、JAZJAR1的转录活性,而这与葡萄对霜霉病的防御有关[136]。因此,PYL和JAZ-MYC2在ABA-JA相互作用中起着关键作用(图 5)。

4 展望

在过去几十年,JA及其衍生物在植物抗性和发育过程中发挥着举足轻重的作用,始终是调节植物防御和生长的研究焦点。当植物受到不同环境影响时,JAZ、AOS1、AOS、LOX2、COI1和不同转录因子等基因,参与核心JA信号通路,并作为激活或阻遏剂响应环境刺激,从而调控植物防御[137]。基于此,本实验室也对JA及其合成和信号通路相关基因响应病原菌侵染过程中扮演的角色进行了大量的研究。发现在柑橘溃疡病菌(Xanthomonas citri subsp. citri, Xcc)侵染后,感病柑橘中JA水平、JA合成相关基因(LOX2、AOS1-1、AOS1-2OPR3)的表达和JA信号通路相关转录因子的表达均显著上调;进一步研究发现,外源MeJA处理,明显加重了柑橘溃疡病症状,推测JA的积累可能促进柑橘的Xcc易感性[71];后续对柑橘中的AOS进行了生物信息学和溃疡病菌诱导表达分析,发现柑橘中共有3个AOS,其中CsAOS1-2对溃疡病菌响应最强烈。此外,也发现大量柑橘溃疡病抗性相关基因也参与调节JA信号或受JA诱导表达。如,CsWALK08通过调节活性氧和JA信号,从而防御Xcc侵染赋予植物抗性[70];生长素响应基因CsGH3.1CsGH3.6过表达植株,均能通过抑制IAA和JA含量,增强溃疡病抗性[138-139]。而Hou等[67]研究表明,JA含量的降低,显著增强了水稻对白叶枯病病原菌(Xanthomonas oryzae pv. oryzae, Xoo)的敏感性。本实验室也对JA在黄龙病(HLB)抗性调节中发挥的功能做了大量研究。在HLB病原亚洲种CLas候选效应子SDE70SDE695过表达转基因株系中,检测到JA合成途径基因OPR3的表达发生上调,而转基因植株中JA含量却发生下调,暗示JA的生物合成被抑制[140];Peng等[141]过表达NPR-like基因,显著降低了JA含量,提高了转基因植株的HLB抗性。表明JA对不同病原菌的响应存在差异。此外,有研究显示,在蚜虫定殖的早期高粱中JA的积累可降低蚜虫的伤害,而在定殖的后期却发挥了与早期相反的作用,增强了蚜虫的增殖能力[142],表明JA在胁迫发生的不同阶段起着不同的作用。因此,JA在植物抗逆性中扮演非常重要的角色,同时其发挥的功能也复杂多变,仍然存在很多尚未明晰的疑问。

植物激素之间的相互作用,在调节生长发育和响应胁迫的过程中起着至关重要的作用。多年来,JA与其他激素的相互作用已有较多研究。遗憾的是,类似的信息在植物中仍然有限,人们并不能准确把握产生这种相互作用的机制。此外,目前的研究主要集中在单一胁迫对植物抗性的影响上,而植物在自然界中生长固定不能移动,往往需同时抵御多种胁迫。而JA通路应对不同的胁迫,会发挥不同的作用。COI1突变体对大豆细菌性叶斑病病原菌表现出高水平的抗性,但却对昆虫咀嚼和坏死性病原体的抗性水平降低[143]。因此,研究清楚JAs物质在植物响应各种环境胁迫时扮演的角色显得尤为重要。最近的一项研究表明,JA-ABA-ET (乙烯)的相互作用在苹果叶片的衰老过程中起着整合节点的作用[144],为未来研究JA在植物抗逆性中发挥的作用提供了新的思路。在研究JA对植物抗逆性的影响时,植物激素间串联的节点非常重要,同时不能将眼光局限于两种植物激素间的相互作用,也要考虑多种植物激素的共同作用对于植物抗逆性的影响。

应用高速发展的生物技术改良植物抗性,此类研究的未来值得期待。目前使用较多的途径有两个:(1) 筛选植物抗性关键基因,通过基因编辑技术,获得抗性改良的突变体。本实验室Peng等[145]利用CRISPR/Cas9基因编辑技术,敲除溃疡病感病基因CsLOB1,转基因植株对溃疡病的抗性提高;(2) 使用新型化学物质干扰易感基因的表达,提高植物的抗逆性。如,在小麦叶片上施用JA生物合成抑制剂二乙基二硫代氨基甲酸钠(sodium diethyldithiocarbamate, DIECA),可提高植物免疫力,从而有效诱导小麦对Bgt的抗性[146]。因此,了解和熟悉JA在胁迫下的信号转导机制,对提高植物存活率和经济作物的产量和品质具有重要意义。

参考文献
[1]
VANWALLENDAEL A, SOLTANI A, EMERY NC, PEIXOTO MM, OLSEN J, LOWRY DB. A molecular view of plant local adaptation: incorporating stress-response networks[J]. Annual Review of Plant Biology, 2019, 70: 559-583. DOI:10.1146/annurev-arplant-050718-100114
[2]
吴德伟, 汪姣姣, 谢道昕. 茉莉素与植物生物胁迫反应[J]. 生物技术通报, 2018, 34(7): 14-23.
WU DW, WANG JJ, XIE DX. Jasmonate action and biotic stress response in plants[J]. Biotechnology Bulletin, 2018, 34(7): 14-23 (in Chinese).
[3]
KU YS, SINTAHA M, CHEUNG MY, LAM HM. Plant hormone signaling crosstalks between biotic and abiotic stress responses[J]. International Journal of Molecular Sciences, 2018, 19(10): 3206. DOI:10.3390/ijms19103206
[4]
KAMIYA Y. Plant hormones: versatile regulators of plant growth and development[J]. Annual Review of Plant Biology, 2009, 60: 301-307.
[5]
CREELMAN RA, MULLET JE. Biosynthesis and action of jasmonates in plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1997, 48: 355-381. DOI:10.1146/annurev.arplant.48.1.355
[6]
HUANG H, LIU B, LIU LY, SONG SS. Jasmonate action in plant growth and development[J]. Journal of Experimental Botany, 2017, 68(6): 1349-1359. DOI:10.1093/jxb/erw495
[7]
WASTERNACK C, HAUSE B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany[J]. Annals of Botany, 2013, 111(6): 1021-1058. DOI:10.1093/aob/mct067
[8]
ZHANG F, YAO J, KE JY, ZHANG L, LAM VQ, XIN XF, ZHOUXE, CHEN J, BRUNZELLE J, GRIFFIN PR, ZHOU MG, XU HE, MELCHER K, HE SY. Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling[J]. Nature, 2015, 525(7568): 269-273. DOI:10.1038/nature14661
[9]
XIAO S, DAI LY, LIU FQ, WANG ZL, PENG W, XIE DX. COS1: an Arabidopsis coronatine insensitive1 suppressor essential for regulation of jasmonate-mediated plant defense and senescence[J]. The Plant Cell, 2004, 16(5): 1132-1142. DOI:10.1105/tpc.020370
[10]
ZIOSI V, BONGHI C, BREGOLI AM, TRAINOTTI L, BIONDI S, SUTTHIWAL S, KONDO S, COSTA G, TORRIGIANI P. Jasmonate-induced transcriptional changes suggest a negative interference with the ripening syndrome in peach fruit[J]. Journal of Experimental Botany, 2008, 59(3): 563-573. DOI:10.1093/jxb/erm331
[11]
CAMPOS ML, KANG JH, HOWE GA. Jasmonate-triggered plant immunity[J]. Journal of Chemical Ecology, 2014, 40(7): 657-675. DOI:10.1007/s10886-014-0468-3
[12]
HEIL M, LAND WG. Danger signals-damaged-self recognition across the tree of life[J]. Frontiers in Plant Science, 2014, 5: 578.
[13]
MITHÖFER A, BOLAND W. Recognition of herbivory-associated molecular patterns[J]. Plant Physiology, 2008, 146(3): 825-831. DOI:10.1104/pp.107.113118
[14]
KIM Y, TSUDA K, IGARASHI D, HILLMER RA, SAKAKIBARA H, MYERS CL, KATAGIRI F. Mechanisms underlying robustness and tunability in a plant immune signaling network[J]. Cell Host & Microbe, 2014, 15(1): 84-94.
[15]
CHAUVIN A, CALDELARI D, WOLFENDERJL, FARMER EE. Four 13-lipoxygenases contribute to rapid jasmonate synthesis in wounded Arabidopsis thaliana leaves: a role for lipoxygenase 6 in responses to long-distance wound signals[J]. New Phytologist, 2013, 197(2): 566-575. DOI:10.1111/nph.12029
[16]
GLAUSER G, DUBUGNON L, MOUSAVI SAR, RUDAZ S, WOLFENDER JL, FARMER EE. Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidopsis[J]. Journal of Biological Chemistry, 2009, 284(50): 34506-34513. DOI:10.1074/jbc.M109.061432
[17]
HOWE GA, MAJOR IT, KOO AJ. Modularity in jasmonate signaling for multistress resilience[J]. Annual Review of Plant Biology, 2018, 69: 387-415. DOI:10.1146/annurev-arplant-042817-040047
[18]
GFELLER A, DUBUGNON L, LIECHTI R, FARMER EE. Jasmonate biochemical pathway[J]. Science Signaling, 2010, 3(109): e3109cm3.
[19]
YANG ZR, HUANG Y, YANG JL, YAO SZ, ZHAO K, WANG DH, QIN QQ, BIAN Z, LI Y, LAN Y, ZHOU T, WANG H, LIU C, WANG WM, QI YJ, XU ZH, LI Y. Jasmonate signaling enhances RNA silencing and antiviral defense in rice[J]. Cell Host & Microbe, 2020, 28(1): 89-103.e8.
[20]
LIECHTI R, FARMER EE. The jasmonate pathway[J]. Science, 2002, 296(5573): 1649-1650. DOI:10.1126/science.1071547
[21]
LI QQ, ZHENG J, LI SZ, HUANG GR, SKILLING SJ, WANG LJ, LI L, LI MY, YUAN LX, LIU P. Transporter-mediated nuclear entry of jasmonoyl-isoleucine is essential for jasmonate signaling[J]. Molecular Plant, 2017, 10(5): 695-708. DOI:10.1016/j.molp.2017.01.010
[22]
CHINI A, MONTE I, ZAMARREÑO AM, HAMBERG M, LASSUEUR S, REYMOND P, WEISS S, STINTZI A, SCHALLER A, PORZEL A, GARCÍA-MINA JM, SOLANO R. An OPR3-independent pathway uses 4, 5-didehydrojasmonate for jasmonate synthesis[J]. Nature Chemical Biology, 2018, 14(2): 171-178. DOI:10.1038/nchembio.2540
[23]
WASTERNACK C, STRNAD M. Jasmonates: news on occurrence, biosynthesis, metabolism and action of an ancient group of signaling compounds[J]. International Journal of Molecular Sciences, 2018, 19(9): 2539. DOI:10.3390/ijms19092539
[24]
BUSSELL JD, REICHELT M, WISZNIEWSKI AAG, GERSHENZON J, SMITH SM. Peroxisomal atp-binding cassette transporter comatose and the multifunctional protein abnormal inflorescence meristem are required for the production of benzoylated metabolites in Arabidopsis seeds[J]. Plant Physiology, 2014, 164(1): 48-54. DOI:10.1104/pp.113.229807
[25]
GUAN L, DENKERT N, EISA A, LEHMANN M, SJUTS I, WEIBERG A, SOLL J, MEINECKE M, SCHWENKERT S. JASSY, a chloroplast outer membrane protein required for jasmonate biosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(21): 10568-10575.
[26]
WANG Y, MOSTAFA S, ZENG W, JIN B. Function and mechanism of jasmonic acid in plant responses to abiotic and biotic stresses[J]. International Journal of Molecular Sciences, 2021, 22(16): 8568. DOI:10.3390/ijms22168568
[27]
WASTERNACK C, SONG SS. Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription[J]. Journal of Experimental Botany, 2017, 68(6): 1303-1321.
[28]
SANDRA F, JOSE MC, ROBERTO S. The jasmonate pathway: the ligand, the receptor and the core signalling module[J]. Current Opinion in Plant Biology, 2009, 12(5): 539-547. DOI:10.1016/j.pbi.2009.07.013
[29]
ALI MS, BAEK KH. Jasmonic acid signaling pathway in response to abiotic stresses in plants[J]. International Journal of Molecular Sciences, 2020, 21(2): 621. DOI:10.3390/ijms21020621
[30]
FONSECA S, CHINI A, HAMBERG M, ADIE B, PORZEL A, KRAMELL R, MIERSCH O, WASTERNACK C, SOLANO R. (+)-7-iso-jasmonoyl- l-isoleucine is the endogenous bioactive jasmonate[J]. Nature Chemical Biology, 2009, 5(5): 344-350. DOI:10.1038/nchembio.161
[31]
KOO AJK, HOWE GA. The wound hormone jasmonate[J]. Phytochemistry, 2009, 70(13/14): 1571-1580.
[32]
XU LH, LIU FQ, LECHNER E, GENSCHIK P, CROSBY WL, MA H, PENG W, HUANG DF, XIE DX. The SCFCOI1 ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis[J]. The Plant Cell, 2002, 14(8): 1919-1935. DOI:10.1105/tpc.003368
[33]
CHINI A, FONSECA S, FERNÁNDEZ G, ADIE B, CHICO JM, LORENZO O, GARCÍA-CASADO G, LÓPEZ-VIDRIERO I, LOZANO FM, PONCE MR, MICOL JL, SOLANO R. The JAZ family of repressors is the missing link in jasmonate signalling[J]. Nature, 2007, 448(7154): 666-671. DOI:10.1038/nature06006
[34]
SHEARD LB, TAN X, MAOHB, WITHERS J, BEN-NISSAN G, HINDS TR, KOBAYASHI Y, HSU FF, SHARON M, BROWSE J, HE SY, RIZO J, HOWE GA, ZHENG N. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor[J]. Nature, 2010, 468(7322): 400-405. DOI:10.1038/nature09430
[35]
CHOI WG, HILLEARY R, SWANSON SJ, KIM SH, GILROY S. Rapid, long-distance electrical and calcium signaling in plants[J]. Annual Review of Plant Biology, 2016, 67(1): 287-307. DOI:10.1146/annurev-arplant-043015-112130
[36]
RICHARD H, SIMON G. Systemic signaling in response to wounding and pathogens[J]. Current Opinion in Plant Biology, 2018, 43: 57-62. DOI:10.1016/j.pbi.2017.12.009
[37]
RUAN JJ, ZHOU YX, ZHOU ML, YAN J, KHURSHID M, WENG WF, CHENG JP, ZHANG KX. Jasmonic acid signaling pathway in plants[J]. International Journal of Molecular Sciences, 2019, 20(10): 2479. DOI:10.3390/ijms20102479
[38]
THORPE MR, FERRIERI AP, HERTH MM, FERRIERI RA. 11C-imaging: methyl jasmonate moves in both phloem and xylem, promotes transport of jasmonate, and of photoassimilate even after proton transport is decoupled[J]. Planta, 2007, 226(2): 541-551. DOI:10.1007/s00425-007-0503-5
[39]
LI MY, WANG FF, LI SZ, YU GH, WANG LJ, LI QQ, ZHU XY, LI Z, YUAN LX, LIU P. Importers drive leaf-to-leaf jasmonic acid transmission in wound-induced systemic immunity[J]. Molecular Plant, 2020, 13(10): 1485-1498. DOI:10.1016/j.molp.2020.08.017
[40]
SUN TJ, ZHANG YL. Short and long-distance signaling in plant defense[J]. The Plant Journal, 2021, 105(2): 505-517. DOI:10.1111/tpj.15068
[41]
CHAUVIN A, LENGLET A, WOLFENDER JL, FARMER E. Paired hierarchical organization of 13-lipoxygenases in Arabidopsis[J]. Plants, 2016, 5(2): 16. DOI:10.3390/plants5020016
[42]
MOUSAVI SAR, CHAUVIN A, PASCAUD F, KELLENBERGER S, FARMER EE. GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling[J]. Nature, 2013, 500(7463): 422-426. DOI:10.1038/nature12478
[43]
JIA MR. Jasmonic acid transport in wound-induced systemic immunity[J]. Molecular Plant, 2020, 13(12): 1673-1675. DOI:10.1016/j.molp.2020.10.005
[44]
KOST C, HEIL M. The defensive role of volatile emission and extrafloral nectar secretion for Lima bean in nature[J]. Journal of Chemical Ecology, 2008, 34(1): 2-13. DOI:10.1007/s10886-007-9404-0
[45]
SCHULZE A, ZIMMER M, MIELKE S, STELLMACH H, MELNYK CW, HAUSE B, GASPERINI D. Wound-induced shoot-to-root relocation of JA-ile precursors coordinates Arabidopsis growth[J]. Molecular Plant, 2019, 12(10): 1383-1394. DOI:10.1016/j.molp.2019.05.013
[46]
CAARLS L, PIETERSE CMJ, van WEES SCM. How salicylic acid takes transcriptional control over jasmonic acid signaling[J]. Frontiers in Plant Science, 2015, 6: 170.
[47]
AL-ZAHRANI W, BAFEEL SO, EL-ZOHRI M. Jasmonates mediate plant defense responses to Spodoptera exigua herbivory in tomato and maize foliage[J]. Plant Signaling & Behavior, 2020, 15(5): 1746898.
[48]
ZHANG PJ, ZHAO C, YE ZH, YU XP. Trade-off between defense priming by herbivore-induced plant volatiles and constitutive defense in tomato[J]. Pest Management Science, 2020, 76(5): 1893-1901. DOI:10.1002/ps.5720
[49]
CHEN H, GONZALES-VIGIL E, WILKERSON CG, HOWE GA. Stability of plant defense proteins in the gut of insect herbivores[J]. Plant Physiology, 2007, 143(4): 1954-1967. DOI:10.1104/pp.107.095588
[50]
TAN CW, CHIANG SY, RAVUIWASA KT, YADAV J, HWANG SY. Jasmonate-induced defenses in tomato against Helicoverpa armigera depend in part on nutrient availability, but artificial induction via methyl jasmonate does not[J]. Arthropod-Plant Interactions, 2012, 6(4): 531-541. DOI:10.1007/s11829-012-9206-3
[51]
ZHANG YT, ZHANG YL, CHEN SX, YIN GH, YANG ZZ, LEE S, LIU CG, ZHAO DD, MA YK, SONG FQ, BENNETT JW, YANG FS. Proteomics of methyl jasmonate induced defense response in maize leaves against Asian corn borer[J]. BMC Genomics, 2015, 16(1): 1-16. DOI:10.1186/1471-2164-16-1
[52]
YE M, LUO SM, XIE JF, LI YF, XU T, LIU Y, SONG YY, ZHU-SALZMAN K, ZENG RS. Silencing COI1 in rice increases susceptibility to chewing insects and impairs inducible defense[J]. PLoS One, 2012, 7(4): e36214. DOI:10.1371/journal.pone.0036214
[53]
XU J, WANG XJ, ZU HY, ZENG X, BALDWIN IT, LOU YG, LI R. Molecular dissection of rice phytohormone signaling involved in resistance to a piercing-sucking herbivore[J]. New Phytologist, 2021, 230(4): 1639-1652. DOI:10.1111/nph.17251
[54]
YAN C, FAN M, YANG M, ZHAO JP, ZHANG WH, SU Y, XIAO LT, DENG HT, XIE DX. Injury activates Ca2+/calmodulin-dependent phosphorylation of JAV1-JAZ8-WRKY51 complex for jasmonate biosynthesis[J]. Molecular Cell, 2018, 70(1): 136-149.e7. DOI:10.1016/j.molcel.2018.03.013
[55]
CAO YY, LIU L, MA KS, WANG WJ, LV HM, GAO M, WANG XM, ZHANG XC, REN SX, ZHANG N, GUO YD. The jasmonate-induced bHLH gene SlJIG functions in terpene biosynthesis and resistance to insects and fungus[J]. Journal of Integrative Plant Biology, 2022, 64(5): 1102-1115. DOI:10.1111/jipb.13248
[56]
LI Y, TANG JX, QI YC, YANG F, SU XH, FU J, HAN XN, HE CH, XU YX, ZHAN K, XIA HB, WU JS, WANG L. Elevating herbivore-induced JA-Ile enhances potato resistance to the polyphagous beet armyworm but not to the oligophagous potato tuber moth[J]. Pest Management Science, 2023, 79(1): 357-367. DOI:10.1002/ps.7205
[57]
MAO YB, LIU YQ, CHEN DY, CHEN FY, FANG X, HONG GJ, WANG LJ, WANG JW, CHEN XY. Jasmonate response decay and defense metabolite accumulation contributes to age-regulated dynamics of plant insect resistance[J]. Nature Communications, 2017, 8: 13925. DOI:10.1038/ncomms13925
[58]
LIU DQ, ZHAO Q, CUI XM, CHEN R, LI X, QIU BL, GE F. A transcriptome analysis uncovers Panax notoginseng resistance to Fusarium solani induced by methyl jasmonate[J]. Genes & Genomics, 2019, 41(12): 1383-1396.
[59]
WANG J, TAN XL, ZHANG ZY, GU SL, LI GY, SHI HF. Defense to Sclerotinia sclerotiorum in oilseed rape is associated with the sequential activations of salicylic acid signaling and jasmonic acid signaling[J]. Plant Science, 2012, 184: 75-82. DOI:10.1016/j.plantsci.2011.12.013
[60]
AMEYE M, AUDENAERT K, de ZUTTER N, STEPPE K, van MEULEBROEK L, VANHAECKE L, de VLEESSCHAUWER D, HAESAERT G, SMAGGHE G. Priming of wheat with the green leaf volatile Z-3-hexenyl acetate enhances defense against Fusarium graminearum but boosts deoxynivalenol production[J]. Plant Physiology, 2015, 167(4): 1671-1684. DOI:10.1104/pp.15.00107
[61]
MOOSA A, SAHI ST, ALEEM KHAN S, MALIK AU. Salicylic acid and jasmonic acid can suppress green and blue moulds of citrus fruit and induce the activity of polyphenol oxidase and peroxidase[J]. Folia Horticulturae, 2019, 31(1): 195-204. DOI:10.2478/fhort-2019-0014
[62]
SCALSCHI L, SANMARTÍN M, CAMAÑES G, TRONCHO P, SÁNCHEZ-SERRANO JJ, GARCÍA-AGUSTÍN P, VICEDO B. Silencing of OPR3 in tomato reveals the role of OPDA in callose deposition during the activation of defense responses against Botrytis cinerea[J]. The Plant Journal, 2015, 81(2): 304-315. DOI:10.1111/tpj.12728
[63]
YUAN HM, LIU WC, LU YT. CATALASE2 coordinates SA-mediated repression of both auxin accumulation and JA biosynthesis in plant defenses[J]. Cell Host & Microbe, 2017, 21(2): 143-155.
[64]
LIU WC, HAN TT, YUAN HM, YU ZD, ZHANG LY, ZHANG BL, ZHAI S, ZHENG SQ, LU YT. CATALASE2 functions for seedling postgerminative growth by scavenging H2O2 and stimulating ACX2/3 activity in Arabidopsis[J]. Plant, Cell & Environment, 2017, 40(11): 2720-2728.
[65]
ZHANG Y, SONG RF, YUAN HM, LI TT, WANG LF, LU KK, GUO JX, LIU WC. Overexpressing the N-terminus of CATALASE2 enhances plantjasmonic acid biosynthesis and resistance to necrotrophic pathogen Botrytis cinerea B05.10[J]. Molecular Plant Pathology, 2021, 22(10): 1226-1238. DOI:10.1111/mpp.13106
[66]
JING YX, LIU J, LIU P, MING DF, SUN JQ. Overexpression of TaJAZ1 increases powdery mildew resistance through promoting reactive oxygen species accumulation in bread wheat[J]. Scientific Reports, 2019, 9: 5691. DOI:10.1038/s41598-019-42177-y
[67]
HOU YX, WANG YF, TANG LQ, TONGXH, WANG L, LIU LM, HUANG SW, ZHANG J. SAPK10-mediated phosphorylation on WRKY72 releases its suppression on jasmonic acid biosynthesis and bacterial blight resistance[J]. iScience, 2019, 16: 499-510. DOI:10.1016/j.isci.2019.06.009
[68]
UJI Y, KASHIHARA K, KIYAMA H, MOCHIZUKI S, AKIMITSU K, GOMI K. Jasmonic acid-induced VQ-motif-containing protein OsVQ13 influences the OsWRKY45 signaling pathway and grain size by associating with OsMPK6 in rice[J]. International Journal of Molecular Sciences, 2019, 20(12): 2917. DOI:10.3390/ijms20122917
[69]
KE YG, KANG YR, WU MX, LIU HB, HUI SG, ZHANG QL, LI XH, XIAO JH, WANG SP. Jasmonic acid-involved OsEDS1 signaling in rice-bacteria interactions[J]. Rice, 2019, 12(1): 1-12. DOI:10.1186/s12284-018-0262-x
[70]
LI Q, HU AH, QI JJ, DOU WF, QIN XJ, ZOU XP, XU LZ, CHEN SC, HE YR. CsWAKL08, a pathogen-induced wall-associated receptor-like kinase in sweet orange, confers resistance to citrus bacterial canker via ROS control and JA signaling[J]. Horticulture Research, 2020, 7: 42. DOI:10.1038/s41438-020-0263-y
[71]
LONG Q, XIE Y, HE YR, LI Q, ZOU XP, CHEN SC. Abscisic acid promotes jasmonic acid accumulation and plays a key role in citrus canker development[J]. Frontiers in Plant Science, 2019, 10: 1634. DOI:10.3389/fpls.2019.01634
[72]
BRENYA E, CHEN ZH, TISSUE D, PAPANICOLAOU A, CAZZONELLI CI. Prior exposure of Arabidopsis seedlings to mechanical stress heightens jasmonic acid-mediated defense against necrotrophic pathogens[J]. BMC Plant Biology, 2020, 20(1): 1-16. DOI:10.1186/s12870-019-2170-7
[73]
YAN C, XIE DX. Jasmonate in plant defence: sentinel or double agent?[J]. Plant Biotechnology Journal, 2015, 13(9): 1233-1240. DOI:10.1111/pbi.12417
[74]
MEI CS, QI M, SHENG GY, YANG YN. Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection[J]. Molecular Plant-Microbe Interactions®, 2006, 19(10): 1127-1137. DOI:10.1094/MPMI-19-1127
[75]
ZHANG C, DING ZM, WU KC, YANG L, LI Y, YANG Z, SHI S, LIU XJ, ZHAO SS, YANG ZR, WANG Y, ZHENG LP, WEI J, DU ZG, ZHANG AH, MIAO HQ, LI Y, WU ZJ, WU JG. Suppression of jasmonic acid-mediated defense by viral-inducible microRNA319 facilitates virus infection in rice[J]. Molecular Plant, 2016, 9(9): 1302-1314. DOI:10.1016/j.molp.2016.06.014
[76]
LI LL, ZHANG HH, CHEN CH, HUANG HJ, TAN XX, WEI ZY, LI JM, YAN F, ZHANG CX, CHEN JP, SUN ZT. A class of independently evolved transcriptional repressors in plant RNA viruses facilitates viral infection and vector feeding[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(11): e2016673118.
[77]
TAN XX, ZHANG HH, YANG ZH, WEI ZY, LI YJ, CHEN JP, SUN ZT. NF-YA transcription factors suppress jasmonic acid-mediated antiviral defense and facilitate viral infection in rice[J]. PLoS Pathogens, 2022, 18(5): e1010548. DOI:10.1371/journal.ppat.1010548
[78]
WANG J, SONG L, GONG X, XU JF, LI MH. Functions of jasmonic acid in plant regulation and response to abiotic stress[J]. International Journal of Molecular Sciences, 2020, 21(4): E1446. DOI:10.3390/ijms21041446
[79]
DING YL, SHI YT, YANG SH. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants[J]. New Phytologist, 2019, 222(4): 1690-1704. DOI:10.1111/nph.15696
[80]
HU YR, JIANG YJ, HAN X, WANG HP, PAN JJ, YU DQ. Jasmonate regulates leaf senescence and tolerance to cold stress: crosstalk with other phytohormones[J]. Journal of Experimental Botany, 2017, 68(6): 1361-1369. DOI:10.1093/jxb/erx004
[81]
WANG YC, XU HF, LIU WJ, WANG N, QU CZ, JIANG SH, FANG HC, ZHANG ZY, CHEN XS. Methyl jasmonate enhances apple' cold tolerance through the JAZ-MYC2 pathway[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2019, 136(1): 75-84. DOI:10.1007/s11240-018-1493-7
[82]
LIU WH, WANG HY, CHEN YP, ZHU SQ, CHEN M, LAN XZ, CHEN GP, LIAO ZH. Cold stress improves the production of artemisinin depending on the increase in endogenous jasmonate[J]. Biotechnology and Applied Biochemistry, 2017, 64(3): 305-314. DOI:10.1002/bab.1493
[83]
JIEUN SEO, GIBUM Y, JEONG GL, JEONG HC, EUN JL. Seed browning in pepper (Capsicum annuum L.) fruit during cold storage is inhibited by methyl jasmonate or induced by methyl salicylate[J]. Postharvest Biology and Technology, 2020, 166: 111210. DOI:10.1016/j.postharvbio.2020.111210
[84]
SCHROEDER JI, KWAK JM, ALLEN GJ. Guard cell abscisic acid signalling and engineering drought hardiness in plants[J]. Nature, 2001, 410(6826): 327-330. DOI:10.1038/35066500
[85]
XU ZZ, ZHOU GS, SHIMIZU H. Plant responses to drought and rewatering[J]. Plant Signaling & Behavior, 2010, 5(6): 649-654.
[86]
SAVCHENKO T, KOLLA VA, WANG CQ, NASAFI Z, HICKS DR, PHADUNGCHOB B, CHEHAB WE, BRANDIZZI F, FROEHLICH J, DEHESH K. Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought[J]. Plant Physiology, 2014, 164(3): 1151-1160. DOI:10.1104/pp.113.234310
[87]
DASZKOWSKA-GOLEC A, SZAREJKO I. Open or close the gate-stomata action under the control of phytohormones in drought stress conditions[J]. Frontiers in Plant Science, 2013, 4: 138.
[88]
SINGH AP, MANI B, GIRI J. OsJAZ9 is involved in water-deficit stress tolerance by regulating leaf width and stomatal density in rice[J]. Plant Physiology and Biochemistry, 2021, 162: 161-170. DOI:10.1016/j.plaphy.2021.02.042
[89]
FU J, WU H, MA SQ, XIANG DH, LIU RY, XIONG LZ. OsJAZ1 attenuates drought resistance by regulating JA and ABA signaling in rice[J]. Frontiers in Plant Science, 2017, 8: 2108. DOI:10.3389/fpls.2017.02108
[90]
SEO JS, JOO J, KIM MJ, KIM YK, NAHM BH, SONG SI, CHEONG JJ, LEE JS, KIM JK, DO CHOI Y. OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice[J]. The Plant Journal, 2011, 65(6): 907-921. DOI:10.1111/j.1365-313X.2010.04477.x
[91]
XIONG J, LIU L, MAXC, LI FF, TANG CL, LI ZH, LÜ BW, ZHOU T, LIAN XF, CHANG YY, TANG MJ, XIE SX, LU XP. Characterization of PtAOS1 promoter and three novel interacting proteins responding to drought in Poncirus trifoliata[J]. International Journal of Molecular Sciences, 2020, 21(13): 4705. DOI:10.3390/ijms21134705
[92]
GE YX, ZHANG LJ, LI FH, CHEN ZB. Relationship between jasmonic acid accumulation and senescence in drought-stress[J]. African Journal of Agricultural Research, 2010, 15(5): 1978-1993.
[93]
MOHAMED HI, LATIF HH. Improvement of drought tolerance of soybean plants by using methyl jasmonate[J]. Physiology and Molecular Biology of Plants, 2017, 23(3): 545-556. DOI:10.1007/s12298-017-0451-x
[94]
FAHAD S, HUSSAIN S, MATLOOB A, KHAN FA, KHALIQ A, SAUD S, HASSAN S, SHAN D, KHAN F, ULLAH N, FAIQ M, KHAN MR, TAREEN AK, KHAN A, ULLAH A, ULLAH N, HUANG JL. Phytohormones and plant responses to salinity stress: a review[J]. Plant Growth Regulation, 2015, 75(2): 391-404. DOI:10.1007/s10725-014-0013-y
[95]
de DOMENICO S, TAURINO M, GALLO A, POLTRONIERI P, PASTOR V, FLORS V, SANTINO A. Oxylipin dynamics in Medicago truncatula in response to salt and wounding stresses[J]. Physiologia Plantarum, 2019, 165(2): 198-208. DOI:10.1111/ppl.12810
[96]
VALENZUELA CE, ACEVEDO-ACEVEDO O, MIRANDA GS, VERGARA-BARROS P, HOLUIGUE L, FIGUEROA CR, FIGUEROA PM. Salt stress response triggers activation of the jasmonate signaling pathway leading to inhibition of cell elongation in Arabidopsis primary root[J]. Journal of Experimental Botany, 2016, 67(14): 4209-4220. DOI:10.1093/jxb/erw202
[97]
ZHANG MZ, YU ZM, ZENG DQ, SI C, ZHAO CH, WANG HB, LI CM, HE CM, DUAN J. Transcriptome and metabolome reveal salt-stress responses of leaf tissues from Dendrobium officinale[J]. Biomolecules, 2021, 11(5): 736. DOI:10.3390/biom11050736
[98]
ABOUELSAAD I, RENAULT S. Enhanced oxidative stress in the jasmonic acid-deficient tomato mutant def-1 exposed to NaCl stress[J]. Journal of Plant Physiology, 2018, 226: 136-144. DOI:10.1016/j.jplph.2018.04.009
[99]
QIU ZB, GUO JL, ZHU AJ, ZHANG L, ZHANG MM. Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress[J]. Ecotoxicology and Environmental Safety, 2014, 104: 202-208. DOI:10.1016/j.ecoenv.2014.03.014
[100]
SHETEIWY MS, SHAO HB, QI WC, DALY P, SHARMA A, SHAGHALEH H, ALHAJ HAMOUD Y, EL-ESAWI MA, PAN RH, WAN Q, LU HY. Seed priming and foliar application with jasmonic acid enhance salinity stress tolerance of soybean (Glycine max L.) seedlings[J]. Journal of the Science of Food and Agriculture, 2021, 101(5): 2027-2041. DOI:10.1002/jsfa.10822
[101]
CHEN YM, WANG Y, HUANG JG, ZHENG CC, CAI CX, WANG QM, WU CA. Salt and methyl jasmonate aggravate growth inhibition and senescence in Arabidopsis seedlings via the JA signaling pathway[J]. Plant Science, 2017, 261: 1-9. DOI:10.1016/j.plantsci.2017.05.005
[102]
WANG JJ, LV PH, YAN D, ZHANG ZD, XU XM, WANG T, WANG Y, PENG Z, YU CX, GAO YR, DUAN LS, LI RZ. Exogenous melatonin improves seed germination of wheat (Triticum aestivum L.) under salt stress[J]. International Journal of Molecular Sciences, 2022, 23(15): 8436. DOI:10.3390/ijms23158436
[103]
ZEID A, Al-Othman. Assessment of toxic metals in wheat crops grown on selected soils, irrigated by different water sources[J]. Arabian Journal of Chemistry, 2016, 9: S1555-S1562. DOI:10.1016/j.arabjc.2012.04.006
[104]
LEI GJ, SUN L, SUN Y, ZHU XF, LI GX, ZHENG SJ. Jasmonic acid alleviates cadmium toxicity in Arabidopsis via suppression of cadmium uptake and translocation[J]. Journal of Integrative Plant Biology, 2020, 62(2): 218-227. DOI:10.1111/jipb.12801
[105]
ZHAO SY, MA QF, XU X, LI GZ, HAO L. Tomato jasmonic acid-deficient mutant spr2 seedling response to cadmium stress[J]. Journal of Plant Growth Regulation, 2016, 35(3): 603-610. DOI:10.1007/s00344-015-9563-0
[106]
AZEEM U. Ameliorating nickel stress by jasmonic acid treatment in Zea mays L[J]. Russian Agricultural Sciences, 2018, 44(3): 209-215. DOI:10.3103/S1068367418030035
[107]
NORIEGA G, CRUZ DS, BATLLE A, TOMARO M, BALESTRASSE K. Heme oxygenase is involved in the protection exerted by jasmonic acid against cadmium stress in soybean roots[J]. Journal of Plant Growth Regulation, 2012, 31(1): 79-89. DOI:10.1007/s00344-011-9221-0
[108]
BALI SG, LAKSHMI JAMWAL V, KOHLI SK, KAUR P, TEJPAL R, BHALLA V, OHRI P, GANDHI SG, BHARDWAJ R, AL-HUQAIL AA, SIDDIQUI MH, ALI HM, AHMAD P. Jasmonic acid application triggers detoxification of lead (Pb) toxicity in tomato through the modifications of secondary metabolites and gene expression[J]. Chemosphere, 2019, 235: 734-748. DOI:10.1016/j.chemosphere.2019.06.188
[109]
DAI H, WEI SH, POGRZEBA M, RUSINOWSKI S, KRZYŻAK J, JIA G. Exogenous jasmonic acid decreased Cu accumulation by alfalfa and improved its photosynthetic pigments and antioxidant system[J]. Ecotoxicology and Environmental Safety, 2020, 190: 110176. DOI:10.1016/j.ecoenv.2020.110176
[110]
KAZAN K, MANNERS J. Jasmonate signaling: toward an integrated view[J]. Plant Physiology, 2008, 146(4): 1459-1468. DOI:10.1104/pp.107.115717
[111]
徐刚, 姚银安. 水杨酸、茉莉酸和乙烯介导的防卫信号途径相互作用的研究进展[J]. 生物学杂志, 2009, 26(1): 48-51.
XU G, YAO YA. The cross-talk between salicylic acid, jasmonic acid and ethylene defense pathway[J]. Journal of Biology, 2009, 26(1): 48-51 (in Chinese).
[112]
XU P, ZHAO PX, CAI XT, MAO JL, MIAO ZQ, XIANG CB. Integration of jasmonic acid and ethylene into auxin signaling in root development[J]. Frontiers in Plant Science, 2020, 11: 271. DOI:10.3389/fpls.2020.00271
[113]
QI LL, YAN J, LI YN, JIANG HL, SUN JQ, CHEN Q, LI HX, CHU JF, YAN CY, SUN XH, YU YJ, LI CB, LI CY. Arabidopsis thaliana plants differentially modulate auxin biosynthesis and transport during defense responses to the necrotrophic pathogen Alternaria brassicicola[J]. New Phytologist, 2012, 195(4): 872-882. DOI:10.1111/j.1469-8137.2012.04208.x
[114]
LIU H, TIMKO MP. Jasmonic acid signaling and molecular crosstalk with other phytohormones[J]. International Journal of Molecular Sciences, 2021, 22(6): 2914. DOI:10.3390/ijms22062914
[115]
JIANG YJ, LIANG G, YANG SZ, YU DQ. Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence[J]. The Plant Cell, 2014, 26(1): 230-245. DOI:10.1105/tpc.113.117838
[116]
JIANG YJ, YU DQ. The WRKY57 transcription factor affects the expression of jasmonate ZIM-domain genes transcriptionally to compromise Botrytis cinerea resistance[J]. Plant Physiology, 2016, 171(4): 2771-2782. DOI:10.1104/pp.16.00747
[117]
HE YQ, ZHANG HH, SUN ZT, LI JM, HONG GJ, ZHU QS, ZHOU XB, MACFARLANE S, YAN F, CHEN JP. Jasmonic acid-mediated defense suppresses brassinosteroid-mediated susceptibility to rice black streaked dwarf virus infection in rice[J]. New Phytologist, 2017, 214(1): 388-399. DOI:10.1111/nph.14376
[118]
ZHANG HH, TAN XX, LI LL, HE YQ, HONG GJ, LI JM, LIN L, CHENG Y, YAN F, CHEN JP, SUN ZT. Suppression of auxin signalling promotes rice susceptibility to rice black streaked dwarf virus infection[J]. Molecular Plant Pathology, 2019, 20(8): 1093-1104. DOI:10.1111/mpp.12814
[119]
RONZAN M, PIACENTINI D, FATTORINI L, FEDERICA DR, CABONI E, EICHE E, ZIEGLER J, HAUSE B, RIEMANN M, BETTI C, ALTAMURA MM, FALASCA G. Auxin-jasmonate crosstalk in Oryza sativa L. root system formation after cadmium and/or arsenic exposure[J]. Environmental and Experimental Botany, 2019, 165: 59-69. DOI:10.1016/j.envexpbot.2019.05.013
[120]
HOU SJ, TSUDA K. Salicylic acid and jasmonic acid crosstalk in plant immunity[J]. Essays in Biochemistry, 2022, 66(5): 647-656. DOI:10.1042/EBC20210090
[121]
CUI HT, QIU JD, ZHOU Y, BHANDARI DD, ZHAO C, BAUTOR J, PARKER JE. Antagonism of transcription factor MYC2 by EDS1/PAD4 complexes bolsters salicylic acid defense in Arabidopsis effector-triggered immunity[J]. Molecular Plant, 2018, 11(8): 1053-1066. DOI:10.1016/j.molp.2018.05.007
[122]
AERTS N, PEREIRA MENDES M, van WEES SCM. Multiple levels of crosstalk in hormone networks regulating plant defense[J]. The Plant Journal, 2021, 105(2): 489-504. DOI:10.1111/tpj.15124
[123]
PAN G, LIU YQ, JI LS, ZHANG X, HE J, HUANG J, QIU ZY, LIU DM, SUN ZG, XU TT, LIU LL, WANG CM, JIANG L, CHENG XN, WAN JM. Brassinosteroids mediate susceptibility to brown planthopper by integrating with the salicylic acid and jasmonic acid pathways in rice[J]. Journal of Experimental Botany, 2018, 69(18): 4433-4442. DOI:10.1093/jxb/ery223
[124]
范东哲, 陈青, 梁晓, 伍春玲, 刘迎, 窦宏双, 吴岩. 桃蚜取食对抗、感蚜辣椒品种水杨酸、茉莉酸信号途径的影响[J]. 热带作物学报, 2021, 42(10): 2972-2978.
FAN DZ, CHEN Q, LIANG X, WU CL, LIU Y, DOU HS, WU Y. Myzus persicae feeding effects salicylic acid and jasmonic acid signaling pathways in aphid-resistant and aphid-susceptible pepper cultivars[J]. Chinese Journal of Tropical Crops, 2021, 42(10): 2972-2978 (in Chinese). DOI:10.3969/j.issn.1000-2561.2021.10.030
[125]
CRISTINA M, PETERSEN M, MUNDY J. Mitogen-activated protein kinase signaling in plants[J]. Annual Review of Plant Biology, 2010, 61: 621-649. DOI:10.1146/annurev-arplant-042809-112252
[126]
FANG XP, CHAI WG, LI SG, ZHANG LQ, YU H, SHEN JS, XIAO WF, LIU AC, ZHOU BQ, ZHANG XY. HSP17.4 mediates salicylic acid and jasmonic acid pathways in the regulation of resistance to Colletotrichum gloeosporioides in strawberry[J]. Molecular Plant Pathology, 2021, 22(7): 817-828. DOI:10.1111/mpp.13065
[127]
ZHENGXY, SPIVEY NW, ZENG WQ, LIU PP, FU ZQ, KLESSIG DF, HE SY, DONG XN. Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation[J]. Cell Host & Microbe, 2012, 11(6): 587-596.
[128]
HICKMAN R, MENDES MP, van VERK MV, van DIJKEN AV, DI SORA J, DENBY K, PIETERSE C, van WEES SV. Transcriptional dynamics of the salicylic acid response and its interplay with the jasmonic acid pathway[J]. Cold Spring Harbor Laboratory, 2019.
[129]
LUO J, XIA WX, CAO P, XIAO ZA, ZHANG Y, LIUMY, ZHAN C, WANG N. Integrated transcriptome analysis reveals plant hormones jasmonic acid and salicylic acid coordinate growth and defense responses upon fungal infection in poplar[J]. Biomolecules, 2019, 9(1): 12. DOI:10.3390/biom9010012
[130]
ULLAH C, SCHMIDT A, REICHELT M, TSAI CJ, GERSHENZON J. Lack of antagonism between salicylic acid and jasmonate signalling pathways in poplar[J]. New Phytologist, 2022, 235(2): 701-717. DOI:10.1111/nph.18148
[131]
LACKMAN P, GONZÁLEZ-GUZMÁN M, TILLEMAN S, CARQUEIJEIRO I, PÉREZ AC, MOSES T, SEO M, KANNO Y, HÄKKINEN ST, van MONTAGU MCE, THEVELEIN JM, MAAHEIMO H, OKSMAN-CALDENTEY KM, RODRIGUEZ PL, RISCHER H, GOOSSENS A. Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(14): 5891-5896.
[132]
ALEMAN F, YAZAKI J, LEE M, TAKAHASHI Y, KIM AY, LIZX, KINOSHITA T, ECKER JR, SCHROEDER JI. An ABA-increased interaction of the PYL6 ABA receptor with MYC2 transcription factor: a putative link of ABA and JA signaling[J]. Scientific Reports, 2016, 6: 28941. DOI:10.1038/srep28941
[133]
ANDERSON JP, BADRUZSAUFARI E, SCHENK PM, MANNERS JM, DESMOND OJ, EHLERT C, MACLEAN DJ, EBERT PR, KAZAN K. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis[J]. The Plant Cell, 2004, 16(12): 3460-3479. DOI:10.1105/tpc.104.025833
[134]
KIM H, SEOMUN S, YOON Y, JANG G. Jasmonic acid in plant abiotic stress tolerance and interaction with abscisic acid[J]. Agronomy, 2021, 11(9): 1886. DOI:10.3390/agronomy11091886
[135]
BROSSA R, LÓPEZ-CARBONELL M, JUBANY-MARÍ T, ALEGRE L. Interplay between abscisic acid and jasmonic acid and its role in water-oxidative stress in wild-type, ABA-deficient, JA-deficient, and ascorbate-deficient Arabidopsis plants[J]. Journal of Plant Growth Regulation, 2011, 30(3): 322-333. DOI:10.1007/s00344-011-9194-z
[136]
LIU L, LIU CY, WANG H, YU SY, GUAN TS, HUANG YF, LI RC. The abscisic acid receptor gene VvPYL4 positively regulates grapevine resistance to Plasmopara viticola[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2020, 142: 483-492. DOI:10.1007/s11240-020-01872-9
[137]
GHORBEL M, BRINI F, SHARMA A, LANDI M. Role of jasmonic acid in plants: the molecular point of view[J]. Plant Cell Reports, 2021, 40(8): 1471-1494. DOI:10.1007/s00299-021-02687-4
[138]
ZOU XP, LONG JH, ZHAO K, PENG AH, CHEN M, LONG Q, HE YR, CHEN SC. Overexpressing GH3.1 and GH3.1L reduces susceptibility to Xanthomonas citri subsp. citri by repressing auxin signaling in citrus (Citrus sinensis Osbeck)[J]. PLoS One, 2019, 14(12): e0220017. DOI:10.1371/journal.pone.0220017
[139]
邹修平, 龙俊宏, 彭爱红, 陈敏, 龙琴, 陈善春. 超量表达CsGH3.6通过抑制生长素信号转导增强柑橘溃疡病抗性[J]. 中国农业科学, 2019, 52(21): 3806-3818.
ZOU XP, LONG JH, PENG AH, CHEN M, LONG Q, CHEN SC. Overexpression of CsGH3.6 enhanced resistance to citrus canker disease by inhibiting auxin signaling transduction[J]. Scientia Agricultura Sinica, 2019, 52(21): 3806-3818 (in Chinese). DOI:10.3864/j.issn.0578-1752.2019.21.009
[140]
龙俊宏. 黄龙病菌SDE70和SDE695效应子在病原菌与柑橘互作中的功能研究[D]. 重庆: 西南大学硕士学位论文, 2021.
LONG JH. Study of functions of the SDE70 and SDE695 effectors interaction between Candidatus Liberibacter Asiaticus and citrus[D]. Chongqing: Master's Thesis of Southwest University, 2021 (in Chinese).
[141]
PENG AH, ZOU XP, HE YR, CHEN SC, LIU XF, ZHANG JY, ZHANG QW, XIE Z, LONG JH, ZHAO XC. Overexpressing a NPR1-like gene from Citrus paradisi enhanced Huanglongbing resistance in C. sinensis[J]. Plant Cell Reports, 2021, 40(3): 529-541. DOI:10.1007/s00299-020-02648-3
[142]
GROVER S, PURI H, XIN ZG, SATTLER SE, LOUIS J. Dichotomous role ofjasmonic acid in modulating Sorghum defense against aphids[J]. Molecular Plant-Microbe Interactions®, 2022, 35(9): 755-767. DOI:10.1094/MPMI-01-22-0005-R
[143]
GLAZEBROOK J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens[J]. Annual Review of Phytopathology, 2005, 43: 205-227. DOI:10.1146/annurev.phyto.43.040204.135923
[144]
AN JP, ZHANG CL, LI HL, WANG GL, YOU CX. Apple SINA E3 ligase MdSINA3 negatively mediates JA-triggered leaf senescence by ubiquitinating and degrading the MdBBX37 protein[J]. The Plant Journal, 2022, 111(2): 457-472. DOI:10.1111/tpj.15808
[145]
PENG AH, CHEN SC, LEI TG, XU LZ, HE YR, WU L, YAO LX, ZOU XP. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus[J]. Plant Biotechnology Journal, 2017, 15(12): 1509-1519. DOI:10.1111/pbi.12733
[146]
LI YH, QIU LN, ZHANG Q, ZHUANSUN XX, LI HF, CHEN X, KRUGMAN T, SUN QX, XIE CJ. Exogenous sodium diethyldithiocarbamate, a jasmonic acid biosynthesis inhibitor, induced resistance to powdery mildew in wheat[J]. Plant Direct, 2020, 4(4): e00212. DOI:10.1002/pld3.212