生物工程学报  2023, Vol. 39 Issue (3): 1096-1106
http://dx.doi.org/10.13345/j.cjb.220642
中国科学院微生物研究所、中国微生物学会主办
0

文章信息

杨新愿, 饶忆, 张梦茜, 王佳琪, 刘文渊, 蔡冬波, 陈守文
YANG Xinyuan, RAO Yi, ZHANG Mengxi, WANG Jiaqi, LIU Wenyuan, CAI Dongbo, CHEN Shouwen
基于表达元件和宿主优化促地衣芽胞杆菌高效表达L-天冬酰胺酶
Efficient production of L-asparaginase in Bacillus licheniformis by optimizing expression elements and host
生物工程学报, 2023, 39(3): 1096-1106
Chinese Journal of Biotechnology, 2023, 39(3): 1096-1106
10.13345/j.cjb.220642

文章历史

Received: August 14, 2022
Accepted: November 15, 2022
Published: November 24, 2022
基于表达元件和宿主优化促地衣芽胞杆菌高效表达L-天冬酰胺酶
杨新愿 , 饶忆 , 张梦茜 , 王佳琪 , 刘文渊 , 蔡冬波 , 陈守文     
湖北大学生命科学学院 湖北省环境微生物工程技术研究中心 省部共建生物催化与酶工程国家重点实验室, 湖北 武汉 430062
摘要:L-天冬酰胺酶(L-asparaginase, L-ASN)广泛用于恶性肿瘤治疗及低丙烯酰胺食品生产, 然而其较低的表达水平限制了应用推广。异源蛋白表达是提高目标酶表达水平的有效策略, 芽胞杆菌广泛用于酶蛋白的高效生产, 本研究拟通过表达元件及宿主优化提高芽胞杆菌(Bacillus)中L-天冬酰胺酶产量。首先, 筛选了5种信号肽(SPSacC、SPAmyL、SPAprE、SPYwbN、SPWapA)用于L-天冬酰胺酶的分泌表达, 其中SPSacC介导下L-天冬酰胺酶分泌效果最好, 酶活达到157.61 U/mL。随后, 选取了4种芽胞杆菌强启动子(P43、PykzA-P43、PUbay、PbacA), 其中串联启动子PykzA-P43介导的L-天冬酰胺酶表达量最高, 较对照菌株提高了52.94%。最后, 筛选了3种芽胞杆菌表达宿主: 地衣芽胞杆菌(Bacillus licheniformis) Δ0F3和BL10、枯草芽胞杆菌(B. subtilis) WB800, 其中, 地衣芽胞杆菌BL10作为宿主时, L-天冬酰胺酶酶活最高, 达到了438.3 U/mL, 较对照菌株提高了81.83%, 为目前报道的L-天冬酰胺酶摇瓶酶活最高水平。综上所述, 本研究成功构建了一株高产L-天冬酰胺酶的地衣芽胞杆菌工程菌株BL10/PykzA-P43-SPsacC-ansZ, 为L-天冬酰胺酶工业化生产奠定了基础。
关键词L-天冬酰胺酶    地衣芽胞杆菌    信号肽    启动子    表达宿主    
Efficient production of L-asparaginase in Bacillus licheniformis by optimizing expression elements and host
YANG Xinyuan , RAO Yi , ZHANG Mengxi , WANG Jiaqi , LIU Wenyuan , CAI Dongbo , CHEN Shouwen     
State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, Hubei, China
Abstract: L-asparaginase (L-ASN) is widely applied in the treatment of malignant tumor and low-acrylamide food production, however, the low expression level hampers its application. Heterologous expression is an effective strategy to increase the expression level of target enzymes, and Bacillus is generally used as the host for efficient production of enzymes. In this study, the expression level of L-asparaginase in Bacillus was enhanced through optimization of expression element and host. Firstly, five signal peptides (SPSacC, SPAmyL, SPAprE, SPYwbN and SPWapA) were screened, among which SPSacC showed the best performance, reaching an activity of 157.61 U/mL. Subsequently, four strong promoters (P43, PykzA-P43, PUbay and PbacA) from Bacillus were screened, and tandem promoter PykzA-P43 showed the highest yield of L-asparaginase, which was 52.94% higher than that of control strain. Finally, three Bacillus expression hosts (B. licheniformis Δ0F3 and BL10, B. subtilis WB800) were investigated, and the maximum L-asparaginase activity, 438.3 U/mL, was reached by B. licheniformis BL10, which was an 81.83% increase compared with that of the control. This is also the highest level of L-asparaginase in shake flask reported to date. Taken together, this study constructed a B. licheniformis strain BL10/PykzA-P43-SPSacC-ansZ capable of efficiently producing L-asparaginase, which laid the foundation for industrial production of L-asparaginase.
Keywords: L-asparaginase    Bacillus licheniformis    signal peptide    promoter    expression host    

L-天冬酰胺酶(L-asparaginase, L-ASN)可催化L-天冬酰胺水解生成L-天冬氨酸和氨[1],因而可降解血液中天冬酰胺,达到抑制肿瘤细胞生长的作用,在儿童急性白血病、淋巴瘤等疾病的临床治疗中具有重要研究与应用价值。此外,天冬酰胺可通过多种途径合成丙烯酰胺,而L-ASN可通过催化天冬酰胺水解从而降低食品中丙烯酰胺含量。因此,L-ASN在医药、食品安全等方面具有重要应用价值[2]。L-ASN来源广泛,可来源于细菌、真菌、植物、动物,其中来源于细菌和真菌的L-ASN研究报道较多[1, 3]。然而,L-ASN发酵生产酶活较低,限制了其应用推广。

目前,L-ASN的异源表达主要以大肠杆菌(Escherichia coli)、毕赤酵母(Pichia pastoris)、枯草芽胞杆菌(Bacillus subtilis)为宿主。其中,以大肠杆菌BL21(DE3)为宿主表达L-ASN,摇瓶水平酶活达到17.39 U/mL[4]。Ferrara等利用P. pastoris表达L-ASN,结合发酵工艺优化,L-ASN酶活达到85.6 U/mL[5]。Feng等通过信号肽筛选、N端氨基酸删除、启动子优化等策略,实现B. subtilis 168来源的L-ASN在B. subtilis WB600中高效表达,摇瓶水平酶活达到102.41 U/mL[6]

近年来,随着合成生物学和代谢工程育种技术的不断发展,越来越多的表达元件设计优化和代谢工程育种思路被用于微生物异源蛋白的高效表达。Degering等构建了B. subtilisB. licheniformis信号肽文库,筛选得到了多个可显著提高枯草芽胞杆菌蛋白酶(Bacillus protease novo type, BPN’)分泌水平的信号肽[7]。Zhang等通过设计优化启动子,获得了可显著提高β-环糊精糖苷转移酶和普鲁兰酶表达水平的串联启动子PHpaII-PamyQ’[8]。Wei等通过构建胞外蛋白酶缺失菌株地衣芽胞杆菌BL10,使得纳豆激酶酶活提高了39%[9]。由此可见,优化表达元件和宿主是提高目的蛋白产量的有效策略。

地衣芽胞杆菌是公认的生物安全菌株,具有蛋白分泌能力强、发酵周期短等优点,是优良的异源蛋白表达宿主,目前已实现了多种酶蛋白(α-淀粉酶、戊聚糖酶、β-甘露聚糖酶、纳豆激酶等)的高效生产。本研究选用地衣芽胞杆菌Δ0F3为出发菌株,通过筛选信号肽、启动子及表达宿主,构建高效表达L-ASN的地衣芽胞杆菌菌株,为L-ASN工业化生产奠定了基础。

1 材料与方法 1.1 材料 1.1.1 菌株和质粒

本研究所用到的质粒和菌株见表 1,相关引物见表 2

表 1 本研究所用的菌株和质粒 Table 1 Strains and plasmids used in this study
Strains and plasmids Characteristics Sources
Strains
  E. coli DH5α F Φ80d/lacZΔM15, Δ(lacZYA-argF) U169, recA1, endA1, hsdR17 (rK, mK+), phoA, supE44, λ, thi-1, gyrA96, relA1 Lab collection
  B. subtilis WB800 B. subtilis VTCC-DVN-12-01 by using an eight-protease-gene-deficient B. subtilis (nprE, aprE, epr, bpr, mpr: : ble, nprB: : bsr, vpr, wprA: : hyg) Lab collection
  B. licheniformis Δ0F3 DW2 (Δspo0F, ΔaprE, ΔbprA, Δpgs) Lab collection
  B. licheniformis BL10 WX-02 (Δmpr, Δvpr, ΔaprX, Δepr, Δbpr, ΔwprA, ΔaprE, ΔbprA, Δhag, ΔamyL) Lab collection
  Δ0F3/pP43-SPAmyL-ansZ Δ0F3 containing plasmid pP43-SPAmyL-ansZ This study
  Δ0F3/pP43-SPAprE-ansZ Δ0F3 containing plasmid pP43-SPAprE-ansZ This study
  Δ0F3/pP43-SPSacC-ansZ Δ0F3 containing plasmid pP43-SPSacC-ansZ This study
  Δ0F3/pP43-SPWapA-ansZ Δ0F3 containing plasmid pP43-SPWapA-ansZ This study
  Δ0F3/pP43-SPYwbN-ansZ Δ0F3 containing plasmid pP43-SPYwbN-ansZ This study
  Δ0F3/pPUbay-SPSacC-ansZ Δ0F3 containing plasmid pPUbay-SPSacC-ansZ This study
  Δ0F3/pPbacA-SPSacC-ansZ Δ0F3 containing plasmid pPbacA-SPSacC-ansZ This study
  Δ0F3/pPykzA-P43-SPSacC-ansZ Δ0F3 containing plasmid pPykzA-P43-SPSacC-ansZ This study
  BL10/pPykzA-P43-SPSacC-ansZ BL10 containing plasmid pPykzA-P43-SPSacC-ansZ This study
  WB800/pPykzA-P43-SPSacC-ansZ WB800 containing plasmid pPykzA-P43-SPSacC-ansZ This study
Plasmids
  pP43-SPAmyL-ansZ pHY300PLK harboring P43 promoter, gene ansZ, signal peptide of AmyL and amyL terminator This study
  pP43-SPAprE-ansZ pHY300PLK harboring P43 promoter, gene ansZ, signal peptide of AprE and amyL terminator This study
  pP43-SPSacC-ansZ pHY300PLK harboring P43 promoter, gene ansZ, signal peptide of SacC and amyL terminator This study
  pP43-SPWapA-ansZ pHY300PLK harboring P43 promoter, gene ansZ, signal peptide of WapA and amyL terminator This study
  pP43-SPYwbN-ansZ pHY300PLK harboring P43 promoter, gene ansZ, signal peptide of YwbN and amyL terminator This study
  pPUbay-SPSacC-ansZ pHY300PLK harboring PUbay promoter, gene ansZ, signal peptide of SacC and amyL terminator This study
  pPbacA-SPSacC-ansZ pHY300PLK harboring PbacA promoter, gene ansZ, signal peptide of SacC and amyL terminator This study
  pPykzA-P43-SPSacC-ansZ pHY300PLK harboring PykzA-P43 promoter, gene ansZ, signal peptide of SacC and amyL terminator This study
表 2 本研究所用的引物 Table 2 Primers used in this study
Primer name Sequence of primer (5′→3′)
P43-F CGGGAATTCTGATAGGTGGTATGTTTTCG
P43-R GTGTACATTCCTCTCTTACC
ansZ-F TCTGAAAAAAAGGATCTG
ansZ-R TCCGTCCTCTCTGCTCTTTCAATACTCATTGAAATAAGC
TamyL-F AAGAGCAGAGAGGACGGATT
TamyL-R GCTCTAGACGCAATAATGCCGTCGCACTG
pHY-F CAGATTTCGTGATGCTTGTC
pHY-R GTTTATTATCCATACCCTTAC
SPAmyL-F GGTAAGAGAGGAATGTACACATGAAACAACACAAACGG
SPAmyL-R CAGATCCTTTTTTTCAGACGCCGCTGCTGCAGAGTG
SPAprE-F GGTAAGAGAGGAATGTACACATGATGAGGAAAAAGAGT
SPAprE-R CAGATCCTTTTTTTCAGAAGCAGAAGCGGAATCGCTG
SPSacC-F GGTAAGAGAGGAATGTACACATGAAAAAGAGACTGATTC
SPSacC-R CAGATCCTTTTTTTCAGATGCATCTGCCGAAAATGCC
SPWapA-F GGTAAGAGAGGAATGTACACATGAAAAAAAGAAAGAGGC
SPWapA-R CAGATCCTTTTTTTCAGATGCTAGTACATCGGCTGG
SPYwbN-F GGTAAGAGAGGAATGTACACATGAGCGATGAACAGAAAAAG
SPYwbN-R CAGATCCTTTTTTTCAGAAGCCGCAGTCTGAACAAG
PUbay-F CGGGAATTCCCTGCGATTTCGGCGAGATTC
PUbay-R GAATCAGTCTCTTTTTCATACAAATCTCCCCCTTTGTTG
PbacA-F CGGAATTCCCTGCGATTTCGGCGAGATTC
PbacA-R GAATCAGTCTCTTTTTCATATAAAAATTCTCCTTTTTG
PykzA-P43-F CGGGAATTCGAAATATTGATGTGACAC
PykzA-P43-R GAATCAGTCTCTTTTTCATTGATCCTTCCTCCTTTAG
Bold indicates the restriction enzyme site, and underlined is the repetitive sequence for SOE-PCR.
1.1.2 酶和试剂

Pfu DNA聚合酶、Taq DNA聚合酶、dNTPs、各种DNA限制性内切酶、T4 DNA连接酶、Protein Marker (Broad)、DNA分子量标准Marker (DL 5000 Marker)购自TaKaRa公司;质粒抽提试剂盒、DNA回收纯化试剂盒购自武汉伊曼生物科技有限公司;蛋白胨、酵母提取物、琼脂糖购自Spanish公司;抗生素(Kan、Tet)、L-天冬酰胺及蛋白胶配制所需试剂购自Sigma公司;玉米浆购自绿康生化股份有限公司,其他主要生化试剂均为国产分析纯。

1.1.3 培养基

LB培养基(g/L):蛋白胨10、酵母提取物5、氯化钠10,pH 7.2,LB固体培养基另加1.5%琼脂粉。

L-ASN发酵培养基(g/L):葡萄糖20、蛋白胨20、玉米浆10、酵母提取物10、氯化钠10、磷酸氢二钾3、硫酸铵6,pH 7.2。

1.2 方法 1.2.1 天冬酰胺酶表达载体的构建

以L-ASN表达载体pP43-SPSacC-ansZ构建为例,首先设计引物扩增来源于枯草芽胞杆菌168来源的P43启动子、SPSacC信号肽和L-ASN基因ansZ及地衣芽胞杆菌WX-02来源的淀粉酶基因amyL的终止子TamyL,再通过重叠延伸PCR (gene splicing by overlap extension PCR, SOE-PCR)得到P43-SPSacC-ansZ-TamyL表达框,将其和质粒pHY300PLK经EcoR Ⅰ和Xba Ⅰ双酶切,并用T4 DNA连接酶进行酶连反应,酶连产物转化E. coli DH5α。通过菌落PCR验证、抽提质粒并测序。若测序成功,即得到游离表达载体pP43-SPSacC-ansZ。

1.2.2 信号肽/启动子筛选重组工程菌株的构建

不同信号肽介导的L-ASN表达载体构建:选取5种不同信号肽,分别是来源于地衣芽胞杆菌WX-02的淀粉酶信号肽SPAmyL,来源于枯草芽胞杆菌168的果聚糖酶信号肽SPSacC、淀粉酶信号肽SPAmyL、细胞壁合成相关tRNA核酸酶前体信号肽SPWapA、双精氨酸易位底物信号肽SPYwbN。根据1.2.1所述方法进行不同信号肽介导的L-ASN表达载体构建,构建流程见图 1

图 1 不同信号肽介导的L-ASN表达载体构建流程 Fig. 1 Construction of L-ASN expression vectors mediated by different signal peptides.

不同启动子介导的L-ASN表达载体构建:选取4种常用于芽胞杆菌基因表达的强启动子,分别是来源于地衣芽胞杆菌DW2的杆菌肽合成酶基因簇bacABC启动子PbacA,来源于枯草芽胞杆菌168中P43启动子,本课题组饶忆等构建的杂合启动子PUbay[10]及串联启动子PykzA-P43[11]。根据1.2.1所述方法进行不同启动子介导的L-ASN表达载体构建。

将上述构建成功的L-ASN表达载体电转入地衣芽胞杆菌Δ0F3中,分别得到不同启动子、信号肽介导的L-ASN表达菌株。

1.2.3 L-ASN在地衣芽胞杆菌中表达

将含有L-ASN表达载体的地衣芽胞杆菌在LB平板(20 mg/L四环抗生素)上活化,37 ℃培养12–16 h。挑取单菌落于含有5 mL液体LB (20 mg/L四环抗生素)的PA瓶中,37 ℃、230 r/min过夜培养。将培养好菌液转接于含有50 mL液体LB (20 mg/L四环抗生素)的250 mL三角瓶中,37 ℃、230 r/min培养至OD600≈4,按照3%接种量将种子液转至含有30 mL发酵培养基的250 mL三角瓶中,37 ℃、230 r/min培养48 h。

1.2.4 L-ASN酶活检测

采用纳氏试剂显色法计量测定酶促反应产生的氨气含量,进而检测L-ASN酶活[2]。首先绘制得到氯化铵标准曲线(图 2),再配置酶反应体系[900 μL KH2PO4-K2HPO4 (20 mmol/L, pH 7.5)、200 μL L-天冬酰胺(189 mmol/L)、100 μL酶液]进行酶促反应,37 ℃反应10 min。随后加入100 μL三氯乙酸(1.5 mmol/L)终止反应,10 000 r/min离心10 min。随后进行显色反应,取100 μL反应液,加入3.4 mL去离子水和500 μL纳氏试剂(碘化汞法配制),混匀后静置10 min,于420 nm处检测吸光值。

图 2 不同信号肽对天冬酰胺酶表达的影响 Fig. 2 Effects of different signal peptides on L-ASN production. A: L-ASN activity. **P < 0.01. B: SDS-PAGE of extracellular proteins. Lane 1: Δ0F3/P43-SPSacC-ansZ; Lane 2: Δ0F3/P43-SPAmyL-ansZ; Lane 3: Δ0F3/P43-SPAprE-ansZ; Lane 4: Δ0F3/P43-SPYwbN-ansZ; Lane 5: Δ0F3/P43-SPWapA-ansZ; M: Protein marker. C: SDS-PAGE of intracellular proteins. Lane 1: Δ0F3/P43-SPAmyL-ansZ; Lane 2: Δ0F3/P43-SPSacC-ansZ; Lane 3: Δ0F3/P43-SPAprE-ansZ; M: Protein marker.

L-ASN单位酶活(U)定义:37 ℃条件下1 min水解L-天冬酰胺释放1 μmol NH3所需要的酶量。

1.2.5 基因转录水平分析

基因转录水平分析方法参照本课题组已报道的方法[11]。其中采用TRIzol提取总RNA,DNase I消化痕量DNA,采用Revert Aid First Strand cDNA Synthesis Kit (Thermo)扩增得到cDNA。表达载体pHY300PLK上的四环素抗性基因Tet作为参考基因。将重组菌株中基因ansZ的转录水平与参考基因Tet标准化后进行比较,以P43启动子介导的基因ansZ转录水平作为对照。

1.3 统计分析

所有实验均重复3次,每个数据均设置3个平行,采用Origin 2018和SPSS 18.0进行数据处理和分析,其中,*: P < 0.05表示差异显著,**: P < 0.01表示差异极显著。

2 结果与分析 2.1 信号肽筛选对L-ASN表达的影响

信号肽作为一种引导蛋白分泌的表达元件,在目标蛋白高效生产中发挥重要作用,信号肽筛选也是提高蛋白分泌表达水平的有效策略。L-ASN自身信号肽是脂蛋白质信号肽,其并不分泌到细胞膜外[2]。为提高L-ASN分泌水平,本研究首先构建了5种信号肽(SPSacC、SPAmyL、SPAprE、SPYwbN、SPWapA)介导的L-ASN表达载体,并将其电转至地衣芽胞杆菌Δ0F3中,得到L-ASN表达菌株,分别命名为Δ0F3/pP43-SPSacC-ansZ、Δ0F3/pP43-SPAmyL-ansZ、Δ0F3/pP43-SPAprE-ansZ、Δ0F3/pP43-SPYwbN-ansZ和Δ0F3/pP43-SPWapA-ansZ。

将已成功构建的不同信号肽介导的L-ASN表达菌株进行摇瓶发酵,并根据1.2.4中所述方法进行酶活测定。由图 2A可知,5种信号肽介导下的L-ASN酶活各不相同,其酶活水平依次为:SPSacC > SPWapA > SPAprE > SPAmyL > SPYwbN,其中SPSacC信号肽介导的天冬酰胺酶酶活最高,达到157.61 U/mL。与此同时,SDS-PAGE电泳检测的结果与酶活数据一致(图 2B)。此外,分别检测了菌株Δ0F3/pP43-SPAmyL-ansZ、Δ0F3/pP43- SPSacC-ansZ和Δ0F3/pP43-SPAprE-ansZ胞内总蛋白(图 2C)。结果表明,虽然3种信号肽介导下L-ASN的分泌量各有不同,其胞内蛋白表达情况基本相同。通过对胞内L-ASN酶活检测发现,不同菌株中L-ASN酶活也基本相同。之前关于抗生素、氨基酸等产物高产的代谢工程育种研究中,人们发现代谢物转运子的强化表达能够促进目的产物的高效合成[12-13]。因此,信号肽筛选优化在促进蛋白分泌的同时,也有利于目标蛋白的合成。

2.2 启动子筛选对L-ASN表达的影响

启动子在目的基因转录中发挥重要作用,启动子强度直接影响目的蛋白表达水平。在信号肽筛选的基础上,选取了4种启动子P43、PykzA-P43、PUbay、PbacA,分别构建了不同启动子介导的L-ASN表达载体,并电转至地衣芽胞杆菌Δ0F3中,重组菌株分别命名为Δ0F3/pP43- SPSacC-ansZ、Δ0F3/pPykzA-P43-SPSacC-ansZ、Δ0F3/ pPUbay-SPSacC-ansZ和Δ0F3/pPbacA-SPSacC-ansZ。

将已成功构建的不同启动子介导的L-ASN表达菌株进行摇瓶发酵,并根据1.2.4中所述方法进行酶活检测。由图 3A可知,不同启动子介导的L-ASN酶活水平依次为:PykzA-P43 > PUbay > PbacA > P43,其中PykzA-P43介导的L-ASN酶活最高,达到241.06 U/mL,相比于对照菌株Δ0F3/P43- SPSacC-ansZ提高了52.94%。此外,转录水平实验表明,串联启动子PykzA-P43介导的基因ansZ转录水平无论是对数期(16 h)还是在稳定期(36 h)都高于其他菌株(图 3B),说明串联启动子能够提高发酵过程ansZ转录水平,进而提高L-ASN酶活。

图 3 不同启动子对L-ASN表达的影响 Fig. 3 Effects of different promoters on L-ASN production. A: L-ASN activity. B: Transcriptional levels of gene ansZ. *: P < 0.05; **: P < 0.01.
2.3 宿主菌筛选

为进一步提高L-ASN表达水平,筛选了本课题组常用的3种蛋白表达宿主菌:地衣芽胞杆菌Δ0F3、地衣芽胞杆菌BL10和枯草芽胞杆菌WB800,并将L-ASN表达载体pPykzA-P43-SPSacC-ansZ电转化至3种表达宿主中,获得菌株分别命名为BL10/pPykzA-P43-SPSacC-ansZ、Δ0F3/pPykzA-P43-SPSacC-ansZ、WB800/pPykzA-P43- SPSacC-ansZ。

将已成功构建的3种L-ASN表达菌株进行摇瓶发酵。图 4结果表明,不同蛋白酶缺失菌株的L-ASN表达水平有明显差异,酶活水平依次为:BL10/pPykzA-P43-SPSacC-ansZ > Δ0F3/pPykzA-P43- SPSacC-ansZ > WB800/pPykzA-P43-SPSacC-ansZ,地衣芽胞杆菌BL10/PykzA-P43-SPSacC-ansZ的酶活最高,达到438.3 U/mL。

图 4 不同宿主菌对L-ASN表达的影响 Fig. 4 Effects of different host strains on L-ASN production.

同时,对L-ASN高产菌株BL10/PykzA-P43- SPSacC-ansZ和对照菌株Δ0F3/PykzA-P43-SPSacC-ansZ的发酵过程进行分析(图 5)。菌株BL10/PykzA-P43- SPSacC-ansZ在整个发酵周期中的菌体生长状况和酶活均优于对照菌株,最高生物量较对照菌株提高了26.88%,最高酶活较对照菌株提高了81.83%。此外,高产菌株的单位菌体酶活在整个发酵周期中明显高于对照菌株,发酵终点BL10/PykzA-P43-SPSacC-ansZ单位菌体酶活较对照菌株提高了50.47%。由此可见,地衣芽胞杆菌BL10作为表达宿主时,在提高发酵过程生物量的同时,也提高了单位菌体L-ASN酶活,进而有利于L-ASN高效合成。

图 5 菌株Δ0F3/pPykzA-P43-SPSacC-ansZ和BL10/ pPykzA-P43-SPSacC-ansZ的发酵过程曲线 Fig. 5 Fermentation curves of strains Δ0F3/ PykzA-P43-SPSacC-ansZ and BL10/PykzA-P43-SPSacC-ansZ.
3 讨论

L-ASN可催化L-天冬酰胺的水解反应,因此在医疗、食品健康等领域受到人们广泛关注,目前L-ASN较低的表达水平限制了其进一步应用推广。本研究通过优化信号肽与启动子,并结合宿主菌筛选,获得了一株高产L-ASN的工程菌株BL10/pPykzA-P43-SPSacC-asnZ,其最高酶活可达438.3 U/mL,是目前已报道的L-ASN摇瓶水平最高酶活的2.77倍,是芽胞杆菌中L-ASN摇瓶水平最高酶活的3.91倍(表 3)。本研究证实了表达元件和宿主优化是提高蛋白表达水平的有效策略,地衣芽胞杆菌BL10可以作为异源蛋白表达的优良宿主,并提供了一株具有工业应用潜力的L-ASN生产菌株。

表 3 摇瓶条件下不同微生物中L-ASN酶活水平 Table 3 L-ASN produced by different microorganisms in shake flask
Sources Host strains Enzyme activities (U/mL) References
E. coli YG 002 E. coli BL21(DE3) 17.4 [4]
Nocardiopsis alba NIOT-VKMA08 E. coli M15 158.1 [21]
B. subtilis 168 B. subtilis WB600 102.4 [6]
P. carotovorum MTCC 1428 B. subtilis WB800 105.0 [22]
B. subtilis 168 B. subtilis WB600 112.2 [2]

表达元件优化是提高蛋白表达水平的常用策略。本研究选取5种信号肽(SPSacC、SPAmyL、SPAprE、SPYwbN、SPWapA)用于L-ASN的分泌表达。之前的研究报道指出,SPSacC[9]和SPWapA[14]可高效介导纳豆激酶在地衣芽胞杆菌中的分泌表达,SPAmyL可显著提高α-淀粉酶分泌水平[15],AprE是地衣芽胞杆菌中分泌量最大的胞外蛋白酶[16],SPYwbN可介导枯草芽胞杆菌蛋白酶和地衣芽胞杆菌淀粉酶的高效分泌[17]。本研究结果表明,枯草芽胞杆菌168中果聚糖酶SacC的信号肽SPSacC更适宜于L-ASN的分泌表达,相比于其他4种信号肽(SPAmyL、SPAprE、SPYwbN和SPWapA),菌株Δ0F3/pP43-SPSacC-ansZ酶活分别提高了45.52%、38.40%、74.45%和19.99%。而通过SPSacC氨基酸序列分析(MKKRLIQVMIMF TLLLTMAFSADA),发现其N端带正电荷数量和H端疏水性也符合芽胞杆菌信号肽优化的一般规律[18],这可能正是SPSacC适宜于芽胞杆菌中异源蛋白高效分泌的原因之一。此外,串联启动子PykzA-P43是本课题组饶忆等[11]将σB型启动子PykzA与P43串联得到的强启动子,之前的研究中该启动子使得α-淀粉酶酶活提高了1.85倍。本研究得出串联启动子PykzA-P43介导下ansZ的转录水平在对数期和稳定期均有所提高,本课题组关于其他酶蛋白(碱性蛋白酶、角蛋白酶等)表达实验也证实,串联启动子PykzA-P43是地衣芽胞杆菌中异源蛋白表达的优良启动子。

芽胞杆菌是蛋白分泌表达的优良宿主,本研究选取了地衣芽胞杆菌BL10[9]、地衣芽胞杆菌Δ0F3[19]及枯草芽胞杆菌WB800[20]用来研究不同宿主对L-ASN表达的影响。结果表明,地衣芽胞杆菌BL10作为宿主时,L-ASN酶活最高,达到438.3 U/mL,分别是另外两种宿主(地衣芽胞杆菌Δ0F3、枯草芽胞杆菌WB800)的1.81倍和4.23倍。本课题组之前研究表明,地衣芽胞杆菌BL10能够显著提高纳豆激酶的表达水平,酶活较对照提高了39%[9]。本研究证实了地衣芽胞杆菌BL10可以作为一种具有工业应用潜力的芽胞杆菌表达宿主。

参考文献
[1]
COSTA IM, SCHULTZ L, de ARAUJO BIANCHI PEDRA B, LEITE MSM, FARSKY SHP, de OLIVEIRA MA, PESSOA A, MONTEIRO G. Recombinant L-asparaginase 1 from Saccharomyces cerevisiae: an allosteric enzyme with antineoplastic activity. Scientific Reports, 2016, 6: 36239. DOI:10.1038/srep36239
[2]
冯岳. Bacillus subtilis天冬酰胺酶高效表达与分子改造[D]. 无锡: 江南大学博士学位论文, 2018.
FENG Y. High-efficiency expression and molecular modification of Bacillus subtilis L-asparaginase[D]. Wuxi: Doctoral Dissertation of Jiangnan University, 2018(in Chinese).
[3]
EISELE N, LINKE DA, BITZER K, NA'AMNIEH S, NIMTZ M, BERGER RG. The first characterized asparaginase from a basidiomycete, Flammulina velutipes. Bioresource Technology, 2011, 102(3): 3316-3321. DOI:10.1016/j.biortech.2010.10.098
[4]
GHOSHOON MB, BERENJIAN A, HEMMATI S, DABBAGH F, KARIMI Z, NEGAHDARIPOUR M, GHASEMI Y. Extracellular production of recombinant L-asparaginase Ⅱ in Escherichia coli: medium optimization using response surface methodology. International Journal of Peptide Research and Therapeutics, 2015, 21(4): 487-495. DOI:10.1007/s10989-015-9476-6
[5]
FERRARA MA, SEVERINO NMB, MANSURE JJ, MARTINS AS, OLIVEIRA EMM, SIANI AC, PEREIRA N Jr, TORRES FAG, BON EPS. Asparaginase production by a recombinant Pichia pastoris strain harbouring Saccharomyces cerevisiae ASP3 gene. Enzyme and Microbial Technology, 2006, 39(7): 1457-1463. DOI:10.1016/j.enzmictec.2006.03.036
[6]
FENG Y, LIU S, JIAO Y, GAO H, WANG M, DU GC, CHEN J. Enhanced extracellular production of L-asparaginase from Bacillus subtilis 168 by B. subtilis WB600 through a combined strategy. Applied Microbiology and Biotechnology, 2017, 101(4): 1509-1520. DOI:10.1007/s00253-016-7816-x
[7]
DEGERING C, EGGERT T, PULS M, BONGAERTS J, EVERS S, MAURER KH, JAEGER KE. Optimization of protease secretion in Bacillus subtilis and Bacillus licheniformis by screening of homologous and heterologous signal peptides. Applied and Environmental Microbiology, 2010, 76(19): 6370-6376. DOI:10.1128/AEM.01146-10
[8]
ZHANG K, SU LQ, DUAN XG, LIU LN, WU J. High-level extracellular protein production in Bacillus subtilis using an optimized duaL-promoter expression system. Microbial Cell Factories, 2017, 16(1): 1-15. DOI:10.1186/s12934-016-0616-2
[9]
WEI XT, ZHOU YH, CHEN JB, CAI DB, WANG D, QI GF, CHEN SW. Efficient expression of nattokinase in Bacillus licheniformis: host strain construction and signal peptide optimization. Journal of Industrial Microbiology and Biotechnology, 2015, 42(2): 287-295. DOI:10.1007/s10295-014-1559-4
[10]
RAO Y, LI PF, XIE XX, LI JM, LIAO YQ, MA X, CAI DB, CHEN SW. Construction and characterization of a gradient strength promoter library for fine-tuned gene expression in Bacillus licheniformis. ACS Synthetic Biology, 2021, 10(9): 2331-2339. DOI:10.1021/acssynbio.1c00242
[11]
RAO Y, CAI DB, WANG H, XU YX, XIONG SJ, GAO L, XIONG M, WANG Z, CHEN SW, MA X. Construction and application of a dual promoter system for efficient protein production and metabolic pathway enhancement in Bacillus licheniformis. Journal of Biotechnology, 2020, 312: 1-10. DOI:10.1016/j.jbiotec.2020.02.015
[12]
QIU JF, ZHUO Y, ZHU DQ, ZHOU XF, ZHANG LX, BAI LQ, DENG ZX. Overexpression of the ABC transporter AvtAB increases avermectin production in Streptomyces avermitilis. Applied Microbiology and Biotechnology, 2011, 92(2): 337-345. DOI:10.1007/s00253-011-3439-4
[13]
LI YJ, WEI HB, WANG T, XU QY, ZHANG CL, FAN XG, MA Q, CHEN N, XIE XX. Current status on metabolic engineering for the production of L-aspartate family amino acids and derivatives. Bioresour Technol, 2017, 245: 1588-1602. DOI:10.1016/j.biortech.2017.05.145
[14]
何孝天, 刘中美, 崔文璟, 周哲敏. 介导纳豆激酶分泌表达的信号肽比较. 现代食品科技, 2014, 30(5): 62-68.
HE XT, LIU ZM, CUI WJ, ZHOU ZM. Comparison of signal peptides for nattokinase secretory expression. Modern Food Science and Technology, 2014, 30(5): 62-68 (in Chinese).
[15]
CHEN JQ, FU G, GAI YM, ZHENG P, ZHANG DW, WEN JP. Combinatorial Sec pathway analysis for improved heterologous protein secretion in Bacillus subtilis: identification of bottlenecks by systematic gene overexpression. Microbial Cell Factories, 2015, 14(1): 1-15. DOI:10.1186/s12934-014-0183-3
[16]
饶忆, 师璐, 王豪, 熊世颉, 蔡冬波, 陈守文, 李顺意. 通过优化表达元件及培养基组分提高地衣芽胞杆菌中碱性丝氨酸蛋白酶产量. 微生物学通报, 2019, 46(6): 1327-1335.
RAO Y, SHI L, WANG H, XIONG SJ, CAI DB, CHEN SW, LI SY. Enhancement production of subtilisin in Bacillus licheniformis by screening promoters and signal peptides and optimization of fermentation medium. Microbiology China, 2019, 46(6): 1327-1335 (in Chinese).
[17]
KOLKMAN MAB, van der PLOEG R, BERTELS M, van DIJK M, van der LAAN J, van DIJL JM, FERRARI E. The twin-arginine signal peptide of Bacillus subtilis YwbN can direct either tat- or sec-dependent secretion of different cargo proteins: secretion of active subtilisin via the B. subtilis tat pathway. Applied and Environmental Microbiology, 2008, 74(24): 7507-7513. DOI:10.1128/AEM.01401-08
[18]
LOW KO, MUHAMMAD MAHADI N, MD ILLIAS R. Optimisation of signal peptide for recombinant protein secretion in bacterial hosts. Applied Microbiology and Biotechnology, 2013, 97(9): 3811-3826. DOI:10.1007/s00253-013-4831-z
[19]
CAI D, WEI X, QIU Y, CHEN Y, CHEN J, WEN Z, CHEN S. High-level expression of nattokinase in Bacillus licheniformis by manipulating signal peptide and signal peptidase. Journal of Applied Microbiology, 2016, 121(3): 704-712. DOI:10.1111/jam.13175
[20]
NGUYEN TT, QUYEN TD, LE HT. Cloning and enhancing production of a detergent- and organic-solvent-resistant nattokinase from Bacillus subtilis VTCC-DVN-12-01 by using an eight-protease-gene-deficient Bacillus subtilis WB800. Microbial Cell Factories, 2013, 12(1): 1-11. DOI:10.1186/1475-2859-12-1
[21]
MEENA B, ANBURAJAN L, VINITHKUMAR NV, SHRIDHAR D, RAGHAVAN RV, DHARANI G, KIRUBAGARAN R. Molecular expression of L-asparaginase gene from Nocardiopsis alba NIOT-VKMA08 in Escherichia coli: a prospective recombinant enzyme for leukaemia chemotherapy. Gene, 2016, 590(2): 220-226. DOI:10.1016/j.gene.2016.05.003
[22]
CHITYALA S, VENKATA DASU V, AHMAD J, PRAKASHAM RS. High yield expression of novel glutaminase free L-asparaginase Ⅱ of Pectobacterium carotovorum MTCC 1428 in Bacillus subtilis WB800N. Bioprocess and Biosystems Engineering, 2015, 38(11): 2271-2284.