生物工程学报  2023, Vol. 39 Issue (3): 1026-1039
http://dx.doi.org/10.13345/j.cjb.220769
中国科学院微生物研究所、中国微生物学会主办
0

文章信息

杨裕然, 张灿, 李振轮
YANG Yuran, ZHANG Can, LI Zhenlun
ZnO和CuO纳米颗粒对废水生物处理的影响及缓解毒性的研究进展
The toxicity of ZnO and CuO nanoparticles on biological wastewater treatment and its detoxification: a review
生物工程学报, 2023, 39(3): 1026-1039
Chinese Journal of Biotechnology, 2023, 39(3): 1026-1039
10.13345/j.cjb.220769

文章历史

Received: September 25, 2022
Accepted: November 18, 2022
Published: November 23, 2022
ZnO和CuO纳米颗粒对废水生物处理的影响及缓解毒性的研究进展
杨裕然1 , 张灿2 , 李振轮1     
1. 西南大学资源环境学院 土壤多尺度界面过程与调控重庆市重点实验室, 重庆 400716;
2. 中低品位磷矿及其共伴生资源高效利用国家重点实验室, 贵州 贵阳 550016
摘要:ZnO和CuO纳米颗粒(nanoparticles, NPs)在研究、医学和工业等领域的广泛使用,已引起人们对其生物安全性的忧虑。相关学者已在污水处理系统中检测到ZnO NPs和CuO NPs,由于其独特的理化性质,低含量NPs就对微生物群落结构和生长代谢产生毒性,进而影响污水脱氮的稳定运行。本文综述了ZnO NPs和CuO NPs对生物脱氮系统中相关功能细菌的毒性及机制,并总结了通过调节水环境因素(如pH值、离子强度、离子类型和天然有机物等)缓解ZnO NPs和CuO NPs的细胞毒性,以期为今后缓解和应急调控金属纳米颗粒(metal oxide nanoparticles, MONPs)对污水处理系统的冲击提供理论基础和支撑。
关键词金属氧化物纳米颗粒    解毒    生物脱氮    毒性机制    环境介质    
The toxicity of ZnO and CuO nanoparticles on biological wastewater treatment and its detoxification: a review
YANG Yuran1 , ZHANG Can2 , LI Zhenlun1     
1. Chongqing Key Lab ovatory ovatory of Soil Multi-Scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing 400716, China;
2. State Key Laboratory of Efficient Utilization for Low Grade Phosphate Rock and Its Associated Resources, Guiyang 550016, Guizhou, China
Abstract: The wide use of ZnO and CuO nanoparticles in research, medicine, industry, and other fields has raised concerns about their biosafety. It is therefore unavoidable to be discharged into the sewage treatment system. Due to the unique physical and chemical properties of ZnO NPs and CuO NPs, it may be toxic to the members of the microbial community and their growth and metabolism, which in turn affects the stable operation of sewage nitrogen removal. This study summarizes the toxicity mechanism of two typical metal oxide nanoparticles (ZnO NPs and CuO NPs) to nitrogen removal microorganisms in sewage treatment systems. Furthermore, the factors affecting the cytotoxicity of metal oxide nanoparticles (MONPs) are summarized. This review aims to provide a theoretical basis and support for the future mitigating and emergent treatment of the adverse effects of nanoparticles on sewage treatment systems.
Keywords: metal oxide nanoparticles (MONPs)    detoxify    biological nitrogen removal    toxicity mechanism    environmental media    

金属氧化物纳米颗粒(metal oxide nanoparticles, MONPs)因具有独特的理化性质,被广泛应用于农药、化妆品、医药卫生和电子产品等领域[1]。截止至2020年,MONPs的年产量持续以58 000 t/年以上的速度增长[2],并创造约30 000亿美元的市场[3]。其中以纳米ZnO (ZnO NPs)和纳米CuO (CuO NPs)应用最为广泛[4-7]

目前,ZnO NPs和CuO NPs广泛应用于纺织品、塑料和化妆品等,在其生产、使用和处理过程中,部分释放到环境,最终通过污水收集管网汇集到污水处理系统[8-10]。尽管受目前测量仪器精度的限制,缺乏污水中纳米颗粒实际浓度的数据,但已有证据表明ZnO NPs和CuO NPs已存在于污水处理系统中[1, 11]。例如,在半导体工业废水中铜浓度可达100 mg/L,其中近一半以CuO NPs的形式存在[7]。同时,因高催化能力、吸附特性等,ZnO NPs和CuO NPs也被大量应用于污水处理的有机物降解、消毒、金属离子吸附等过程[12-13]。已有研究显示,进入污水处理系统中的NPs,90%以上都被截留在污水生物处理反应池中[14-17]。不难推断,污水处理系统中NPs的含量必将逐步攀升。这必然会对污水处理微生物造成潜在的生物毒性威胁,并损害污水处理的脱氮性能[18-19]。研究表明,ZnO NPs和CuO NPs会对脱氮细菌的多样性或群落结构造成影响,抑制氮去除效率和相关酶活性[20-24]。同时发现,ZnO NPs和CuO NPs的毒性效应还与剂量、暴露时间、种类和环境介质等有关[15-16]

本文在现有研究的基础上,系统地总结了ZnO NPs和CuO NPs对脱氮微生物的影响及作用机理,并进一步总结了通过调节水环境(如pH值、离子强度、离子类型和天然有机物等)来缓解ZnO NPs和CuO NPs对细菌细胞的毒性,以期为应急调控、维持和提高ZnO NPs和CuO NPs冲击下污水处理系统功能提供理论与方法支撑。

1 ZnO NPs和CuO NPs对污水处理系统的毒性效应

污水生物处理系统中功能细菌通过新陈代谢作用实现氮的转化和去除。ZnO NPs和CuO NPs通过沉淀、吸附、溶解、络合等理化过程截留在污水处理系统中[25-26],这必然对生物处理系统的稳定运行造成威胁。

1.1 ZnO NPs和CuO NPs对污水脱氮具有剂量依赖的抑制效应

表 1列举了部分ZnO NPs和CuO NPs对脱氮效率的影响,总体表现为剂量依赖的抑制效应。例如,许泽宏等[28]的研究表明,当CuO NPs由0增加到10 mg/L时,生物脱氮受到严重的抑制,总氮的去除率从90.6%下降到79.8%。其原因是CuO NPs抑制氨氮在好氧期的氧化和缺氧期的反硝化过程,导致水体中氨氮、亚硝态氮和硝态氮浓度的升高。He等[31]的研究表明,ZnO NPs冲击对硝化、反硝化反应有急性毒性,对氮素转化有抑制作用。究其原因,一方面是由于MONPs的存在会影响活性污泥的絮凝能力和胞外聚合物(extracellular polymeric substances, EPS)的组成[32]。ZnO NPs暴露处理使污泥EPS分泌增多,松束缚胞外聚合物(loosely bound EPS, LB-EPS)中蛋白质/多糖比和zeta电位的降低,导致污泥絮凝能力差[17]。EPS的增多使体积膨胀并破坏了细胞黏附,导致污泥难以脱水[15]。另一方面是MONPs的存在影响了生物脱氮系统微生物群落结构的稳定性。

表 1 ZnO NPs和CuO NPs对污水脱氮的影响 Table 1 Effect of ZnO NPs and CuO NPs on nitrogen removal in wastewater
MONPs Concentrations Results Reference
ZnO-NPs 2.5 mg/L The nitrogen removal capacity of denitrification reactor was nearly deprived [27]
ZnO-NPs 1 mg/L The TN removal efficiency decreased to 47.8%, and the NH4+ and NO2 in the effluent rose to 25.7 and 69.8 mg/L, respectively [8]
ZnO-NPs 10 mg/L 90% loss of nitrogen removal capacity [25]
ZnO-NPs 10, 50 mg/L NH4+ removal efficiencies were reduced by 8.1% and 21.1%, respectively [23]
ZnO-NPs 1–128 mg/L As the concentration increases, the TN removal efficiency decreases from 100% to 1.7% [22]
CuO-NPs 1 mg/L The TN removal efficiency decreased from the 71.5% to 40.3%, and the NH4+ and NO2 contents in the water increased to 25.2 and 68.5 mg/L, respectively [8]
CuO-NPs 0–10 mg/L As the concentration increased, the TN removal efficiency decreased from 90.6% to 79.8% [28]
CuO-NPs < 10 mg/L Enhance the NH4+ removal [19]
CuO-NPs 1 mg/L Significantly reduced the activity of Pseudomonas putida Y-9 and inhibited the removal of NH4+ [29]
CuO-NPs 30–60 mg/L Inhibits the removal of NH4+ [30]

此外,ZnO NPs和CuO NPs的暴露处理会影响污水处理系统中N2O (温室气体,增温潜势是CO2的298倍)的排放[11, 33]。例如,Ye等[34]发现ZnO NPs对序批式反应器中N2O的排放有剂量依赖的抑制效应。而Zheng等[35]报道,50 mg/L ZnO NPs使气液相N2O浓度比对照高出350倍和174倍。目前,有关MONPs对脱氮过程中N2O排放的研究较少,因此,有必要从分子、代谢等多方面开展ZnO NPs和CuO NPs对污水生物脱氮系统中N2O排放的影响及作用机制的研究。

1.2 ZnO NPs和CuO NPs降低了关键功能菌丰度

细菌种群的多样性和群落结构的稳定是污水生物脱氮成功运行的重要因素。ZnO NPs和CuO NPs会改变活性污泥细菌群落结构,影响细菌活性和功能。例如,ZnO NPs和CuO NPs会导致微生物群落变迁[23, 36],生物量和多样性降低,进而影响污水处理效率。30 mg/L CuO NPs显著地抑制了氨氧化细菌的活性,降低了反应器氨氧化能力[19]。Cheng等[27]发现,长期暴露于2.5 mg/L ZnO-NPs的脱氮反应器中占主导地位的反硝化菌的相对丰度从51.0%下降到8.0%。Zhang等[8]的研究发现,ZnO NPs和CuO NPs对脱氮效率、微生物活性及群落结构均有显著的影响。类似的研究发现[20, 30, 37],CuO NPs和ZnONPs暴露处理显著降低了活性污泥的细菌多样性,改变了整个细菌群落结构,并降低了脱氮微生物的活性。此外,也有研究表明暴露于低浓度NPs对微生物有促进作用[38]。例如,Cheng等[27]和Chen等[39]的研究表明,在环境浓度下(1 mg/L)的ZnO NPs和CuO NPs对微生物活性没有明显抑制作用。但低浓度CuO NPs (< 10 mg/L)通过加速物质转化和诱导蛋白酶的合成,增强了氨氧化细菌的生物活性[19]。在某种程度上,MONPs甚至可以提供微量元素,起到促进生物质生长的作用[1]。然而,关于NPs对微生物起积极还是消极的作用还因作用纳米颗粒种类、浓度、暴露时间和污水成分等存在差异,需要进一步研究。总的来说,细菌多样性的降低和群落结构的改变可能导致系统功能的紊乱,进而直接影响污水处理的性能。

2 ZnO NPs和CuO NPs对污水处理微生物的细胞毒性

MONPs的细胞毒性在过去几年引起了极大的关注。ZnO NPs和CuO NPs对脱氮细菌的细胞毒性多种多样,总的来说,主要有以下几个方面:(1) 有毒重金属离子的溶解和脱落;(2) 细胞膜的表面反应和扰动;(3)活性氧(reactive oxygen species, ROS)的产生[15, 25, 40-42]。如图 1所示,事实上,纳米颗粒对细菌的毒性可能涉及以上一种或多种途径。例如,ZnO NPs和释放的Zn2+都可诱导ROS的产生对细胞膜造成损伤,影响电子传递和相关酶的活性。

图 1 金属氧化物纳米颗粒细胞毒性机理 Fig. 1 Cytotoxic mechanism of MONPs.
2.1 释放重金属离子产生毒害

进入污水处理系统的ZnO NPs和CuO NPs会发生聚集、溶解、吸附和水解4个过程(图 2),这就导致纳米颗粒和金属离子在水介质中共存。普遍认为,ZnO NPs和CuO NPs有溶于水介质的潜力,从而导致有毒金属离子释放到周围的介质中。Zn2+对ZnO NPs在抑菌活性上的贡献已经在纯培养(Pseudomonas stutzeri PCN-1[22]P. putida Y-9[29]P. tolaasii Y-11[43])、活性污泥[34, 44]和生物膜[2, 45]中得到证实。例如,Cheng等[27]和Ye等[34]的研究发现,ZnO NPs释放的Zn2+在抑制反硝化过程中起重要作用。随着ZnO NPs浓度的增加,Zn2+释放量增加,导致脱氮速率、EPS含量和脱氢酶活性的下降[27]。同样地,Zhang等[25]的研究发现,有毒的Zn2+在厌氧生物体内的积累,导致ZnO NPs冲击使90%的脱氮能力丧失。Wang等[46]比较了多种MONPs发现,ZnO NPs细胞毒性仅由释放的Zn2+决定,而CuO NPs细胞毒性来源于释放的Cu2+和CuO NPs。CuO NPs溶解释放的Cu2+对其毒性的贡献也有相关研究。Zhang等[47]通过向厌氧氨氧化系统中添加EDTA捕获CuO NPs释放的Cu2+来减轻毒性,证明了CuO NPs的毒性取决于活性金属的含量。总之,ZnO NPs和CuO NPs的细胞毒性有一部分要归因于重金属离子的释放。

图 2 金属氧化物纳米颗粒在水溶液中的溶解、吸附、水解和聚集过程(改编自Wang等[46]) Fig. 2 Dissolution, adsorption, hydrolysis and aggregation of MONPs in aqueous solution (adapted from Wang et al.[46]).

ZnO NPs和CuO NPs释放的重金属离子不仅会吸附在细胞膜表面,引起zeta电位的变化[48],而且会进入细胞内部破坏蛋白质、DNA等。释放的金属离子与多肽链的活性基团直接结合,改变酶的结构并引起酶活性的抑制[49]。Zheng等[50]观察到,50 mg/L ZnO NPs释放的Zn2+降低了硝酸盐还原酶(nitrate reductase, NAR)的活性,并导致总氮的去除率降低了13.1%。Mu等[51]发现ZnO NPs释放Zn2+产生的毒性是抑制污泥水解、酸化和甲烷化过程中涉及的代谢中间体和关键酶活性的重要原因。Liu等[52]发现CuO NPs释放的Cu2+会显著抑制活性污泥的内源呼吸和硝化作用。

值得注意的是,ZnO NPs和CuO NPs释放的重金属离子可能比纳米颗粒本身更具有毒性[53]。一方面,游离Cu2+与细胞膜结合产生过氧化氢自由基,产生远大于CuO NPs的毒性[54]。另一方面,溶解的Zn2+和Cu2+较ZnO NPs和CuO NPs更容易渗透到细胞内部产生毒害作用[2, 46]。如Cu(Ⅰ)在细胞内氧化为Cu(Ⅱ),导致ROS的积累,产生更强的毒性[2]。因此,有效地抑制ZnO NPs和CuO NPs的溶解,能够达到缓解其对脱氮微生物毒性的作用。具体的方法将在第3节进行阐述。

2.2 ZnO NPs和CuO NPs诱导ROS的产生,破坏细胞结构

ROS的产生及相关活性氧自由基对生物体的氧化作用被认为是纳米颗粒产生细胞毒性的机制。ZnO NPs和CuO NPs体积小,很容易吸附在细菌细胞表面。当外膜蛋白或细胞表面蛋白与纳米颗粒接触时,ZnO NPs和CuO NPs诱导的ROS使蛋白质的二级结构发生改变,可能发生蛋白的去折叠[3, 32],不饱和脂肪酸和磷脂的破坏[8],导致乳酸脱氢酶(lactate dehydrogenase,LDH,细胞膜完整性指标)的释放。Wang等[30]发现,60 mg/L CuO NPs条件下ROS的生成和LDH的释放分别增加43.6%和56.4%。类似地,当暴露于50 mg/L CuO NPs时,与对照组相比,ROS和LDH分别增加42.0%和56.2%[26]。结果表明,高剂量的CuO NPs诱导ROS的产生,破坏细菌细胞膜的完整性。但在对ZnO NPs的研究中发现,ZnO NPs可能会诱导细胞内产生ROS,但胞外没有检测到LDH的显著释放[22, 25, 34]。我们认为,一方面是由于ZnO NPs和CuO NPs对细菌的毒性本身存在差异;另一方面,由于氧气条件(厌氧和好氧)的变化也可能对ROS的产生存在差异[55]。过量ROS产生会引起膜的氧化应激、各种细胞膜成分的过氧化和体内平衡失衡,最终导致细胞代谢紊乱甚至死亡[3]

ZnO NPs和CuO NPs穿透细胞膜进入细胞内部并催化产生ROS,导致氧化自由基水平明显增高。研究发现,胞内ROS的产生与纳米颗粒浓度成正比[56]。Wu等[18]观察到1 mg/L ZnO NPs可导致硝化细菌群落产生大量的ROS。随着ZnO NPs含量从1 mg/L增加至128 mg/L,ROS生成从107%提升至144%[22]。首先,脱氮细菌可以通过提高抗氧化酶(如超氧化物歧化酶、过氧化氢酶)活性来抵抗ZnO NPs和CuO NPs诱导的ROS氧化应激[34]。但随着ZnO NPs和CuO NPs毒性胁迫的加剧,机体内正常的氧化与抗氧化水平的失衡[20],导致ROS的积累,进一步地导致细胞中某些关键酶失活,DNA、脂质、蛋白质等分子过氧化[30]。如导致DNA的碱基和糖磷酸骨架糖链的断裂[8],从而造成细胞功能的损伤甚至死亡。Chen等[39]的研究发现,暴露于50 mg/L CuO NPs时,大量产生的ROS抑制了微生物合成代谢和分解代谢活性,降低细胞增殖。此外,胞内ROS的产生,极大地抑制了酶活性和基因表达[22]

除了以上毒性外,ROS还会导致电子传递的中断,进而影响酶活性。Chen等[39]通过转录组学分析表明,CuO NPs的暴露处理导致微生物一些参与电子传递和呼吸的基因下调。10 mg/L CuO NPs的呼吸抑制率高达69%[28]。在低浓度ZnO NPs下,产生的ROS导致跨膜电子的中断,NAR和亚硝酸盐还原酶(nitrite reductase, NIR)活性降低,进而导致硝酸盐和亚硝酸盐还原的延迟[22]。此外,Zheng等[35]结果表明,ZnO NPs的存在导致积累的聚羟基丁酸酯与反硝化竞争电子,抑制关键反硝化酶的基因表达和催化活性,从而对硝酸盐和N2O的还原产生负面影响。许泽宏等[28]发现,长期暴露于CuO NPs中能够抑制聚羟基脂肪酸酯的合成,减少聚羟基脂肪酸酯氧化分解产生的能量,抑制了硝化或反硝化作用。并且,CuO NPs还严重地抑制了呼吸速率。

2.3 ZnO NPs和CuO NPs对细胞膜的表面反应和扰动 2.3.1 ZnO NPs和CuO NPs破坏细菌表面的屏障

ZnO NPs和CuO NPs一旦到达水-生物膜界面,就可能与生物膜中的EPS和细菌细胞相互作用。EPS是一种复杂的高分子量聚合物,主要由蛋白质、多聚糖以及腐殖酸、DNA和脂类组成[3],被认为是微生物的第一道屏障。通常,微生物EPS的组成和含量被认为是一种重要的缓解有毒物质的自我保护策略[26]。研究表明,低于10 mg/L ZnO NPs和5 mg/L CuO NPs的刺激作用可以提高EPS含量(尤其是蛋白质含量)[19, 32, 35, 57]。ZnO NPs和CuO NPs与EPS的重金属吸附位点结合(如蛋白质的芳烃、脂肪和碳水化合物中的疏水区域[26, 58]),促进纳米颗粒的聚集,降低其浓度[34]。此外,EPS阻碍了细胞与ZnO NPs和CuO NPs或重金属离子的直接接触,从而降低了纳米颗粒的毒性。有研究发现,EPS的增加还可以防止氧进入活性污泥的内部区域,减少了ROS的生成[30]。但当CuO NPs负荷较高时,EPS和蛋白质产量降低,不足以吸收全部纳米颗粒,更多的纳米颗粒进入细胞,限制了氮的去除[19]。因此,通过人工投加腐殖酸等有机物能够起到缓解ZnO NPs和CuO NPs细胞毒性的作用,如3.3节所述。

细胞膜是控制细胞内外物质进出的屏障,保护生物体免受外来物质的攻击,并提供一个稳定的环境。细胞膜上的受体蛋白可以调节酶的反应、细胞的识别和电子传递,从而控制细胞的整体代谢。当ZnO NPs和CuO NPs及其释放的重金属离子到达细胞表面,与细胞膜上的羟基、磷酸盐和含硫基团位点结合[49],导致ZnO NPs和CuO NPs及其释放的Zn2+和Cu2+吸附在细胞膜的表面或内化引起细胞变形[56]、穿孔[30],细胞膜通透性增加,体内平衡失衡,细胞代谢紊乱,甚至细胞死亡。Ye等[17]发现,ZnO NPs可以与细胞膜结合,干扰其膜电位和完整性。此外,ZnO NPs和CuO NPs还会导致胞内物质泄漏,发生细胞紊乱。Zhao等[56]观察到,CuO NPs会导致胞内K+泄漏,进而导致整个细胞膜渗透失衡,进一步破坏细菌稳态。除了K+外,其他胞质DNA和RNA等材料也可能泄漏到细胞外介质。在受到轻微的膜损伤后,细菌细胞在自我修复后可能仍然存活,然而,当细胞内大量物质外泄时,就会发生不可修复的损伤。

2.3.2 ZnO NPs和CuO NPs抑制了关键酶活性和功能基因表达

废水脱氮是一系列由硝化、反硝化等过程控制的生物反应。NAR和NIR控制着反硝化过程。氨单加氧酶(ammonia monooxygenase, AMO)和亚硝酸盐氧化酶(nitrite oxidase, NOR)与硝化过程密切相关。这些酶是膜结合酶,要么嵌入细胞膜中,要么位于细胞的周质(细胞质)中。ZnO NPs和CuO NPs的暴露处理增加了与这些膜结合酶接触的风险,使这些酶降低活性或失活,抑制相关基因表达,从而干扰氮转化过程。例如,AMO是硝化细菌中的膜结合酶,膜结构的破坏可能会中断氨氧化过程[49]。Cheng等[27]的研究表明,2.5 mg/L ZnO NPs的毒性导致反硝化功能基因narLGHnapABnirKnorB相对丰度降低。Ye等[34]研究发现,ZnO NPs的添加诱导了硝化功能基因(amoAhaonxrA)和反硝化功能基因(narGnirSnirKnorBnosZ)在转录水平上的表达。1 mg/L ZnO NPs虽然对相关功能酶活没有显著影响,但基因narGnorB的丰度分别降低到对照的56.0%和54.7%。长期10 mg/L ZnO NPs暴露处理,使AMO、NAR、NIR和NOR活性较对照降低了82.0%−98.3%,相关编码基因丰度也显著下调[34]。同时,关键酶活性分析表明,长期不同剂量CuO NPs (0−60 mg/L)的暴露处理抑制AMO和NOR的活性,导致氨氧化和亚硝酸盐氧化过程的严重恶化[20, 30]。相似地,50 mg/L CuO NPs暴露可使NIR和NAR活性明显降低,抑制亚硝酸盐和硝酸盐的生物还原[21, 30]。相关学者研究发现,CuO NPs溶出的微量铜离子对含铜的亚硝酸盐还原酶和氧化亚氮还原酶具有刺激作用,从而改善N2O的排放[3]

总的来说,ZnO NPs和CuO NPs的毒性机理主要体现在重金属离子的释放、活性氧的积累和细胞膜的破坏。这会进一步导致电子传递和信号转导中断、关键酶活性的丧失、细胞稳态的失衡、遗传物质的损伤等。因此,全面掌握ZnO NPs和CuO NPs对脱氮细菌的影响及其毒害作用机制,对探究缓解其细胞毒害具有重要的作用。

3 缓解ZnO NPs和CuO NPs细胞毒性的研究

ZnO NPs和CuO NPs的存在会对脱氮细菌构成潜在的生物毒性威胁。因此,缓解ZnO NPs和CuO NPs细胞毒性的研究也是当前热点之一。Hwang等[40]从安全设计纳米颗粒的角度综述了减轻MONPs对脱氮微生物毒害的方法。相关学者发现,ZnO NPs和CuO NPs在蒸馏水和自然水环境中的差异主要是由于自然水复杂的水化学条件。ZnO NPs和CuO NPs一旦进入水环境,废水的组成(如天然有机质、离子强度和离子种类等)和水质参数(如pH值)会改变其水化学行为(聚集、转化和分散行为)[19, 26, 59],进而影响其物理化学性质(如大小、溶解度、表面电荷聚集和沉积)和毒性特征[56, 60] (图 3)。这些因素也会影响CuO NPs和ZnO NPs的生物利用度和细菌代谢活动。

图 3 pH、金属离子和天然溶解性有机物(dissolved organic matter, DOM)对MONPs溶解、转化和聚集的影响 Fig. 3 Effect of pH, metal ions and DOM on dissolution, transformation and aggregation of MONPs.
3.1 调高pH值干扰ZnO NPs和CuO NPs的聚集和溶解

水体的pH值是影响ZnO NPs和CuO NPs扩散的主要影响因素[15]。当环境溶液的pH值接近等电点时,ZnO NPs和CuO NPs在胶体体系中容易聚集。相反地,当pH值低于等电点时,胶体表面带正电荷,zeta电位随pH值的降低而增大。当pH值高于等电点时,胶体表面带负电荷,随着pH值的增大,zeta电位的负电荷增大。随着水体pH值(4–7)的增加,CuO NPs在超纯水中的沉降速率降低[61]。MONPs的聚集降低了其实际浓度,减缓了纳米毒害[2]。此外,pH值对MONPs的溶解也有着重要的影响。在酸性pH值下,一些重金属离子会释放到水中[12]。增加溶液的pH值,一方面,可以在ZnO NPs表面形成氢氧根层,抑制ZnO NPs的溶解,从而降低ZnO NPs对微生物的毒性[62]。另一方面,溶解的重金属离子经历水解过程,导致不溶性金属氢氧化物的形成[46]

3.2 离子强度和离子类型会影响ZnO NPs和CuO NPs表面电位,进而调控其溶解和聚集

水中的离子种类和离子强度会影响ZnO NPs和CuO NPs的转化、性质和毒性。CuO NPs和ZnO NPs的稳定性随着zeta电位的增加而增加,而离子强度的增加导致zeta电位随之降低[4, 15]。Bian等[63]发现,在低的离子强度下,ZnO NPs的静电力远大于范德华力。因此,ZnO NPs更加稳定。在较高的离子强度下(添加10 mmol/L NaCl),CuO NPs溶出的Cu2+与Cl发生络合作用,促进溶解[61]

水介质中存在大量的阳离子(如Ca2+、Mg2+、Fe2+、Na+和K+等)对CuO NPs和ZnO NPs的性质和行为有重要影响。阳离子,如投加的Mg2+和Ca2+能够与Zn2+竞争毒性结合位点,显著降低ZnO NPs的毒性。外源Ca2+增加了疏水性,进一步提高了纳米颗粒的附着效率[2]。并且这些外源二价阳离子(Mg2+、Ca2+和Fe2+)通过与ZnO NPs和CuO NPs表面的羟基形成表面复合物吸附,促进了ZnO NPs和CuO NPs的聚集[43, 64-65]。相较于Na+和K+等单价阳离子,添加的二价阳离子(Mg2+、Ca2+和Fe2+)更能压缩双电层,颗粒聚集增大,对抑制ZnO NPs中Zn2+溶出更有效[43, 66]。并且,水介质中存在的阴离子在缓解ZnO NPs和CuO NPs生物毒性,促进转化方面也有重要作用。废水中普遍存在的硫化物会与ZnO NPs和CuO NPs发生反应,影响ZnO NPs和CuO NPs的理化性质。通常,硫化会引起纳米颗粒聚集,降低溶解度,降低生物利用度。如Wang等[67]发现,硫化物的添加使CuO NPs硫化,生成的CuS NPs的细胞毒性更小。ZnO NPs通过溶解-络合/沉淀反应与硫化物、磷酸盐或柠檬酸类物质结合,毒性降低[68]。外源高浓度的SO42–使ZnO NPs表面电位反转,ZnO NPs难于溶解[41]。此外,添加某些物质与金属离子结合,从而降低毒性。例如,磷酸盐的存在大大削弱了ZnO NPs对反硝化活性、EPS、脱氢酶活性和功能基因相对丰度的不利影响[27]。这是由于HPO42–吸附在ZnO NPs的表面并且产生磷酸锌,抑制Zn2+的溶出[62]。向水环境中添加螯合剂等也可减轻ZnO NPs和CuO NPs的细胞毒性。例如,EDTA或S2–的添加,屏蔽和减弱Cu2+与EPS之间的互相作用,钝化了CuO NPs对活性污泥的毒性[47]。EDTA可以减轻Cu2+对蛋白质稳定性、酶活性和信号传导的毒性[69]

3.3 天然有机物促进ZnO NPs和CuO NPs的聚集,降低迁移能力

相关研究发现,在天然水中ZnO NPs和CuO NPs的细胞毒性有一定的减弱[56]。这主要归功于水体中普遍存在的天然溶解性有机物(dissolved organic matter, DOM)。DOM是一类无定形、异质的有机生物聚合物大分子[16],如氨基酸、蛋白质和多糖等。在水介质中的DOM可以归类为腐殖酸,并可以进一步分为黄腐酸、腐殖酸和腐殖质[16]。DOM可以吸附在ZnO NPs和CuO NPs表面改变其理化性质,从而显著影响甚至决定其在水环境中的聚集和迁移能力[4, 66]。通常,DOM的添加会增加ZnO NPs和CuO NPs的粒径和稳定性。例如,在较高的离子浓度下,DOM通过与CuO NPs形成分子间桥接作用,促进MONPs的聚集[33]。同时,DOM具有高度的表面活性,可以在ZnO NPs和CuO NPs的表面形成涂层。Zhao等[56]通过流式细胞仪发现,添加5 mg/L黄腐酸使10 mg/L CuO NPs对细胞膜损伤由18%下降到13%。DOM的存在增加了MONPs间的静电斥力和空间位阻,阻碍了MONPs与细胞膜的物理接触[33, 70]。其三,DOM还会影响ZnO NPs和CuO NPs的溶解。Li等[62]发现,腐殖酸的添加能够降低游离Zn2+的浓度,以此降低ZnO NPs的毒性。

此外,值得注意的是,Su等[71]通过用污泥发酵液替代乙酸钠,能够使在2.5 mg/L CuO NPs胁迫下的脱氮系统的总氮去除率由59.0%恢复到78.7%。一方面是发酵液中的半胱氨酸的存在促进了还原性谷胱甘肽的合成。另一方面,减少了ROS的产生,增加关键蛋白的表达,保证细胞内能量和底物的代谢[71]。活性氧的释放是ZnO NPs毒性的来源,通过添加清除自由基的物质(甘露醇、维生素E和谷胱甘肽)能够破坏其抗菌效果[72]

综上所述,通过调节水介质的pH值接近ZnO NPs和CuO NPs的Zeta电位,促进其团聚,降低溶解;另外,碱性环境可以在MONPs表面形成一层氢氧根层,抑制重金属离子的溶出。类似地,外源添加的二价金属阳离子能够在MONPs表面形成复合物,促进MONPs的聚集;磷酸根、EDTA和S2–使溶出的Zn2+和Cu2+转化为毒性更小的难溶物,降低纳米毒害作用。DOM的存在促进了ZnO NPs和CuO NPs的聚集,抑制了迁移,同时有效地阻止了MONPs与细胞膜的直接接触。因此,通过调节水环境性质和组成,能够降低ZnO NPs和CuO NPs对脱氮细菌的毒性,保证污水生物脱氮的顺利进行。

4 展望

本课题组前期研究了ZnO NPs和CuO NPs对2种菌株Pseudomonas putida Y-9和P. tolaasii Y-11脱氮和生长的影响,总体表现为剂量依赖的抑制作用[29, 43, 65]。通过电镜扫描观测、水动力直径和Zeta电位测量、乳酸脱氢酶测定等发现,外源FeSO4的投加促进了ZnO NPs和CuO NPs的聚集,抑制了Zn2+和Cu2+的溶出,避免了ZnO NPs和CuO NPs对菌株细胞膜的损伤。为今后进一步应急调控、维持和提高ZnO NPs和CuO NPs冲击下污水处理系统功能提供理论与方法支撑。但是,缺乏有关FeSO4在缓解ZnO NPs和CuO NPs细胞毒性中的代谢机理和相关分子机制。同时,模拟污水与实际污水存在较大的差异,有必要开展天然水体下缓解ZnO NPs和CuO NPs细胞毒性的研究。结合前期的研究结果,进一步地提出了以下展望:(1) 在天然水环境中往往存在多种物质,如金属离子、有机物等,这些物质对MONPs的理化性质会有影响,因此在纯模拟实验中可能扩大了纳米颗粒的细胞毒性。(2) 在“减碳”的要求下,污水处理中N2O的排放受到广泛的关注,然而有关ZnO NPs和CuO NPs对脱氮过程中N2O排放的影响有待进一步研究。(3) 污泥发酵液和厨余发酵液均可作为污水处理中的碳源,其中含有的物质可能清除ZnO NPs和CuO NPs释放的活性氧自由基,缓解纳米细胞毒性。(4) 在疫情严重的当下,消毒液、抗生素等大量使用并进入污水处理系统,纳米材料与这些物质的复合作用有待进一步研究。

参考文献
[1]
WU SB, WU HM, BUTTON M, KONNERUP D, BRIX H. Impact of engineered nanoparticles on microbial transformations of carbon, nitrogen, and phosphorus in wastewater treatment processes-a review. Science of the Total Environment, 2019, 660: 1144-1154. DOI:10.1016/j.scitotenv.2019.01.106
[2]
JOO SH, AGGARWAL S. Factors impacting the interactions of engineered nanoparticles with bacterial cells and biofilms: mechanistic insights and state of knowledge. Journal of Environmental Management, 2018, 225: 62-74.
[3]
WANG DB, CHEN YG. Critical review of the influences of nanoparticles on biological wastewater treatment and sludge digestion. Critical Reviews in Biotechnology, 2016, 36(5): 816-828. DOI:10.3109/07388551.2015.1049509
[4]
LIU ZL, WANG C, HOU J, WANG PF, MIAO LZ, LV BW, YANG YY, YOU GX, XU Y, ZHANG MZ, CI HL. Aggregation, sedimentation, and dissolution of CuO and ZnO nanoparticles in five waters. Environmental Science and Pollution Research, 2018, 25(31): 31240-31249. DOI:10.1007/s11356-018-3123-7
[5]
REDDY PVL, ADISA IO, RAWAT S, KIM B, BARRIOS AC, MEDINA VLA, HERNANDEZ VJA, PERALTA VJR, GARDEA TJL. Finding the conditions for the beneficial use of ZnO nanoparticles towards plants-a review. Environmental Pollution, 2018, 241: 1175-1181. DOI:10.1016/j.envpol.2018.06.036
[6]
MIAO LZ, WANG PF, HOU J, MING DL, LIU ZL, LIU SQ, LI TF. Chronic exposure to CuO nanoparticles induced community structure shift and a delay inhibition of microbial functions in multi-species biofilms. Journal of Cleaner Production, 2020, 262: 121353. DOI:10.1016/j.jclepro.2020.121353
[7]
ZHANG XJ, CHEN Z, MA YP, ZHANG N, WEI DH, ZHANG HL, ZHANG HZ. Response of partial nitrification sludge to the single and combined stress of CuO nanoparticles and sulfamethoxazole antibiotic on microbial activity, community and resistance genes. Science of the Total Environment, 2020, 712: 135759. DOI:10.1016/j.scitotenv.2019.135759
[8]
ZHANG XJ, ZHOU Y, XU TF, ZHENG KW, ZHANG RR, PENG ZX, ZHANG HZ. Toxic effects of CuO, ZnO and TiO2 nanoparticles in environmental concentration on the nitrogen removal, microbial activity and community of anammox process. Chemical Engineering Journal, 2018, 332: 42-48. DOI:10.1016/j.cej.2017.09.072
[9]
JOŚKO I, OLESZCZUK P, DOBRZYŃSKA J, FUTA B, JONIEC J, DOBROWOLSKI R. Long-term effect of ZnO and CuO nanoparticles on soil microbial community in different types of soil. Geoderma, 2019, 352: 204-212. DOI:10.1016/j.geoderma.2019.06.010
[10]
ZHANG ZZ, CHENG YF, XU LZJ, WU J, BAI YH, XU JJ, SHI ZJ, JIN RC. Discrepant effects of metal and metal oxide nanoparticles on anammox sludge properties: a comparison between Cu and CuO nanoparticles. Bioresource Technology, 2018, 266: 507-515. DOI:10.1016/j.biortech.2018.06.094
[11]
YE JY, GAO H, DOMINGO-FELEZ C, WU JK, ZHAN MJ, YU R, SMETS BF. Insights into chronic zinc oxide nanoparticle stress responses of biological nitrogen removal system with nitrous oxide emission and its recovery potential. Bioresource Technology, 2021, 327: 124797. DOI:10.1016/j.biortech.2021.124797
[12]
CAI CY, ZHAO MH, YU Z, RONG HW, ZHANG CS. Utilization of nanomaterials for in situ remediation of heavy metal (loid) contaminated sediments: a review. Science of the Total Environment, 2019, 662: 205-217. DOI:10.1016/j.scitotenv.2019.01.180
[13]
ZHU Y, LIU XL, HU YL, WANG R, CHEN M, WU JH, WANG YY, KANG S, SUN Y, ZHU MX. Behavior, remediation effect and toxicity of nanomaterials in water environments. Environmental Research, 2019, 174: 54-60. DOI:10.1016/j.envres.2019.04.014
[14]
HOU LL, LI KY, DING YZ, LI Y, CHEN J, WU XL, LI XQ. Removal of silver nanoparticles in simulated wastewater treatment processes and its impact on COD and NH4 reduction. Chemosphere, 2012, 87(3): 248-252. DOI:10.1016/j.chemosphere.2011.12.042
[15]
WANG XG, HAN T, SUN Y, GENG HY, LI B, DAI HL. Effects of nano metal oxide particles on activated sludge system: stress and performance recovery mechanism. Environmental Pollution, 2021, 285: 117408. DOI:10.1016/j.envpol.2021.117408
[16]
WU SS, GAILLARD JF, GRAY KA. The impacts of metal-based engineered nanomaterial mixtures on microbial systems: a review. Science of the Total Environment, 2021, 780: 146496. DOI:10.1016/j.scitotenv.2021.146496
[17]
YE JY, GAO H, WU JK, YU R. Effects of ZnO nanoparticles on flocculation and sedimentation of activated sludge in wastewater treatment process. Environmental Research, 2021, 192: 110256. DOI:10.1016/j.envres.2020.110256
[18]
WU Q, HUANG KL, SUN HH, REN HQ, ZHANG XX, YE L. Comparison of the impacts of zinc ions and zinc nanoparticles on nitrifying microbial community. Journal of Hazardous Materials, 2018, 343: 166-175. DOI:10.1016/j.jhazmat.2017.09.022
[19]
ZHANG XJ, ZHOU Y, YU BY, ZHANG N, WANG LN, FU HQ, ZHANG J. Effect of copper oxide nanoparticles on the ammonia removal and microbial community of partial nitrification process. Chemical Engineering Journal, 2017, 328: 152-158. DOI:10.1016/j.cej.2017.07.028
[20]
WANG XH, LI J, LIU R, HAI RT. Responses of bacterial communities to CuO nanoparticles in activated sludge system. Environmental Science & Technology, 2017, 51(10): 5368-5376.
[21]
HOU J, YOU GX, XU Y, WANG C, WANG PF, MIAO LZ, AO YH, LI Y, LV BW, YANG YY. Impacts of CuO nanoparticles on nitrogen removal in sequencing batch biofilm reactors after short-term and long-term exposure and the functions of natural organic matter. Environmental Science and Pollution Research, 2016, 23(21): 22116-22125. DOI:10.1007/s11356-016-7281-1
[22]
CHEN Q, LI TT, GUI MY, LIU MS, NI JR. Effects of ZnO nanoparticles on aerobic denitrification by strain Pseudomonas stutzeri PCN-1. Bioresource Technology, 2017, 239: 21-27. DOI:10.1016/j.biortech.2017.04.123
[23]
ZHANG DQ, ENG CY, STUCKEY DC, ZHOU Y. Effects of ZnO nanoparticle exposure on wastewater treatment and soluble microbial products (SMPs) in an anoxic-aerobic membrane bioreactor. Chemosphere, 2017, 171: 446-459. DOI:10.1016/j.chemosphere.2016.12.053
[24]
CHEN J, TANG YQ, LI Y, NIE Y, HOU LL, LI XQ, WU XL. Impacts of different nanoparticles on functional bacterial community in activated sludge. Chemosphere, 2014, 104: 141-148. DOI:10.1016/j.chemosphere.2013.10.082
[25]
ZHANG ZZ, CHENG YF, XU LZJ, BAI YH, XU JJ, SHI ZJ, ZHANG QQ, JIN RC. Transient disturbance of engineered ZnO nanoparticles enhances the resistance and resilience of anammox process in wastewater treatment. Science of the Total Environment, 2018, 622/623: 402-409. DOI:10.1016/j.scitotenv.2017.12.016
[26]
MIAO LZ, WANG C, HOU J, WANG PF, AO YH, LI Y, GENG N, YAO Y, LV B, YANG YY, YOU GW, XU Y. Aggregation and removal of copper oxide (CuO) nanoparticles in wastewater environment and their effects on the microbial activities of wastewater biofilms. Bioresource Technology, 2016, 216: 537-544. DOI:10.1016/j.biortech.2016.05.082
[27]
CHENG YF, ZHANG ZZ, LI GF, ZHU BQ, ZHANG Q, LIU YY, ZHU WQ, FAN NS, JIN RC. Effects of ZnO nanoparticles on high-rate denitrifying granular sludge and the role of phosphate in toxicity attenuation. Environmental Pollution, 2019, 251: 166-174. DOI:10.1016/j.envpol.2019.04.138
[28]
许泽宏, 周明罗, 程晓丹, 郭宗峰. 新型污染物纳米氧化铜对生物脱氮除磷的影响及机制探究. 环境污染与防治, 2017, 39(6): 626-630, 634.
XU ZH, ZHOU ML, CHENG XD, GUO ZF. Study on the effect and mechanism of a new type pollutant CuO nano particle on biological nitrogen and phosphorus removal. Environmental Pollution & Control, 2017, 39(6): 626-630, 634 (in Chinese). DOI:10.15985/j.cnki.1001-3865.2017.06.009
[29]
HUANG XJ, WANG YX, NI JP, XIE DT, LI ZL. Metal oxide nanoparticles resonate to ammonium removal through influencing Mg2+ absorption by Pseudomonas putida Y-9. Bioresource Technology, 2020, 296: 122339. DOI:10.1016/j.biortech.2019.122339
[30]
WANG S, LI ZW, GAO MC, SHE ZL, MA BR, GUO L, ZHENG D, ZHAO YG, JIN CJ, WANG XJ, GAO F. Long-term effects of cupric oxide nanoparticles (CuO NPs) on the performance, microbial community and enzymatic activity of activated sludge in a sequencing batch reactor. Journal of Environmental Management, 2017, 187: 330-339.
[31]
HE QL, YUAN Z, ZHANG J, ZHANG SL, ZHANG W, ZOU ZC, WANG HY. Insight into the impact of ZnO nanoparticles on aerobic granular sludge under shock loading. Chemosphere, 2017, 173: 411-416. DOI:10.1016/j.chemosphere.2017.01.085
[32]
HOU J, MIAO LZ, WANG C, WANG PF, AO YH, LV BW. Effect of CuO nanoparticles on the production and composition of extracellular polymeric substances and physicochemical stability of activated sludge flocs. Bioresource Technology, 2015, 176: 65-70. DOI:10.1016/j.biortech.2014.11.020
[33]
CHEN YG, WANG DB, ZHU XY, ZHENG X, FENG LY. Long-term effects of copper nanoparticles on wastewater biological nutrient removal and N2O generation in the activated sludge process. Environmental Science & Technology, 2012, 46(22): 12452-12458.
[34]
YE JY, GAO H, WU JK, CHANG Y, CHEN ZK, YU R. Responses of nitrogen transformation processes and N2O emissions in biological nitrogen removal system to short-term ZnO nanoparticle stress. Science of the Total Environment, 2020, 705: 135916. DOI:10.1016/j.scitotenv.2019.135916
[35]
ZHENG X, SU YL, CHEN YG, WAN R, LIU K, LI M, YIN DQ. Zinc oxide nanoparticles cause inhibition of microbial denitrification by affecting transcriptional regulation and enzyme activity. Environmental Science & Technology, 2014, 48(23): 13800-13807.
[36]
ZHANG YR, XU R, XIANG YP, LU Y, JIA MY, HUANG J, XU ZY, CAO J, XIONG WP, YANG ZH. Addition of nanoparticles increases the abundance of mobile genetic elements and changes microbial community in the sludge anaerobic digestion system. Journal of Hazardous Materials, 2021, 405: 124206. DOI:10.1016/j.jhazmat.2020.124206
[37]
WANG S, GAO MC, SHE ZL, ZHENG D, JIN CJ, GUO L, ZHAO YG, LI ZW, WANG XJ. Long-term effects of ZnO nanoparticles on nitrogen and phosphorus removal, microbial activity and microbial community of a sequencing batch reactor. Bioresource Technology, 2016, 216: 428-436. DOI:10.1016/j.biortech.2016.05.099
[38]
WANG ST, LI SP, WANG WQ, YOU H. The impact of zinc oxide nanoparticles on nitrification and the bacterial community in activated sludge in an SBR. RSC Advances, 2015, 5(82): 67335-67342. DOI:10.1039/C5RA07106B
[39]
CHEN ZY, GAO SH, JIN M, SUN SJ. Physiological and transcriptomic analyses reveal CuO nanoparticle inhibition of anabolic and catabolic activities of sulfate-reducing bacterium. Environment International, 2019, 125: 65-74. DOI:10.1016/j.envint.2019.01.058
[40]
HWANG R, MIRSHAFIEE V, ZHU YF, XIA T. Current approaches for safer design of engineered nanomaterials. Ecotoxicology and Environmental Safety, 2018, 166: 294-300. DOI:10.1016/j.ecoenv.2018.09.077
[41]
PENG YH, TSAI YC, HSIUNG CE, LIN YH, SHIH YH. Influence of water chemistry on the environmental behaviors of commercial ZnO nanoparticles in various water and wastewater samples. Journal of Hazardous Materials, 2017, 322: 348-356. DOI:10.1016/j.jhazmat.2016.10.003
[42]
ADELEYE AS, POKHREL S, MADLER L, KELLER AA. Influence of nanoparticle doping on the colloidal stability and toxicity of copper oxide nanoparticles in synthetic and natural waters. Water Research, 2018, 132: 12-22. DOI:10.1016/j.watres.2017.12.069
[43]
YANG YR, ZHANG C, LI KL, LI ZL. Fe2+ alleviated the toxicity of ZnO nanoparticles to Pseudomonas tolaasii Y-11 by changing nanoparticles behavior in solution. Microorganisms, 2021, 9(11): 2189. DOI:10.3390/microorganisms9112189
[44]
LIU GQ, WANG DM, WANG JM, MENDOZA C. Effect of ZnO particles on activated sludge: role of particle dissolution. Science of the Total Environment, 2011, 409(14): 2852-2857. DOI:10.1016/j.scitotenv.2011.03.022
[45]
XU Y, WANG C, HOU J, DAI SS, WANG PF, MIAO LZ, LV B, YANG YY, YOU GX. Effects of ZnO nanoparticles and Zn2+ on fluvial biofilms and the related toxicity mechanisms. Science of the Total Environment, 2016, 544: 230-237. DOI:10.1016/j.scitotenv.2015.11.130
[46]
WANG DL, LIN ZF, WANG T, YAO ZF, QIN MN, ZHENG SR, LU W. Where does the toxicity of metal oxide nanoparticles come from: the nanoparticles, the ions, or a combination of both?. Journal of Hazardous Materials, 2016, 308: 328-334. DOI:10.1016/j.jhazmat.2016.01.066
[47]
ZHANG ZZ, XU JJ, SHI ZJ, CHENG YF, JI ZQ, DENG R, JIN RC. Combined impacts of nanoparticles on anammox granules and the roles of EDTA and S2− in attenuation. Journal of Hazardous Materials, 2017, 334: 49-58. DOI:10.1016/j.jhazmat.2017.04.002
[48]
CERVANTES-AVILES P, CUEVAS-RODRIGUEZ G. Changes in nutrient removal and flocs characteristics generated by presence of ZnO nanoparticles in activated sludge process. Chemosphere, 2017, 182: 672-680. DOI:10.1016/j.chemosphere.2017.05.074
[49]
WU JK, ZHU GC, YU R. Fates and impacts of nanomaterial contaminants in biological wastewater treatment system: a review. Water, Air, & Soil Pollution, 2018, 229(1): 9.
[50]
ZHENG X, WU R, CHEN YG. Effects of ZnO nanoparticles on wastewater biological nitrogen and phosphorus removal. Environmental Science & Technology, 2011, 45(7): 2826-2832.
[51]
MU H, CHEN YG, XIAO ND. Effects of metal oxide nanoparticles (TiO2, Al2O3, SiO2 and ZnO) on waste activated sludge anaerobic digestion. Bioresource Technology, 2011, 102(22): 10305-10311. DOI:10.1016/j.biortech.2011.08.100
[52]
LIU GQ, WANG JM. Effects of nano-copper(II) oxide and nano-magnesium oxide particles on activated sludge. Water Environment Research, 2012, 84(7): 569-576. DOI:10.2175/106143012X13373575830593
[53]
FANG XH, YU R, LI BQ, SOMASUNDARAN P, CHANDRAN K. Stresses exerted by ZnO, CeO2 and anatase TiO2 nanoparticles on the Nitrosomonas europaea. Journal of Colloid and Interface Science, 2010, 348(2): 329-334. DOI:10.1016/j.jcis.2010.04.075
[54]
RODRIGUEZ-MONTELONGO L, CRUZ-RODRIGUEZ LC, FARIAS RN, MASSA EM. Membrane-associated redox cycling of copper mediates hydroperoxide toxicity in Escherichia coli. Biochimica et Biophysica Acta: BBA-Bioenergetics, 1993, 1144(1): 77-84.
[55]
CHEN YG, ZHANG XY, LIU WG. Effect of metal and metal oxide engineered nano particles on nitrogen bio-conversion and its mechanism: a review. Chemosphere, 2022, 287: 132097. DOI:10.1016/j.chemosphere.2021.132097
[56]
ZHAO J, WANG ZY, DAI YH, XING BS. Mitigation of CuO nanoparticle-induced bacterial membrane damage by dissolved organic matter. Water Research, 2013, 47(12): 4169-4178. DOI:10.1016/j.watres.2012.11.058
[57]
PUAY NQ, QIU GL, TING YP. Effect of zinc oxide nanoparticles on biological wastewater treatment in a sequencing batch reactor. Journal of Cleaner Production, 2015, 88: 139-145. DOI:10.1016/j.jclepro.2014.03.081
[58]
SHENG GP, YU HQ, LI XY. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnology Advances, 2010, 28(6): 882-894. DOI:10.1016/j.biotechadv.2010.08.001
[59]
ZHOU XH, HUANG BC, ZHOU T, LIU YC, SHI HC. Aggregation behavior of engineered nanoparticles and their impact on activated sludge in wastewater treatment. Chemosphere, 2015, 119: 568-576. DOI:10.1016/j.chemosphere.2014.07.037
[60]
王宁, 刘丹, 谢敏伟, 李启彬, 刘庆梅. 水环境中纳米氧化锌的环境行为及生物毒性研究进展. 环境化学, 2016, 35(12): 2528-2534.
WANG N, LIU D, XIE MW, LI QB, LIU QM. Behavior and toxicity of zinc oxide nanoparticles in aquatic environment. Environmental Chemistry, 2016, 35(12): 2528-2534 (in Chinese). DOI:10.7524/j.issn.0254-6108.2016.12.2016060601
[61]
ADELEYE AS, CONWAY JR, PEREZ T, RUTTEN P, KELLER AA. Influence of extracellular polymeric substances on the long-term fate, dissolution, and speciation of copper-based nanoparticles. Environmental Science & Technology, 2014, 48(21): 12561-12568.
[62]
LI M, LIN DH, ZHU LZ. Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli. Environmental Pollution, 2013, 173: 97-102. DOI:10.1016/j.envpol.2012.10.026
[63]
BIAN SW, MUDUNKOTUWA IA, RUPASINGHE T, CRASSIAN VH. Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid. Langmuir: the ACS Journal of Surfaces and Colloids, 2011, 27(10): 6059-6068. DOI:10.1021/la200570n
[64]
LOOSLI F, LE Coustumer P, STOLL S. Effect of electrolyte valency, alginate concentration and pH on engineered TiO2 nanoparticle stability in aqueous solution. Science of the Total Environment, 2015, 535: 28-34. DOI:10.1016/j.scitotenv.2015.02.037
[65]
YANG YR, ZHANG C, HUANG XJ, GUI XW, LUO YF, LI ZL. Exogenous Fe2+ alleviated the toxicity of CuO nanoparticles on Pseudomonas tolaasii Y-11 under different nitrogen sources. PeerJ, 2020, 8: e10351. DOI:10.7717/peerj.10351
[66]
JIANG XJ, TONG MP, LI HY, YANG K. Deposition kinetics of zinc oxide nanoparticles on natural organic matter coated silica surfaces. Journal of Colloid and Interface Science, 2010, 350(2): 427-434. DOI:10.1016/j.jcis.2010.06.063
[67]
WANG ZY, BUSSCHE A, KABADI PK, KANE AB, HURT RH. Biological and environmental transformations of copper-based nanomaterials. ACS Nano, 2013, 7(10): 8715-8727. DOI:10.1021/nn403080y
[68]
LOMBI E, DONNER E, TAVAKKOLI E, TURNRY TW, NAIDU R, MILLER BW, SCHECKEL KG. Fate of zinc oxide nanoparticles during anaerobic digestion of wastewater and post-treatment processing of sewage sludge. Environmental Science & Technology, 2012, 46(16): 9089-9096.
[69]
ZHANG ZZ, CHENG YF, ZHOU YH, BUAYI X, JIN REN CJ. Roles of EDTA washing and Ca2+ regulation on the restoration of anammox granules inhibited by copper(II). Journal of Hazardous Materials, 2016, 301: 92-99. DOI:10.1016/j.jhazmat.2015.08.036
[70]
YU R, WU JK, LIU MT, ZHU GC, CHEN LH, CHANG Y, LU HJ. Toxicity of binary mixtures of metal oxide nanoparticles to Nitrosomonas europaea. Chemosphere, 2016, 153: 187-197. DOI:10.1016/j.chemosphere.2016.03.065
[71]
SU YL, CHEN YG, ZHENG X, WAN R, HUANG HN, LI M, WU LJ. Using sludge fermentation liquid to reduce the inhibitory effect of copper oxide nanoparticles on municipal wastewater biological nutrient removal. Water Research, 2016, 99: 216-224. DOI:10.1016/j.watres.2016.04.066
[72]
JIANG YH, ZHANG LL, WEN DS, DING YL. Role of physical and chemical interactions in the antibacterial behavior of ZnO nanoparticles against E. coli. Materials Science and Engineering: C, 2016, 69: 1361-1366. DOI:10.1016/j.msec.2016.08.044