生物工程学报  2023, Vol. 39 Issue (3): 930-941
http://dx.doi.org/10.13345/j.cjb.220623
中国科学院微生物研究所、中国微生物学会主办
0

文章信息

陈雅维, 郑慧杰, 曹倚婷, 杨佳佳, 周惠云
CHEN Yawei, ZHENG Huijie, CAO Yiting, YANG Jiajia, ZHOU Huiyun
多级孔金属-有机框架固定化酶的研究进展
Advances in enzyme immobilization based on hierarchical porous metal-organic frameworks
生物工程学报, 2023, 39(3): 930-941
Chinese Journal of Biotechnology, 2023, 39(3): 930-941
10.13345/j.cjb.220623

文章历史

Received: August 5, 2022
Accepted: November 1, 2022
多级孔金属-有机框架固定化酶的研究进展
陈雅维 , 郑慧杰 , 曹倚婷 , 杨佳佳 , 周惠云     
河南科技大学化工与制药学院, 河南 洛阳 471023
摘要:金属-有机框架(metal-organic frameworks, MOFs)作为酶固定化的优良载体,为生物催化反应提供优越的物理和化学保护。近年来,多级孔金属-有机框架(hierarchical porous metal-organic frameworks, HP-MOFs)由于其独特的结构优势,在固定化酶方面显示出更大的潜力。到目前为止,已经开发了各类具有原生多级孔或缺陷多级孔的HP-MOFs用于酶的固定化研究,并且使得固定化酶在催化活性、稳定性和重复利用性等方面得到了显著增强。本文系统总结了HP-MOFs用于固定化酶的各种策略,介绍了HP-MOFs固定化酶(enzyme@HP-MOFs)在催化合成、生物传感、生物医药等领域的最新应用进展。最后,讨论并展望了HP-MOFs固定化酶这一领域所面临的挑战和机遇。
关键词金属-有机框架(MOFs)    多级孔    固定化酶    生物催化    生物传感    生物医药    
Advances in enzyme immobilization based on hierarchical porous metal-organic frameworks
CHEN Yawei , ZHENG Huijie , CAO Yiting , YANG Jiajia , ZHOU Huiyun     
College of Chemical and Pharmaceutical Engineering, Henan University of Science and Technology, Luoyang 471023, Henan, China
Abstract: As an excellent hosting matrices for enzyme immobilization, metal-organic framework (MOFs) provides superior physical and chemical protection for biocatalytic reactions. In recent years, the hierarchical porous metal-organic frameworks (HP-MOFs) have shown great potential in enzyme immobilization due to their flexible structural advantages. To date, a variety of HP-MOFs with intrinsic or defective porous have been developed for the immobilization of enzymes. The catalytic activity, stability and reusability of enzyme@HP-MOFs composites are significantly enhanced. This review systematically summarized the strategies for developing enzyme@HP-MOFs composites. In addition, the latest applications of enzyme@HP-MOFs composites in catalytic synthesis, biosensing and biomedicine were described. Moreover, the challenges and opportunities in this field were discussed and envisioned.
Keywords: metal-organic frameworks (MOFs)    hierarchical porous    immobilized enzyme    biocatalysis    biosensing    biomedicine    

酶是普遍存在的生物大分子催化剂,在生命进程中起着至关重要的作用。固定化酶技术通过吸附、交联或封装等方法将游离酶限制或固定在所选载体的特定区域,保持其催化活性的同时提升对于环境的耐受性、增加使用批次以实现高效催化。近年来,多级孔金属-有机框架(hierarchical porous metal-organic frameworks, HP-MOFs)的出现为固定化酶技术提供了一个新的有利途径。

鉴于这一领域的进展速度,本文重点论述HP-MOFs固定化酶的策略以及HP-MOFs固定化酶在生物催化、生物传感和生物医药等方面的最新应用进展。最后讨论并展望HP-MOFs固定化酶应用面临的挑战和机遇。

1 固定化酶的概述

作为天然生物催化剂的酶在各类反应中表现出催化活性高、选择性好(立体选择性、区域选择性和化学选择性)和环境友好等优点[1-2]。得益于这些优势,酶在过去几十年被广泛应用于化学品合成、制药研究、食品、化妆品、生物燃料开发、废弃物资源化等领域[3-4]。然而,游离酶在使用过程中通常有许多问题,例如催化后的产物提取、分离和纯化困难,在恶劣环境中稳定性差(如热稳定性、pH值和储存稳定性),缺乏可重复利用性等,严重阻碍了酶的大规模应用[5]

为了解决游离酶在实际应用过程中的诸多问题,学者们尝试采用固定化、人工修饰、蛋白质和酶工程、溶剂工程和酶的定向进化等策略,取得了一定的进展[6-9]。尤其固定化酶技术,可显著提高酶的活性、稳定性和选择性,已在工业生产中广泛应用[4]。除提高催化性能外,固定化技术还可以快速将酶从底物、产品和基质中分离出来,利于酶的重复使用[1, 10]。学者们已经陆续开发出许多用于固定化酶的载体,包括天然聚合物、合成有机物和无机固体等[11-13]。尽管这些固定化载体具有较高的酶负载能力,能够提高酶在恶劣环境下的操作稳定性,但大多数固定化酶仍存在浸出、变性、传质与传热效率受限等问题[14]

金属-有机框架(metal-organic frameworks, MOFs)是由金属离子或金属簇与有机配体通过配位键等作用自组装形成的一种多孔结晶骨架材料,广泛用于气体吸附、分离、储能、发光,催化、传感、药物递送、环境保护等领域[15-17]。MOFs具有活性部位多、比表面积大、孔隙率高,骨架密度低,孔隙尺寸可调节,热稳定性好,易于功能化等特点,越来越多地用于酶的固定化研究[18-20]。然而目前报道的MOFs大多只具有微孔结构,例如ZIF-8、HKUST-1、MOF-5等,其孔径小于2 nm,酶分子主要通过物理吸附和共价交联法固定,很难通过扩散的方法直接进入到MOFs孔隙内[1, 21]。近年来,多级孔金属-有机框架(hierarchical porous metal-organic frameworks, HP-MOFs)的出现为固定化酶技术提供了一个新的有利途径。HP-MOFs通常存在微孔(孔径 < 2 nm)、介孔(孔径2−50 nm)、大孔(孔径 > 50 nm)中任意两级或三级孔结构[22]。其中介孔或者大孔结构有利于酶的固定化,微孔结构利于底物和产物的传输与扩散,缩短催化反应时间,提高反应效率,从而达到绿色高效的目的[23]。目前为止,已经报道了从头合成或者在原始微孔MOFs中产生孔隙、缺陷从而制备HP-MOFs的多种设计方法,例如配体延伸法、缺陷诱导法、模板法、合成条件调控法以及后处理法等[22]

2 HP-MOFs固定化酶的策略

自2006年首次报道MOFs固定化酶以来,已有大量研究以MOFs为载体,通过各种不同策略实现酶的固定化[22, 24]。根据酶与MOFs基质之间的相互作用模式,构建MOFs-酶复合物的策略主要包括表面吸附法、共价交联法、孔道渗透法和原位封装法[25]

在过去的几十年里,MOFs固定化酶大多采用物理吸附或者共价交联的方法[26-27]。这些方法不依赖于MOFs的孔道结构,设计简单、可操作性强,而且绝大部分的酶都可以通过这些方法固定。但这些方法的固定位点都来自于MOFs有限的表面区域,忽视了MOFs丰富孔道的利用,因此酶的负载率较低。此外,在恶劣环境条件下,MOFs表面固定的酶的催化活性以及稳定性都相对较差[27-28]

自2011年首次报道了酶在HP-MOFs中的成功固定之后[29],越来越多的学者开始探索利用HP-MOFs作为载体进行酶的固定化研究,以进一步提高酶的催化性能[22]。HP-MOFs固定化酶的方法主要是孔道渗透法和原位封装法[22]表 1列举了基于上述方法固定化酶的应用实例。表 2对比了孔道渗透法和原位封装法的优缺点。

表 1 HP-MOFs固定化酶的策略、特点及应用 Table 1 Strategies for synthesis of enzyme@HP-MOFs composites and their performances and applications
Immobilizationstrategy HP-MOF Enzyme Improved performance Application Reference
Pore entrapment Tb-mesoMOF MP-11 Enhanced catalytic efficiency and recyclability Oxidation of DTBC [29]
Pore entrapment HZIF-8, HZIF-67 GOx, HRP Enhanced increased operational stability and enzymatic activity Proof of concept [30]
Pore entrapment PCN-333 ChOx, HRP Enhanced tolerance to protease digestion, organic solvents, temperature changes, and pH variation Biosensor for cholesterol detection [31]
Pore entrapment Pd@DP-ZIF67 CalA Integration of different catalytic functions in the MOF nano platform Chemoenzymatic dynamic kinetic resolution [32]
Pore entrapment Fe-BDC Lipase Enhanced catalytic efficiency and tolerance in organic media Biocatalysis in organic media [33]
Pore entrapment Fe-MMPG-5 GOx Cascade reaction, high selectivity, excellent reusability, low LOD Biosensor for glucose detection [34]
Pore entrapment PCN-333, MOF-808 Bilirubin Higher hemocompatibility and adsorption capacity Hemoperfusion therapy [35]
Pore entrapment PCN-333 HRP, IAA Higher loading capacity, sustained and synchronized release Enzyme-activated prodrug therapy [36]
One-pot ZIF-67 Nitrile hydratase Improved thermal stability, recycling performance and high catalytic activity Production of nicotinamide [37]
One-pot ZIF-90 Nitrilase Enhanced stability and reusability Hydrolysis of nitrile compounds [38]
One-pot NH2-MIL-53 Laccase Enhanced catalytic efficiency and reusability Degradation of bisphenol A in wastewater [39]
One-pot HKUST-1 CA, FDH, GDH Cofactor regeneration, higher catalytic efficiency, good operational stability and reusability Conversion of CO2 to formate [40]
One-pot MIL 101-NH2 CAT Cascade reaction Theranostics against hypoxic tumor microenvironment [41]
One-pot ZIF-8 GOx Higher sensitivity, the assembly of cascade enzymes or enzyme mimics Biosensor for glucose and cholesterol detection [42]
One-pot Zn-mIm Cellulase Strong binding, high loading and good base tolerance Hydrolysis of cellulose [43]
One-pot ZIF-8 Oxidase, hemin Cascade reaction, low LOD, high selectivity, and excellent stability Biosensor for glucose detection [44]
表 2 HP-MOFs固定化酶策略的特点比较 Table 2 Comparison of different approaches for enzyme immobilization in/on HP-MOFs
Immobilization strategy Advantages Disadvantages
Pore entrapment (1) Enhanced enzyme loading efficiency (1) Limited mass and heat-transfer efficiency
(2) High substrate selectivity (2) Complicated process for HP-MOFs preparation
(3) Enhanced stability and reusability
One-pot (1) Enhanced enzyme loading efficiency (1) Strictly controlled conditions
(2) Simplified operation steps (2) Decreased catalytic activity
(3) Reduced enzyme leaching
(4) Enhanced stability and reusability
(5) No dimensional compatibility required
2.1 孔道渗透法

孔道渗透法又称孔道包埋法。酶通过自由扩散方式进入MOFs的孔道或空腔,并与之产生π-π相互作用、范德华力等而固定于MOFs内[45](图 1A)。HP-MOFs的出现使得酶和其他生物大分子可以高度自由地扩散到MOFs的孔道中。因此,渗透法通常使用具有较大孔径及丰富孔道的HP-MOFs,如MIL100、NU-100x和IRMOF-74等[46],能够实现较高的酶负载率[47]。孔道渗透法固定的酶位于HP-MOFs内部,酶分子不易堆积或展开,对恶劣催化环境的耐受有较大提升,并可减少酶的浸出[45, 48-49]

图 1 HP-MOFs固定化酶的策略 Fig. 1 Diagrammatic sketches of enzyme immobilization strategies in/on HP-MOFs. A:孔道渗透法. B:原位封装法 A: Pore entrapment method. B: In situ encapsulation method.

Lykourinou等[29]首次探索了HP-MOFs在酶催化中的应用,并将一种微过氧化物酶MP-11通过渗透法封入Tb-mesoMOF中。Tb-mesoMOF具有直径分别为0.9 nm、3.0 nm和4.1 nm的多级孔道。其中3.0 nm和4.1 nm的孔道正好可以封入大小为3.3 nm×1.7 nm× 1.1 nm MP-11分子,而0.9 nm的微孔则可为底物提供转运通道。与介孔二氧化硅材料MCM-41相比,Tb-mesoMOF固定化酶具有更为优越的催化性能。随后,该团队还进行了一项有趣的研究[50],他们发现细胞色素c (cytochrome c, Cyt-c)的尺寸超过了Tb-mesoMOFs孔道的尺寸,却依然可以扩散到MOFs的空腔中。通过荧光光谱法研究发现Cyt-c进入HP-MOFs内部的机制:即蛋白质在转移到MOFs内部的过程中,经历了显著的构象变化,该研究为探索HP-MOFs固定化酶的机制奠定了基础。

有研究将孔道渗透法与其他固定化方法相结合,用于酶催化级联反应或者多酶催化纳米反应器的构建,也取得了较好的效果。Zhao等[31]采用具有高比表面积和超大空腔的PCN-333 (Al)分别通过物理吸附法固定胆固醇氧化酶(cholesterol oxidase, ChOx),孔道包埋法固定辣根过氧化物酶(horseradish peroxidase, HRP)。共固定化的ChOx和HRP在级联反应中表现出较高的催化活性以及对蛋白酶、有机溶剂、pH和热变化的强耐受性。Dutta等[32]设计并合成了基于MOFs的多模块催化纳米反应器。将预先合成的Pd NCs [nanocrystals, NCs, 直径(2.6±0.4) nm或(5.2±0.4) nm]或Pt NCs [直径(6.1±0.9) nm]加入合成DP-ZIF67的前体混合物中,制备得到包裹纳米颗粒并带介孔的MOF (Pd@DP-ZIF67)。Pd@DP-ZIF67中的微孔可以作为小分子扩散通道,介孔用于固定假丝酵母脂肪酶A (Candida antractica lipase A, CalA, 约6.3 nm×5.6 nm×4.2 nm大小)。

孔道渗透法为固定化酶提供了一种有效的方法,越来越多HP-MOFs制备方法的出现,使得MOFs的孔道尺寸结构和孔隙率都可设计调节,从而与不同尺寸的酶匹配,并为特定底物和产物的输送提供了潜在的尺寸选择性[51-52]。然而,HP-MOFs制备方法较为繁琐,制备条件控制不易,导致材料的均一性和大规模制备存在困难[22, 52-53]。此外,酶分子和底物的扩散也存在一定的阻力,最终会削弱固定化酶的催化性能[54]

2.2 原位封装法

原位封装法是将酶和合成MOFs的前体物一起加入体系,在酶表面原位生长MOFs结构,即一步实现酶的封装以及MOFs的制备(图 1B)。故这种新型的“一锅法”策略不受MOFs孔道结构和尺寸的影响。酶的原位封装过程常发生在常温、常压、水溶液环境中,利于酶活性的保持[55]。与孔道渗透法相比,原位封装法减少了酶的浸出,利于提高固定化酶的稳定性和可重复利用性[56]。目前,常用于原位封装的MOFs主要包括ZIFs、HKUST-1和MAF-7等。其中,由于ZIF-8的合成条件温和,无毒性而成为固定化酶最常用的原位封装体系[14, 57]

Molina等[39]通过对比发现,原位封装法包裹漆酶的Lac@NH2-MIL-53(Al)与两步法得到的Lac#NH2-MIL-53(Al) (先制备HP-MOFs,再通过孔道渗透法固定漆酶)相比,前者酶的负载量更高,而且酶的可重复利用性更好,利于废水中双酚A的降解。Li等[40]使用层层自组装耦合原位封装法制备了多酶固定化反应器,最终将CO2转化为甲酸盐。这种新型复合材料以MIL-101(Cr)为核心,制备了两层HKUST-1。首先通过原位封装法将碳酸酐酶(carbonic anhydrase, CA)包裹在HKUST-1内部,作为第一层。然后通过原位封装法将CA、甲酸脱氢酶(formate dehydrogenase, FDH)和谷氨酸脱氢酶(glutamic dehydrogenase, GDH)包裹,作为第二层。酶的连续固定化促进了底物的通道化,最终获得了更好的催化性能。Mao等[42]通过HP-MOFs载体实现天然酶和模拟酶的级联催化反应。他们首先通过原位合成法制备包裹葡萄糖氧化酶(glucose oxidase, GOx)和ZIF-8的复合物,然后通过共价交联法与具有类过氧化物酶特性的葫芦脲(cucurbituril [6], CB[6])连接,构建了级联纳米酶,从而实现了葡萄糖和胆固醇的灵敏检测。

Chen等[58]首次揭示了原位封装过程中影响酶活性的因素。以应用最广泛的ZIF-8为载体,选择GOx、Cyt-c、HRP、过氧化氢酶(catalase, CAT)、尿酸氧化酶(urate oxidase, UOx)和乙醇脱氢酶(ethanol dehydrogenase, ADH)作为研究模型。结果表明酶表面所带电荷对包封率和酶活均有较大影响,并且可以通过氨基酸化学修饰来调节酶的表面电荷,从而提高酶的催化性能。

“一锅法”固定化酶也存在一定的局限性,主要是在固定过程中,酶会直接与MOFs前驱体接触,这就要求组装环境具有良好的生物相容性,防止酶的变性[59]。因此许多MOFs的制备体系受限,不宜采用原位封装法进行酶的固定化。另一个缺点是,密集排列的MOFs可能会遮蔽酶的活性位点,使得固定化酶催化活性低于游离酶[60]

3 HP-MOFs固定化酶的应用

HP-MOFs具有许多独特的性质,如孔径可调节和易于功能化,可与不同的酶进行匹配,提高固定化介质负载酶的能力。此外,不同尺寸规格的孔径可提供基质选择性、降低传质阻力,这是其他MOFs材料无法实现的,因此HP-MOFs固定化酶体系在许多领域都显示出巨大的潜力[1, 33, 55, 61]。在本节中,我们总结了HP-MOFs固定化酶在生物催化、生物传感以及生物医药等领域的最新应用进展。

3.1 生物催化

通常,HP-MOFs固定化酶最直接的应用就是催化各类反应,如氧化还原反应、水解反应、迈克尔加成反应和酯化反应等。催化的最终目标就是生产高附加值的目标化合物,包括精细化学品、医药中间体、食品添加剂、生物燃料等[62]。HP-MOFs固定化酶在恶劣的反应条件,如高温、有机溶剂、酸或碱性溶剂等具有明显的优势。HP-MOFs的高孔隙率使得固定化酶的孔内活性位点易于获得,显著促进底物和产物的运输、扩散。此外,通过调节反应体系的pH值,可以控制MOFs的电负性,使MOFs与酶或底物呈现相反的电荷,从而增加酶的负载能力,实现底物的预富集,最终实现催化反应的加速进行[19, 25, 27]

Baron等[33]将拉塔伯克霍尔德菌(Burkholderia lata)来源的脂肪酶固定在具有多级孔的Fe-BDC上,固定化酶的结合效率为90%,以磷酸对硝基苯酯为底物的水解酶活回收率为400%。固定化脂肪酶对植物油的水解也表现出良好的活性,其中橄榄油水解活性可达3 200 U/g。此外,该固定化脂肪酶在有机溶剂中具有良好的稳定性,可用于食品、药品、生物柴油等的生产。Pei等[37]通过原位封装法将来自橙单胞菌(Aurantimonas manganoxydans)的重组钴型腈水合酶封装到ZIF-67中。固定化酶NHase1229@ZIF-67对3-氰基吡啶水合生成烟酰胺具有很高的催化活性,其比活可达29.5 U/g。

3.2 生物传感

在过去几十年中,基于酶的生物传感器已经成为环境监测、食品分析和生物医学诊断等领域的重要性分析工具[14, 63-65]。与游离酶相比,MOFs作为载体的固定化酶不仅具有较高的灵敏度、选择性和稳定性,而且可以通过建立比色法、荧光学和电化学等多种信号输出途径,实现基于MOFs固定化酶体系在生物传感领域的广阔应用[66-68]

Zhang等[44]制备了一种包裹血红素和GOx的多级孔ZIF材料。该多酶系统有较高的催化级联活性,可通过比色法和电化学法实现葡萄糖的快速检测。与游离酶相比,HP-MOFs固定化酶的活性增强了16倍,而且表现出长期稳定性、优异的选择性和可重复使用性。

此外,由于MOFs具有丰富的金属活性位点和连接配体使得其具有纳米酶的特性[69]。特别是有些MOFs具有类过氧化物酶活性,能够催化氧化反应、显色反应、电化学反应和荧光反应,实现生物传感器的构建,以便捷地检测目标分子[70-71]。选择本身具有纳米酶活性的MOFs为载体固定天然酶,组成的模拟酶-天然酶级联催化系统在生物传感领域也有较大应用,例如实现葡萄糖、尿酸、胆固醇和乙酰胆碱等小分子物质的检测[31, 55, 72]

Zhang等[34]以Fe-MMPG-5为载体,制备了多级孔金属-金属卟啉凝胶的模拟多酶比色传感系统GOx@Fe-MMPG-5。该系统实现了高负载率的GOx固定化,并且材料本身具备类过氧化物酶活性,可用于级联催化和葡萄糖比色传感,具有检测下限低、选择性和重复使用性好等优点。SHI等[73]利用具有过氧化物酶样活性的Cu-MOFs纳米片固定GOx实现了葡萄糖的荧光法检测。在H2O2存在下,Cu-MOFs纳米片可以将非荧光的硫胺转化为荧光硫铬。与GOx结合使用,可高选择性、灵敏地检测葡萄糖,检测限为0.41×10–6 mol/L。

3.3 生物医药

近年来,MOFs在药物递送等方面的生物医学应用越来越受到关注。当MOFs颗粒的尺寸缩小到纳米级时,这些纳米MOFs可作为有效的纳米载体,为成像、化疗、光热疗法或光动力疗法提供药物。与传统MOFs载体相比,HP-MOFs具有孔结构多样、孔径可调、生物分子包封承载能力高等优点,近年来在生物医药领域的应用取得了显著进展[74-76]

Li等[35]研究了PCN-333和MOF-808作为吸附剂在血液灌流治疗中清除胆红素的应用。其中,PCN-333有较大的空腔、较高的孔隙率以及更强的结合能,因此对血液中的胆红素吸附较强,吸附容量约为1 003.8 mg/g。Liu等[41]合成了包裹CAT和黑磷量子点(black phosphorus quantum dots, BQ)杂合的MIL-101复合物。该多功能MOFs不仅保护了CAT在酸性肿瘤微环境下的催化活性,以供应充足的O2,而且大大提高了BQ的单线态氧的量子产率,光动力治疗效率比不含CAT的系统高8.7倍。该系统通过耦合BQ光热疗法和单线态氧光动力疗法,增强了针对缺氧肿瘤细胞的治疗效果。Wang等[36]报道了一种基于HP-MOFs包裹蛋白质和前药用于癌症治疗的研究。选择具有多级孔的PCN-333作为HRP和吲哚-3-乙酸(indole-3-acetic acid, IAA)前药的载体。IAA是一种天然植物激素,可被HRP转化为有毒物质3-亚甲基-2-羟吲哚,并且释放出活性氧,对癌细胞有较好的杀灭效果。PCN-333纳米载体可以有效地将HRP和IAA同时输送到癌细胞。结果表明IAA@HRP@PCN-333对人类肝癌细胞系(SMMC-7721)癌细胞表现出明显的抑制作用,其IC50值为4.2 mg/L。

当考虑将MOFs用于生物医药应用,特别是用于体内医疗用途的材料时,需要进行涉及MOFs化学稳定性、毒理学和生物分布等体外和体内实验以确定MOF材料的潜在危害。有学者对一系列不同金属离子组成的MOFs在不同细胞系中进行毒性评估,结果表明所研究的MOFs体系(Fe、Zn、Zr和Mn等)均具有一定的细胞毒性[77]。但目前关于MOFs毒性的研究仍处于初级阶段,关于MOFs体内的长期毒性细胞分析研究较少[78]

4 总结与展望

与传统的多孔材料不同,HP-MOFs具有独特的孔隙率、易于设计裁剪和功能化的特点,为固定化酶的载体选择提供了一个新的方向。在过去几年中,HP-MOFs固定化酶的发展取得了重大进展,但其研究仍处于起步阶段,尤其是在转向工业化应用之前仍存在许多挑战和障碍。

采用HP-MOFs材料固定化酶,提高了酶负载量、稳定性和可重复利用性,甚至获得了更高的酶催化活性。然而,截至目前,已用于固定化酶的HP-MOFs种类十分有限。此外,HP-MOFs的大规模制备成本仍然很高,阻碍了HP-MOFs固定化酶的工业化应用。因此,仍需进一步加快开发更多可用于酶固定化的新型、高性能、低成本HP-MOFs载体。

迄今为止报道的很多新型HP-MOFs都是通过GOx和HRP等经典模型酶来验证其固定化的效果,缺少推广至其他酶的固定化应用实例。因此,HP-MOFs作为固定化酶的实际应用尚处于初级开发阶段。酶与HP-MOFs之间的确切相互作用机制尚未完全阐明,阻碍了HP-MOFs固定化酶的合理设计和开发应用。因此,需要进一步通过先进材料表征、检测技术验证来阐明固定化酶的过程机理,以期设计和构建具有更好稳定性、生物相容性和可调特性的HP-MOFs固定化酶。

虽然HP-MOFs在药物传递方面取得了显著的成就,但到目前为止,关于药物装载和释放动力学的研究报道有限。此外,基于MOFs临床药用的另一个主要挑战是MOFs的潜在毒性。无论是传统的MOFs还是HP-MOFs都存在溶解性差,稳定性低等问题,并且其金属中心(如Fe、Zn、Zr或Mn等)在体内的释放,可能导致潜在的毒理学风险。未来应侧重HP-MOFs在生物系统中的药物动力学和毒理学效应研究,为HP-MOFs在生物医药领域的应用奠定基础。

参考文献
[1]
BIE J, SEPODES B, FERNANDES PCF, RIBEIRO MHL. Enzyme immobilization and co-immobilization: main framework, advances and some applications. Processes, 2022, 10(3): 494. DOI:10.3390/pr10030494
[2]
HECKMANN CM, PARADISI F. Looking back: a short history of the discovery of enzymes and how they became powerful chemical tools. Chemcatchem, 2020, 12(24): 6082-6102. DOI:10.1002/cctc.202001107
[3]
WACKETT LP. Microbial industrial enzymes. Microbial Biotechnology, 2019, 12(2): 405-406. DOI:10.1111/1751-7915.13389
[4]
WU SK, SNAJDROVA R, MOORE JC, BALDENIUS K, BORNSCHEUER UT. Biocatalysis: enzymatic synthesis for industrial applications. Angewandte Chemie-international Edition, 2021, 60(1): 88-119. DOI:10.1002/anie.202006648
[5]
TANG KHD, LOCK SSM, YAP PS, CHEAH KW, CHAN YH, YIIN CL, KU AZE, LOY ACM, CHIN BLF, CHAI YH. Immobilized enzyme/microorganism complexes for degradation of microplastics: a review of recent advances, feasibility and future prospects. Science of the Total Environment, 2022, 832: 1-21.
[6]
ZHANG HC, FENG MM, FANG YP, WU Y, LIU Y, ZHAO YY, XU JX. Recent advancements in encapsulation of chitosan-based enzymes and their applications in food industry. Critical Reviews in Food Science and Nutrition, 2022, 6: 1-19.
[7]
NIRANTAR SR. Directed evolution methods for enzyme engineering. Molecules, 2021, 26(18): 1-14.
[8]
PEDERSEN JN, ZHOU Y, GUO Z, PEREZ B. Genetic and chemical approaches for surface charge engineering of enzymes and their applicability in biocatalysis: a review. Biotechnology and Bioengineering, 2019, 116(7): 1795-1812. DOI:10.1002/bit.26979
[9]
MADHAVAN A, ARUN KB, BINOD P, SIROHI R, TARAFDAR A, RESHMY R, AWASTHI MK, SINDHU R. Design of novel enzyme biocatalysts for industrial bioprocess: harnessing the power of protein engineering, high throughput screening and synthetic biology. Bioresource Technology, 2021, 325: 124617. DOI:10.1016/j.biortech.2020.124617
[10]
SHELDON RA, BASSO A, BRADY D. New frontiers in enzyme immobilisation: robust biocatalysts for a circular bio-based economy. Chemical Society Reviews, 2021, 50(10): 5850-5862. DOI:10.1039/D1CS00015B
[11]
PATEL H, RAWTANI D, AGRAWAL YK. A newly emerging trend of chitosan-based sensing platform for the organophosphate pesticide detection using acetylcholinesterase-a review. Trends in Food Science & Technology, 2019, 85: 78-91.
[12]
KUMAR A, PARK GD, PATEL SKS, KONDAVEETI S, OTARI S, ANWAR MZ, KALIA VC, SINGH Y, KIM SC, CHO BK, SOHN JH, KIM DR, KANG YC, LEE JK. SiO2 microparticles with carbon nanotube-derived mesopores as an efficient support for enzyme immobilization. Chemical Engineering Journal, 2019, 359: 1252-1264. DOI:10.1016/j.cej.2018.11.052
[13]
THAKUR K, ATTRI C, SETH A. Nanocarriers-based immobilization of enzymes for industrial application. 3 Biotech, 2021, 11(10): 427. DOI:10.1007/s13205-021-02953-y
[14]
FENG Y, XU Y, LIU S, WU D, SU Z, CHEN G, LIU J, LI G. Recent advances in enzyme immobilization based on novel porous framework materials and its applications in biosensing. Coordination Chemistry Reviews, 2022, 459: 214414. DOI:10.1016/j.ccr.2022.214414
[15]
FREUND R, ZAREMBA O, DINCA M, ARNAUTS G, AMELOOT R, SKORUPSKII G, BAVYKINA A, GASCON J, EJSMONT A, GOSCIANSKA J, KALMUTZKI M, LACHELT U, PLOETZ E, DIERCKS CS, WUTTKE S. The current status of mof and COF applications. Angewandte Chemie-international Edition, 2021, 60(45): 23975-24001. DOI:10.1002/anie.202106259
[16]
QIAN QH, ASINGER PA, LEE MJ, HAN G, RODRIGUEZ KM, LIN S, BENEDETTI FM, WU AX, CHI WS, SMITH ZP. MOF-based membranes for gas separations. Chemical Reviews, 2020, 120(16): 8161-8266. DOI:10.1021/acs.chemrev.0c00119
[17]
CAO J, LI XJ, TIAN HQ. Metal-organic framework (MOF)-based drug delivery. Current Medicinal Chemistry, 2020, 27(35): 5949-5969. DOI:10.2174/0929867326666190618152518
[18]
徐冉, 李智慧, 吴一楠, 李风亭. 金属有机骨架材料固定化酶的研究进展. 材料导报, 2021, 35(72): 285-293.
XU R, LI ZH, WU YN, LI FT. Research advances in enzyme immobilization on metal-organic frameworks. Materials Reports, 2021, 35(72): 285-293 (in Chinese).
[19]
BILAL M, ADEEL M, RASHEED T, IQBAL HMN. Multifunctional metal-organic frameworks-based biocatalytic platforms: recent developments and future prospects. Journal of Materials Research and Technology, 2019, 8(2): 2359-2371. DOI:10.1016/j.jmrt.2018.12.001
[20]
CAI G, YAN P, ZHANG L, ZHOU HC, JIANG HL. Metal-organic framework-based hierarchically porous materials: synthesis and applications. Chemical Reviews, 2021, 121(20): 12278-12326. DOI:10.1021/acs.chemrev.1c00243
[21]
HUANG S, KOU X, SHEN J, CHEN G, OUYANG G. "Armor-plating" enzymes with metal-organic frameworks (MOFs). Angewandte Chemie-international Edition, 2020, 59(23): 8786-8798. DOI:10.1002/anie.201916474
[22]
ZHANG X, TU R, LU Z, PENG J, HOU C, WANG Z. Hierarchical mesoporous metal-organic frameworks encapsulated enzymes: progress and perspective. Coordination Chemistry Reviews, 2021, 443.
[23]
LAN TH, WANG Q, LU CY, LI JH, LI JL, CHEN Y, LI LB, YANG JF, LI JP. Construction of hierarchically porous metal-organic framework particle by a facile MOF-template strategy. Particuology, 2023, 74: 9-17. DOI:10.1016/j.partic.2022.05.004
[24]
PISKLAK TJ, MACIAS M, COUTINHO DH, HUANG RS, BALKUS KJ. Hybrid materials for immobilization of MP-11 catalyst. Topics in Catalysis, 2006, 38(4): 269-278. DOI:10.1007/s11244-006-0025-6
[25]
YE N, KOU X, SHEN J, HUANG S, CHEN G, OUYANG G. Metal-organic frameworks: a new platform for enzyme immobilization. Chembiochem, 2020, 21(18): 2585-2590. DOI:10.1002/cbic.202000095
[26]
杜英杰, 贾晓彤, 唐秀明, 杜占鑫, 崔建东, 贾士儒. 基于金属有机框架材料酶的固定化策略及其应用. 生物加工过程, 2022, 20(2): 119-124.
DU YJ, JIA XT, TANG XM, DU ZX, CUI JD, JIA SR. Enzyme immobilization strategy based on metal-organic frameworks and its application. Chinese Journal of Bioprocess Engineering, 2022, 20(2): 119-124 (in Chinese).
[27]
LIANG S, WU XL, XIONG J, ZONG MH, LOU WY. Metal-organic frameworks as novel matrices for efficient enzyme immobilization: an update review. Coordination Chemistry Reviews, 2020, 406: 213149. DOI:10.1016/j.ccr.2019.213149
[28]
ZARE A, BORDBAR AK, JAFARIAN F, TANGESTANINEJAD S. Candida rugosa lipase immobilization on various chemically modified Chromium terephthalate MIL-101. Journal of Molecular Liquids, 2018, 254: 137-144. DOI:10.1016/j.molliq.2018.01.097
[29]
LYKOURINOU V, CHEN Y, WANG XS, MENG L, HOANG T, MING LJ, MUSSELMAN RL, MA S. Immobilization of MP-11 into a mesoporous metal-organic framework, MP-11@mesoMOF: a new platform for enzymatic catalysis. Journal of the American Chemical Society, 2011, 133(27): 10382-10385. DOI:10.1021/ja2038003
[30]
CHENG KP, SVEC F, LV YQ, TAN TW. Hierarchical micro- and mesoporous zn-based metal-organic frameworks templated by hydrogels: their use for enzyme immobilization and catalysis of knoevenagel reaction. Small, 2019, 15(49): 1902927.
[31]
ZHAO M, LI Y, MA X, XIA M, ZHANG Y. Adsorption of cholesterol oxidase and entrapment of horseradish peroxidase in metal-organic frameworks for the colorimetric biosensing of cholesterol. Talanta, 2019, 200: 293-299. DOI:10.1016/j.talanta.2019.03.060
[32]
DUTTA S, KUMARI N, DUBBU S, JANG SW, KUMAR A, OHTSU H, KIM J, CHO SH, Kawano M, LEE IS. Highly mesoporous metal-organic frameworks as synergistic multimodal catalytic platforms for divergent cascade reactions. Angewandte Chemie-international Edition, 2020, 59(9): 3416-3422. DOI:10.1002/anie.201916578
[33]
BARON AM, RODRIGUES RD, SANTE LGG, KISTER JMD, DO NASCIMENTO VMG, BAIL A. Metal-organic framework based on iron and terephthalic acid as a multiporous support for lipase Burkholderia lata LBBIO-BL02 and its potential for biocatalysis. Biocatalysis and Biotransformation, 2022, 5: 2068371.
[34]
ZHANG X, TU R, PENG J, HOU C, WANG Z. Integration of mimic multienzyme systems in metal-metalloporphyrin gel composites for colorimetric sensing. Chemical Engineering Journal, 2021, 404: 126553. DOI:10.1016/j.cej.2020.126553
[35]
LI Q, ZHAO W, GUO H, YANG J, ZHANG J, LIU M, XU T, CHEN Y, Zhang L. Metal-organic framework traps with record-high bilirubin removal capacity for hemoperfusion therapy. Acs Applied Materials & Interfaces, 2020, 12(23): 25546-25556.
[36]
WANG F, YANG J, LI Y, ZHUANG Q, GU J. Efficient enzyme-activated therapy based on the different locations of protein and prodrug in nanoMOFs. Journal of Materials Chemistry B, 2020, 8(28): 6139-6147. DOI:10.1039/D0TB01004A
[37]
PEI X, WU Y, WANG J, CHEN Z, LIU W, SU W, LIU F. Biomimetic mineralization of nitrile hydratase into a mesoporous cobalt-based metal-organic framework for efficient biocatalysis. Nanoscale, 2020, 12(2): 967-972. DOI:10.1039/C9NR06470B
[38]
PENG H, DONG WG, CHEN QW, SONG HY, SUN HX, CHANG YH, LUO H. Encapsulation of nitrilase in zeolitic imidazolate framework-90 to improve its stability and reusability. Applied Biochemistry and Biotechnology, 2022, 194: 3527-3540. DOI:10.1007/s12010-022-03890-z
[39]
MOLINA MA, DIEZ-JAEN J, SANCHEZ-SANCHEZ M, BLANCO RM. One-pot laccase@MOF biocatalysts efficiently remove bisphenol A from water. Catalysis Today, 2022, 390: 265-271.
[40]
LI Y, WEN LY, TAN TW, LV YQ. Sequential co-immobilization of enzymes in metal-organic frameworks for efficient biocatalytic conversion of adsorbed CO2 to formate. Frontiers in Bioengineering and Biotechnology, 2019, 7: 394. DOI:10.3389/fbioe.2019.00394
[41]
LIU JT, LIU TR, DU P, ZHANG L, LEI JP. Metal-organic framework (MOF) hybrid as a tandem catalyst for enhanced therapy against hypoxic tumor cells. Angewandte Chemie-international Edition, 2019, 58(23): 7808-7812. DOI:10.1002/anie.201903475
[42]
MAO D, LI W, ZHANG F, YANG S, ISAK AN, SONG Y, GUO Y, CAO S, ZHANG R, FENG C, ZHU X, LI G. Nanocomposite of peroxidase-like cucurbit 6 uril with enzyme-encapsulated ZIF-8 and application for colorimetric biosensing. Acs Applied Materials & Interfaces, 2021, 13(33): 39719-39729.
[43]
ZHANG XS, ZHENG SH, TAO J, WANG XJ. In situ encapsulation of cellulase in a novel mesoporous metal-organic framework. Catalysis Letters, 2022, 152(3): 699-706. DOI:10.1007/s10562-021-03672-y
[44]
ZHANG X, ZHANG F, LU Z, XU Q, HOU C, WANG Z. Coupling two sequential biocatalysts with close proximity into metal-organic frameworks for enhanced cascade catalysis. Acs Applied Materials & Interfaces, 2020, 12(23): 25565-25571.
[45]
LIAN X, FANG Y, JOSEPH E, WANG Q, LI J, BANERJEE S, LOLLAR C, WANG X, ZHOU HC. Enzyme-MOF (metal–organic framework) composites. Chemical Society Reviews, 2017, 46(11): 3386-3401. DOI:10.1039/C7CS00058H
[46]
DOONAN C, RICCÒ R, LIANG K, BRADSHAW D, FALCARO P. Metal-organic frameworks at the biointerface: synthetic strategies and applications. Accounts of Chemical Research, 2017, 50(6): 1423-1432. DOI:10.1021/acs.accounts.7b00090
[47]
LI SF, CHEN Y, WANG YS, MO HL, ZANG SQ. Integration of enzyme immobilization and biomimetic catalysis in hierarchically porous metal-organic frameworks for multi-enzymatic cascade reactions. Science China-chemistry, 2022, 65(6): 1122-1128. DOI:10.1007/s11426-022-1254-5
[48]
CHOI S, OH M. Well-arranged and confined incorporation of pdco nanoparticles within a hollow and porous metal-organic framework for superior catalytic activity. Angewandte Chemie-international Edition, 2019, 58(3): 866-871. DOI:10.1002/anie.201812827
[49]
MEHTA J, BHARDWAJ N, BHARDWAJ SK, KIM KH, DEEP A. Recent advances in enzyme immobilization techniques: metal-organic frameworks as novel substrates. Coordination Chemistry Reviews, 2016, 322: 30-40. DOI:10.1016/j.ccr.2016.05.007
[50]
CHEN Y, LYKOURINOU V, VETROMILE C, HOANG T, MING LJ, LARSEN RW, MA S. How can proteins enter the interior of a MOF? Investigation of cytochrome c translocation into a MOF consisting of mesoporous cages with microporous windows. Journal of the American Chemical Society, 2012, 134(32): 13188-13191. DOI:10.1021/ja305144x
[51]
CHEN X, ZHANG Q. Recent advances in mesoporous metal-organic frameworks. Particuology, 2019, 45: 20-34. DOI:10.1016/j.partic.2018.09.007
[52]
XU W, THAPA KB, JU Q, FANG Z, HUANG W. Heterogeneous catalysts based on mesoporous metal-organic frameworks. Coordination Chemistry Reviews, 2018, 373: 199-232. DOI:10.1016/j.ccr.2017.10.014
[53]
KONG XJ, LI JR. An overview of metal-organic frameworks for green chemical engineering. Engineering, 2021, 7(8): 1115-1139. DOI:10.1016/j.eng.2021.07.001
[54]
HANEFELD U, CAO L, MAGNER E. Enzyme immobilisation: fundamentals and application. Chemical Society Reviews, 2013, 42(15): 6211-6212. DOI:10.1039/c3cs90042h
[55]
GAO R, ZHONG N, HUANG S, LI S, CHEN G, OUYANG G. Multienzyme biocatalytic cascade systems in porous organic frameworks for biosensing. Chemistry-a European Journal, 2022, 28: e202200074.
[56]
OZYILMAZ E, CAGLAR O, SARGIN I, ARSLAN G. Synergistic role of carbon quantum dots in the activity and stability of Candida rugosa lipase encapsulated within metal-organic frameworks (ZIF-8). Materials Today Communications, 2022, 30: 103066. DOI:10.1016/j.mtcomm.2021.103066
[57]
LI X, DONG H, FAN QL, CHEN K, SUN DK, HU T, NI ZH. One-pot, rapid microwave-assisted synthesis of bimetallic metal-organic framework for efficient enzyme-free glucose detection. Microchemical Journal, 2022, 179: 107468. DOI:10.1016/j.microc.2022.107468
[58]
CHEN GS, KOU XX, HUANG SM, TONG LJ, SHEN YJ, ZHU WS, ZHU F, OUYANG GF. Modulating the biofunctionality of metal-organic framework-encapsulated enzymes through controllable embedding patterns. Angewandte Chemie-international Edition, 2020, 59(7): 2867-2874. DOI:10.1002/anie.201913231
[59]
LIANG JY, GAO S, LIU J, ZULKIFLI MYB, XU JT, SCOTT J, CHEN VC, SHI JF, RAWAL A, LIANG K. Hierarchically porous biocatalytic MOF microreactor as a versatile platform towards enhanced multienzyme and cofactor-dependent biocatalysis. Angewandte Chemie-international Edition, 2021, 60(10): 5421-5428. DOI:10.1002/anie.202014002
[60]
LIANG K, RICCO R, DOHERTY CM, STYLES MJ, BELL S, KIRBY N, MUDIE S, HAYLOCK D, HILL AJ, DOONAN CJ, FALCARO P. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nature Communications, 2015, 6: 7240. DOI:10.1038/ncomms8240
[61]
HE S, WU L, LI X, SUN H, XIONG T, LIU J, HUANG C, XU H, SUN H, CHEN W, GREF R, ZHANG J. Metal-organic frameworks for advanced drug delivery. Acta Pharmaceutica Sinica B, 2021, 11(8): 2362-2395. DOI:10.1016/j.apsb.2021.03.019
[62]
HU Y, DAI L, LIU D, DU W, WANG Y. Progress & prospect of metal-organic frameworks (MOFs) for enzyme immobilization (enzyme/MOFs). Renewable & Sustainable Energy Reviews, 2018, 91: 793-801.
[63]
YANG Y, LI G, WU D, LIU J, LI X, LUO P, HU N, WANG H, WU Y. Recent advances on toxicity and determination methods of mycotoxins in foodstuffs. Trends in Food Science & Technology, 2020, 96: 233-252.
[64]
ZHANG X, WU D, WU Y, LI G. Bioinspired nanozyme for portable immunoassay of allergenic proteins based on A smartphone. Biosensors & Bioelectronics, 2021, 172: 112776.
[65]
CHENG X, ZHOU J, CHEN J, XIE Z, ZHENG L. One-step synthesis of thermally stable artificial multienzyme cascade system for efficient enzymatic electrochemical detection. Nano Research, 2019, 12(12): 3031-3036. DOI:10.1007/s12274-019-2548-8
[66]
LI S, LIU X, CHAI H, HUANG Y. Recent advances in the construction and analytical applications of metal-organic frameworks-based nanozymes. Trac-trends in Analytical Chemistry, 2018, 105: 391-403. DOI:10.1016/j.trac.2018.06.001
[67]
YE N, HUANG S, YANG H, WU T, TONG L, CHEN G, OUYANG G. Hydrogen-bonded biohybrid framework-derived highly specific nanozymes for biomarker sensing. Analytical Chemistry, 2021, 93(41): 13981-13989. DOI:10.1021/acs.analchem.1c03381
[68]
MA H, LI M, YU T, ZHANG H, XIONG M, LI F. Magnetic ZIF-8-based mimic multi-enzyme system as a colorimetric biosensor for detection of aryloxyphenoxypropionate herbicides. Acs Applied Materials & Interfaces, 2021, 13(37): 44329-44338.
[69]
LI N, LIU J, LIU JJ, DONG LZ, XIN ZF, TENG YL, LAN YQ. Adenine components in biomimetic metal-organic frameworks for efficient CO2 photoconversion. Angewandte Chemie-international Edition, 2019, 58(16): 5226-5231. DOI:10.1002/anie.201814729
[70]
HUANG SM, CHEN GS, YE NR, KOU XX, ZHANG R, SHEN J, OUYANG GF. Iron-mineralization-induced mesoporous metal-organic frameworks enable high-efficiency synergistic catalysis of natural/ nanomimic enzymes. Acs Applied Materials & Interfaces, 2020, 12(51): 57343-57351.
[71]
XU W, JIAO L, YAN H, WU Y, CHEN L, GU W, DU D, LIN Y, ZHU C. Glucose oxidase-integrated metal-organic framework hybrids as biomimetic cascade nanozymes for ultrasensitive glucose biosensing. Acs Applied Materials & Interfaces, 2019, 11(25): 22096-22101.
[72]
LIANG X, CHEN YX, WEN K, HAN HB, LI QS. Urate oxidase loaded in PCN-222(Fe) with peroxidase-like activity for colorimetric detection of uric acid. Journal of Materials Chemistry B, 2021, 9(34): 6811-6817. DOI:10.1039/D1TB01424B
[73]
SHI MY, XU M, GU ZY. Copper-based two-dimensional metal-organic framework nanosheets as horseradish peroxidase mimics for glucose fluorescence sensing. Analytica Chimica Acta, 2019, 1079: 164-170.
[74]
DU YJ, JIA XT, ZHONG L, JIAO Y, ZHANG ZJ, WANG ZY, FENG YX, BILAL M, CUI JD, JIA SR. Metal-organic frameworks with different dimensionalities: an ideal host platform for enzyme@MOF composites. Coordination Chemistry Reviews, 2022, 454: 214327.
[75]
WANG Y, YAN JH, WEN NC, XIONG HJ, CAI SD, HE QY, HU YQ, PENG DM, LIU ZB, LIU YF. Metal-organic frameworks for stimuli-responsive drug delivery. Biomaterials, 2020, 230: 119619.
[76]
LAWSON HD, WALTON SP, CHAN C. Metal-organic frameworks for drug delivery: a design perspective. Acs Applied Materials & Interfaces, 2021, 13(6): 7004-7020.
[77]
LINNANE E, HADDAD S, MELLE F, MEI ZH, FAIREN-JIMENEZ D. The uptake of metal-organic frameworks: a journey into the cell. Chemical Society Reviews, 2022, 51: 6065-6086.
[78]
GIMENEZ-MARQUES M, HIDALGO T, SERRE C, HORCAJADA P. Nanostructured metal-organic frameworks and their bio-related applications. Coordination Chemistry Reviews, 2016, 307: 342-360.