生物工程学报  2023, Vol. 39 Issue (3): 912-929
http://dx.doi.org/10.13345/j.cjb.220530
中国科学院微生物研究所、中国微生物学会主办
0

文章信息

谢杰, 李玉斌, 刘京伟, 苟艳, 王刚刚
XIE Jie, LI Yubin, LIU Jingwei, GOU Yan, WANG Ganggang
壳聚糖酶结构与功能的研究进展
Advances in the structure and function of chitosanase
生物工程学报, 2023, 39(3): 912-929
Chinese Journal of Biotechnology, 2023, 39(3): 912-929
10.13345/j.cjb.220530

文章历史

Received: July 8, 2022
Accepted: October 31, 2022
壳聚糖酶结构与功能的研究进展
谢杰1,2,3 , 李玉斌1,2 , 刘京伟1,2,3 , 苟艳1,2 , 王刚刚1,2     
1. 中国科学院成都生物研究所 中国科学院环境与应用微生物重点实验室, 成都 610041;
2. 中国科学院成都生物研究所 环境微生物四川省重点实验室, 成都 610041;
3. 中国科学院大学, 北京 100049
摘要:壳聚糖酶是一类对壳聚糖具有较高催化活性而几乎不水解几丁质的糖苷水解酶,其可将高分子量的壳聚糖转化为低分子量的功能性壳寡糖。近年来,对壳聚糖酶的相关研究取得了显著进展,因此,本文对其生化性质、晶体结构、催化机制和蛋白质工程改造进行总结和探讨,并对酶法制备壳寡糖纯品进行展望,这将加深研究者对壳聚糖酶作用机制的认识,推动壳聚糖酶的工业应用。
关键词壳聚糖酶    晶体结构    催化机制    理性设计    
Advances in the structure and function of chitosanase
XIE Jie1,2,3 , LI Yubin1,2 , LIU Jingwei1,2,3 , GOU Yan1,2 , WANG Ganggang1,2     
1. Key Laboratory of Environmental and Applied Microbiology of Chinese Academy of Sciences, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China;
2. Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: Chitosanases represent a class of glycoside hydrolases with high catalytic activity on chitosan but nearly no activity on chitin. Chitosanases can convert high molecular weight chitosan into functional chitooligosaccharides with low molecular weight. In recent years, remarkable progress has been made in the research on chitosanases. This review summarizes and discusses its biochemical properties, crystal structures, catalytic mechanisms, and protein engineering, highlighting the preparation of pure chitooligosaccharides by enzymatic hydrolysis. This review may advance the understandings on the mechanism of chitosanases and promote its industrial applications.
Keywords: chitosanase    crystal structure    catalytic mechanism    rational design    

几丁质(chitin)是自然界中含量仅次于木质纤维素的生物质资源,广泛存在于节肢动物的外骨骼和真菌细胞壁中,其主要由N-乙酰-D-氨基葡萄糖(N-acetyl-D-glucosamine, GlcNAc)组成。几丁质在高度脱乙酰化后获得的多聚大分子称为壳聚糖(chitosan),壳聚糖的主要组成单元是D-氨基葡萄糖(D-glucosamine, GlcN)。通常,将壳聚糖降解后获得的聚合度(degree of polymerization, DP)为2–10的低分子量产物称为壳寡糖(chitooligosaccharides, COS)[1-2]。大量的研究发现,壳寡糖是一类功能性的碳水化合物,具有抑菌、抗氧化、抗肿瘤、降胆固醇、降血压、抗感染、治疗炎症等生理活性,显示出了巨大的应用潜力[3-8]。与化学或物理制备法相比,酶法制备壳寡糖的反应条件温和可控,产物组成明确,产物纯度较高,生产过程对环境友好,因此酶法制备壳寡糖具有更好的生产及应用前景。通过糖苷水解酶降解壳聚糖是制备壳寡糖的有效途径之一,其中壳聚糖酶(chitosanase)因能够高效并且专一性地水解壳聚糖而备受关注。

1 壳聚糖酶的定义及基本性质 1.1 壳聚糖酶的定义

2004年,酶命名委员会将能够从还原端对壳聚糖中的β-1, 4-糖苷键进行内水解的酶定义为壳聚糖酶(EC 3.2.1.132),该类酶的水解产物为聚合度不同的低聚壳寡糖,多以壳二糖和壳三糖为主,但通常不会产生单糖;2008年,酶命名委员会将能够从非还原端攻击壳聚糖并产生氨基葡萄糖的酶定义为另一类型的壳聚糖酶(EC 3.2.1.165)[9]。随着更多的壳聚糖酶被发掘和鉴定,来自于卵形孢球托霉菌(Gongronella butleri)的一种新型壳聚糖酶能够通过外切的方式从非还原端释放壳二糖[10],这独立于2种类型的壳聚糖酶定义之外。

1.2 壳聚糖酶的基本性质

壳聚糖酶主要存在于细菌、真菌、病毒等多种微生物以及部分植物中,不同来源的壳聚糖酶在酶学和理化性质等方面存在差异(表 1)。

表 1 不同来源壳聚糖酶的部分酶学性质 Table 1 Selected enzymatic properties of chitosanases from different sources
Category Organism Family MW (kDa) Optimum pH Optimum temperature (℃) Reference
Bacteria Bacillus lichenformis NBL420 GH5 45 8.0 50 [11]
Streptomyces bacillaris GH5 35 10.0 50 [12]
Paenibacillus barengoltzii CAU904 GH8 58 5.5 70 [13]
Paenibacillus sp. X4 GH8 41 7.0 50 [14]
Paenibacillus sp. 1794 GH8 40 4.8 70 [15]
Bacillus mojavensis SY1 GH46 31 5.5 55 [16]
Bacillus atrophaeus BSS GH46 27 5.0 45 [17]
Bacillus glycinifermentans BT2019 GH46 32 5.0 20 [18]
Streptomyces albolongus ATCC 27414 GH46 30 8.0 50 [19]
Streptomyces niveus GH46 30 6.0 50 [20]
Mitsuaria sp. C4 GH46 34 7.2 40 [21]
Mitsuaria chitosanitabida 3001 GH80 34 4.0 30–40 [22]
Mitsuaria sp. 141 GH80 33 5.5 60 [23]
Fungi Amycolatopsis orientalis IFO12806 GH2 104 5.3 60 [24]
Aspergillus sp. W-2 GH75 28 6.0 55 [25]
Penicillium oxalicum M2 GH75 42 5.5 60 [26]
Plants Ficus awkeotsang Makino 21 4.5 50 [27]
Viruses Chlorella Virus PBCV-1 66 5.0–8.0 50 [28]
–: Classification not defined yet.

壳聚糖酶的分子量通常约为20–50 kDa,有少数真菌来源的壳聚糖酶分子量在100 kDa左右[29],部分植物中存在分子量小于20 kDa的壳聚糖酶[30]。除了分子量的区别,壳聚糖酶的最适反应条件也存在一定的差异。大多数壳聚糖酶在中性或弱酸性的环境中具有最高酶活,不同的是,来源于蕈状芽孢杆菌(Bacillus mycoides) TKU038和紫色色杆菌(Chromobacterium violaceum) ATCC 12472的壳聚糖酶在较强的碱性条件下表现出最高催化效率[31-32],而来源于青霉菌(Penicillium sp.) IB-37-2A的壳聚糖酶在pH为4.0的酸性条件下具有最高酶活[33]。壳聚糖酶一般在30–60 ℃范围内的活性最高,一些真菌和芽孢杆菌中能够产生耐热的壳聚糖酶[34-35],来源于肾杆菌(Renibacterium sp.) Y82的壳聚糖酶却在低温的反应条件表现出较强的适应性,其在20–30 ℃仍然保留了80%以上的酶活力[36]

酶学性质特殊的壳聚糖酶往往有着更好的底物水解优势。由于壳聚糖在较高的温度下表现出更好的溶解度[37],因而耐热型的壳聚糖酶在该反应条件下不仅可以保持较高的催化活性,同时还能够降低因溶液黏度过大而造成的水解抑制作用[38]。不同的是,耐冷或耐酸型的壳聚糖酶可以在低温或低pH的条件下水解底物,这样的环境中能够显著减少因产物发生美拉德反应带来的副作用[39]

2 壳聚糖酶的分类

随着壳聚糖酶相关研究的不断深入,对壳聚糖酶的分类方式也在不断地发展和完善,根据对底物切割位点的选择性或氨基酸序列相似性可以将壳聚糖酶划分为不同类别。

壳聚糖的组成中仍然存在一部分GlcNAc单元,GlcNAc与GlcN单元的随机排列组合导致了不同类型的糖苷键产生。对壳聚糖酶水解产物的乙酰化特征进行分析发现,不同的壳聚糖酶对底物的切割位点具有选择性,据此可将壳聚糖酶大致分为4类。第Ⅰ类能水解GlcN–GlcN和GlcNAc–GlcN两种类型的糖苷键,如来自链霉菌(Streptomyces sp.) N174[40]和SirexAA-E[41]的壳聚糖酶;第Ⅱ类能水解GlcN–GlcN和GlcN–GlcNAc糖苷键,如来自环状芽孢杆菌(Bacillus circulans) MH-K1[42]的壳聚糖酶;第Ⅲ类只能水解GlcN–GlcN键,如来自芽孢杆菌(Bacillus sp.) K17的壳聚糖酶[43];第IV类能水解除GlcNAc-GlcNAc外所有类型的糖苷键,例如来自拟无枝酸菌(Amycolatopsis sp.) CsO-2[44]的壳聚糖酶。然而,该分类方式仍然无法完全解释壳聚糖酶对不同糖环类型的选择多样性,例如,来源于天蓝色链霉菌(Streptomyces coelicolor) A3(2)的壳聚糖酶能够识别和切割GlcNAc-GlcNAc糖苷键[45]

进一步研究发现,壳聚糖酶底物结合的–2位点总是倾向识别GlcN,在部分壳聚糖酶中,该位点甚至对GlcN的结合具有特异性,相比之下,–1和+1位点对GlcN或GlcNAc的选择性在不同的壳聚糖酶中具有较大差异[46-48]。基于壳聚糖酶对–2、–1、+1、+2位点糖环识别特性的重新评价,有研究者提出可将壳聚糖酶分为2种类型,A类壳聚糖酶以DD|dd方式识别糖环类型,B类壳聚糖酶以Dd|dd方式识别糖环类型,其中D和d分别表示对GlcN单元的绝对特异性和强烈的偏好性[49]

基于氨基酸序列的相似性,壳聚糖酶可以被划分为8类,分别对应糖苷水解酶(glycoside hydrolase, GH) 2、3、5、7、8、46、75和80家族(http://www.cazy.org/, 碳水化合物活性酶数据库)。壳聚糖酶主要分布在GH8、GH46、GH75和GH80家族,其中对GH46家族壳聚糖酶的研究最为深入,因此,本文将以GH46家族壳聚糖酶为主探讨壳聚糖酶的结构功能与作用机制。

3 壳聚糖酶的晶体结构 3.1 GH46家族壳聚糖酶的晶体结构

在壳聚糖酶生化性质研究的基础上,对其晶体结构的研究也在不断深入,这对理解壳聚糖酶结构和功能之间的关系以及其催化机制具有重要意义。迄今为止,GH46家族共有6个壳聚糖酶的晶体结构被揭示[40-42, 50-52]。首个晶体结构来自于链霉菌的壳聚糖酶N174 (PDB ID: 1CHK),其整体结构由N端小结构域和C端大结构域组成,2个结构域通过一段长而弯曲的α螺旋连接,呈不对称的哑铃状(图 1A)。2个结构域之间形成的裂缝状区域是底物结合口袋,宽约10 Å,深约12 Å,底物结合口袋表面呈负电性(图 1B),参与底物催化的关键残基(Asp40和Glu22)分别位于底物结合口袋的上下两侧[40]

图 1 GH46家族壳聚糖酶的晶体结构[40, 42, 52] Fig. 1 Crystal structure of GH46 chitosanase[40, 42, 52]. Crystal structure (A) and surface electrostatic potential (B) of chitosanase N174, the red to blue gradient indicates the change of potential from negative to positive. Crystal structure (C) and surface structure (D) of MH-K1. Crystal structure (E) and surface structure (F) of CsnMY002. The N-terminal domain, the C-terminal domain and the hinge region are colored in cyan, light blue and wheat, respectively.

GH46家族壳聚糖酶的晶体结构总体上相似,但部分壳聚糖酶在一级结构上存在差异(图 2),导致了三维结构或功能的明显区别。比较壳聚糖酶MH-K1 (PDB ID: 1QGI)与N174的晶体结构发现,壳聚糖酶MH-K1中N端和C端结构域的相对取向略有不同;另外,在壳聚糖酶MH-K1的N端结构域中,β3折叠后有5个氨基酸残基的插入序列(Gly70–Thr74),使得底物口袋的顶部形成一个突起,而C端结构域中特有的α14螺旋继续向裂缝处延伸,造成壳聚糖酶MH-K1的N端和C端结构域之间的裂缝略微狭窄,但底物结合口袋底部更加平坦。这些结构的差异使壳聚糖酶MH-K1的−1位点处形成更多的空间位阻,而+1位点具有更多的空间容纳乙酰基,总的来说,裂缝的大小和形状可能与壳聚糖酶的底物识别有关,这也可能是壳聚糖酶MH-K1与N174识别不同类型糖苷键的原因[42]

图 2 已知结构的GH46家族壳聚糖酶氨基酸序列多重比对[40-42, 50-52] Fig. 2 Multiple alignment of amino acid sequences of GH46 family chitosanases with known structures[40-42, 50-52]. OU01: Microbacterium sp.; N174: Streptomyces sp. N174; SACTE_5457: Streptomyces sp. SirexAA-E; GsCsn46A: Gynuella sunshinyii; CsnMY002: Bacillus subtilis MY002; MH-K1: Bacillus circulans. The key catalytic residues are marked with black triangles.

在壳聚糖酶CsnMY002结构中(PDB ID: 7C6C),氨基酸序列的插入和特殊的构象使其底物结合口袋呈孔洞状(图 1E, 1F)。首先,位于N端结构域中的α9螺旋处有6个氨基酸残基的插入序列(-T200RDEWR205-),使得该螺旋结构比GH46家族其他壳聚糖酶相应位置的螺旋更长。其次,α1和α2螺旋之间的无规卷曲(loop Ⅰ)更靠近C端结构域,其中的Arg37与C端结构域中的Thr200达到了形成氢键的距离。除此之外,连接2个结构域的铰链区(Thr23–Tyr29)与GH46家族其他壳聚糖酶相比更短,其呈无规卷曲状,并且在该区域缺乏色氨酸,这可能导致了邻近残基相互作用缺失以及loopⅠ的迁移。因此,壳聚糖酶CsnMY002的2个结构域间距更近,从而形成了一种独特的底物结合口袋[52]

3.2 GH2、GH8和GH80家族壳聚糖酶的晶体结构 3.2.1 GH80家族壳聚糖酶的晶体结构

在GH80家族中,来源于解壳聚糖松江菌(Mitsuaria chitosanitabida)的壳聚糖酶McChoA的晶体结构已经获得解析,其整体结构(PDB ID:5B4S)与GH46家族的壳聚糖酶相似(图 3AB)。McChoA的底物活性口袋位于N端结构域和C结构域之间的裂缝中,2个关键的催化氨基酸Glu41和Glu61分别处于α1和α3螺旋上。McChoA的结构中存在2段柔性铰链区,它们位于2组螺旋(α1/α2和α6/α7)之间,这种结构特征可能有利于McChoA在结合底物时发生构象转变。另外,McChoA中存在6个半胱氨酸,形成3对二硫键(Cys56-Cys151、Cys227-Cys235、Cys260-Cys297),突变分析结果表明,任意半胱氨酸的缺失都会严重影响酶的催化活性,这可能是因为二硫键对McChoA的结构稳定有重要作用[53]

图 3 壳聚糖酶McChoA、Chok和CsxA晶体结构分析[53-55] Fig. 3 Crystal structures of chitosanases McChoA, Chok and CsxA[53-55]. A: Crystal structure of McChoA. The N-terminal domain, C-terminal domain and hinge regions are shown in cyan, light blue and wheat, respectively; Glu41 and Glu61 shown as an orange pink sticks. B: Surface electrostatic potential of McChoA. C: Crystal structure of Chok. The internal α-helix, external α-helix and β-strand are shown in cyan, light blue and yellow, respectively, Glu122 and Glu309 shown as orange pink sticks. D: Surface electrostatic potential of Chok. E: Crystal structure of CsxA. Domains I to V are displayed by wheat, green, light blue, yellow, and pink. F: The interactions between CsxA with substrates. The residues in the CsxA/GlcN complex are shown as blue sticks and the residues in the CsxA_E541A/(GlcN)4 complex are shown as white sticks. GlcN and (GlcN)4 are presented in yellow and green sticks, respectively. The hydrogen bonds at the –1 and +1 subsites shown as yellow and orange spaced line segments, respectively. For all electrostatic surface analysis graphs, the gradient from red to blue indicates the change in potential from negative to positive.
3.2.2 GH8家族壳聚糖酶的晶体结构

来源于Bacillus sp. K17的壳聚糖酶Chok属于GH8家族,其在pH 6.4和pH 3.7的结晶条件下分别获得了活性和非活性形式的晶体结构(PDB ID: 1V5D, 1V5C)。2种晶体的空间结构高度一致,均由2组重复的6个α螺旋组成,中心的6个α螺旋被外侧的6个α螺旋包围形成双管状结构。在双管状结构顶部,连接着短的β折叠和外侧α螺旋的长链无规则卷曲向结构域内部扭曲折叠,形成了裂缝状带负电的底物结合口袋,2个催化残基(Glu122和Glu309)分居两侧(图 3C3D),这种结构特征与该家族的纤维素酶和木聚糖酶的结构类似。比较壳聚糖酶Chok与GH8家族纤维素酶CelA的结构发现,CelA中与底物相互作用的关键残基在Chok中保守存在,4个酸性残基Glu107、Asp179、Asp183和Glu309可以参与底物的识别,另外,保守的疏水性残基Trp235、Trp166、Phe413和Tyr318可能在己糖底物的结合中发挥作用[54]

3.2.3 GH2家族壳聚糖酶的晶体结构

GH2家族的壳聚糖酶CsxA具有外切活性,能够从底物的非还原端起始糖苷键的水解以生成氨基葡萄糖[55]。CsxA的晶体结构中(PDB ID:2VZO)包含1个不完整的(α/β)8桶状的核心结构域(Region Ⅲ)以及外围的4个三明治样的结构域(region Ⅰ、Ⅱ、Ⅳ、Ⅴ),而(α/β)8桶状结构域中心也是带负电的底物结合区(图 3E)。

在与壳四糖[(GlcN)4]共结晶的过程中,获得了壳聚糖酶CsxA与水解产物GlcN的复合物晶体结构(PDB ID:2VZS)。结构分析显示,GlcN结合在–1位点,与Asp203、Trp204、Glu394、Asp469、Glu541和Trp642形成相互作用网络(图 3F)。其中,Glu394、Asp469、Glu541均能够和氨基葡萄糖的氨基基团形成氢键,这些残基不仅构成了容纳氨基葡萄糖氨基基团的口袋,也提供了壳聚糖酶CsxA区别葡萄糖和氨基葡萄糖的结构基础[55]

在突变体CsxA_E541A与(GlcN)4的复合物结构中(PDB ID:2VZV),由于指向溶剂的糖环密度不可见,只观察到结合–1和+1位点的糖环。在–1位点,糖环和残基之间的相互作用与CsxA/GlcN复合物中的情况相同;在+1位点,非还原端糖环的N2与Glu431侧链羧酸盐形成氢键,O6与Tyr516的非质子化氧形成氢键,另外,糖单元的吡喃环与Trp781的吲哚环形成疏水作用(图 3F)。

4 GH46家族壳聚糖酶的作用机制 4.1 GH46家族壳聚糖酶与底物的相互作用及水解特征

根据糖苷水解酶与底物的相互作用特征,可以将其分为“滑动型”和“非滑动型”2类。“滑动型”糖苷水解酶的底物结合口袋中通常富含芳香族氨基酸,底物结合后,能够通过与芳香族氨基酸的疏水作用在隧道状的催化口袋中不断滑动,在整个催化过程中,酶与底物之间发生持续的相互作用,促使底物被持续水解[56-57]

GH46家族的壳聚糖酶属于“非滑动型”的糖苷水解酶,在催化口袋中并不富含芳香族氨基酸,底物则以随机方式结合至切割位点,每次切割完成后,底物一般需要离开催化口袋,然后重复“结合-切割-释放”的过程。在壳聚糖酶BsCsn46A中,壳六糖[(GlcN)6]的水解存在“2+4” “3+3”和“4+2”三种切割模式,每种切割模式以近似相等的概率随机发生,水解产物包括壳二糖、壳三糖和壳四糖[48]。壳聚糖酶OU01_E25A/(GlcN)6与CsnMY002_E19A/(GlcN)6的复合物晶体结构(PDB ID:4OLT、7C6D)分别揭示了“3+3”和“4+2”两种切割模式(图 4A4B),结构分析显示,酶与底物之间的主要作用方式是氢键和静电力,与正编号结合位点相比,负编号结合位点的残基与糖环形成了更复杂的氢键网络。值得一提的是,在壳聚糖酶的底物活性口袋中,存在数量较多的酸性残基(Glu和Asp),它们提供了底物活性口袋的负电环境,而壳聚糖酶与带正电壳聚糖之间的电荷吸引被认为是酶识别配体的主要方式,这可能也与壳聚糖酶具有专一性水解壳聚糖的特性相关[58]

图 4 壳聚糖酶与(GlcN)6的相互作用[50, 52] Fig. 4 Interaction of chitosanase with (GlcN)6[50, 52]. A: Interactions of chitosanase OU01 with (GlcN)6. B: Interactions of CsnMY002 with (GlcN)6. All residues are shown as white sticks, (GlcN)6 are shown as green sticks, red spheres represent water molecules, and yellow spaced lines are hydrogen bonds.

大多数壳聚糖酶都属于内切型,底物的水解效率受到底物链长以及乙酰化程度的影响。例如,壳聚糖酶对长链底物表现出更高的催化效率,在降解壳六糖、壳五糖和壳四糖的过程中,转化速率呈现逐渐递减的趋势[59]。另外,对高脱乙酰度和低脱乙酰度底物的水解动力学分析表明,2种底物在水解时,产物还原糖的含量均会经历先快后慢的上升过程,而高脱乙酰度的底物在降解时更为复杂,降解速率会经过呈连续下降趋势的3个平台期[45]。部分乙酰化的糖单元造成了不同类型的糖苷键分布,使得壳聚糖酶在水解过程中需要切割不同的糖苷键,这可能是壳聚糖酶非线性化水解底物的原因,而壳聚糖酶对不同类型的底物存在水解效率差异的分子机制还有待研究。

在实际的研究过程中,获得长链底物(DP > 6)与壳聚糖酶的复合物晶体结构非常困难,这是由于底物中存在可旋转的糖苷键,未与酶结合的糖环常会处于高度无序的状态,因此,壳聚糖酶与底物的相互作用模式大多是通过分析短链底物与酶的结合状态以及生成产物的类型所得到的。

4.2 GH46家族壳聚糖酶的底物识别机制

在壳聚糖酶OU01的底物结合口袋中,残基Glu25、Tyr37、Asp43、Arg45、Thr58、Asp60、His203、Tyr233和Asp235直接参与了−3–+3位点糖环的结合,其中Tyr37、Arg45、Thr58、Asp60、His203和Asp235是底物结合所必需的残基,它们对底物氢键作用的缺失会对长链底物的催化造成不同程度的影响。突变体活性差异表明,残基Glu25、Asp43、Asp60和His203在低聚底物和高聚底物的结合过程中均发挥重要作用,而残基Tyr37、Thr58、Tyr233、Asp235和在结合位点之外的Asp40主要负责稳定高聚底物的结合[46, 50]。氨基酸序列分析显示,壳聚糖酶OU01参与糖环结合的残基在GH46家族的壳聚糖酶中通常高度保守(图 2),这意味着该家族壳聚糖酶与底物的相互作用基本一致。

基于晶体结构和相关突变体的功能分析,在对壳聚糖酶OU01的研究中提出了底物识别的三步机制。底物结合位点可以被划分为3个区域,首先,长链和短链底物均在–1和–2位点区域被识别,其中,Asp60和His203是参与初始识别最主要的作用残基;然后,在+1、+2、+3和–3位点区域的氨基酸残基(Tyr37、Thr58、Tyr233、Asp235)作用下维持底物的稳定结合;接着,位于催化口袋区域外的残基Asp40对高聚底物的识别发挥重要作用[46]。最近,对壳聚糖酶GsCsn46A的研究结果支持了底物在–1和–2位点被初始识别的观点,重要的是,底物在负编号位点的结合诱导了酶活性口袋的关闭,提示了底物需要经历重新定位的过程结合到切割位点以起始水解反应[51]

对比壳聚糖酶N174的结构,壳六糖对称地结合在壳聚糖酶OU01的催化口袋中,底物的结合使得底物催化口袋由开放状态向闭合状态转变(图 5A5B)。结构分析显示,Thr29–Ala33和Ala108–Ser111两个铰链区的构象变化是导致底物催化口袋闭合的主要原因。另外,N端和C端结构域中2组loop区的相互靠近促使了关键催化残基(Glu25和Asp43)的距离缩短至合适的催化状态,具有柔性的Glu199–Asp205区域的构象变化也使–1位点发挥重要识别作用的His203的侧链发生180°的翻转,从而与底物形成相互作用(图 5C)。底物的水解导致了产物与壳聚糖酶的总结合能降低,这被认为是产物从活性位点处被释放的原因,而产物的释放也导致了闭合的催化口袋重新开放,利于新的底物重新结合并被水解,最终壳聚糖酶OU01以非连续的方式完成降解,在整个反应过程中,壳聚糖酶OU01的构象经历了“开放-闭合-开放”的变化[46],这与在壳聚糖酶N174中提出的底物结合口袋在闭合形式和开放形式2种状态下发生转换的观点一致[40]

图 5 底物结合诱导的壳聚糖酶构象变化[46] Fig. 5 Conformation change induced by substrate binding in chitosanase[46]. A: Open state of apo chitosanase N174. B: Closed state of chitosanase OU01 complexed with (GlcN)6. C: Conformational changes of chitosanase OU01. The structures of N174 and OU01 are shown as cyan and light blue, respectively, and the hinge region of conformational change is shown as wheat. The residues of chitosanase N174 and OU01 are shown as cyan and yellow sticks, respectively, with the arrows in panel C pointing to the direction of the conformational transition.

然而,壳聚糖酶并不全部具有底物诱导构象变化的特征,正如前文所述,壳聚糖酶CsnMY002具有天然闭合的孔洞状底物催化口袋,结合底物后并未导致其明显的构象变化[52]。因此,在这种具有特殊结构但底物结合口袋又缺乏芳香族氨基酸的壳聚糖酶中,底物的结合和产物的释放过程可能有所不同。

5 壳聚糖酶的催化机理

糖苷水解酶的水解机制可分为“保留型” (retaining type)和“反转型”(inverting type)[60-61]。尽管后来发现糖苷水解酶的催化机制更加多样化,但这2种催化类型适用于解释大部分糖苷水解酶降解底物的反应过程[62]。就壳聚糖酶而言,碳水化合物活性酶数据库(CAZy)根据催化机理建立的分类显示,来自GH2、3、5、7家族的壳聚糖酶通常遵循“保留型”催化机制,而GH8、46、75和80家族的壳聚糖酶通常遵循“反转型”催化机制。

壳聚糖酶的催化类型可以根据晶体结构中关键残基之间的距离推测(表 2)。遵循“保留型”催化机制的壳聚糖酶,广义酸/碱残基与亲核试剂的空间距离约为5–6 Å[55, 62]。而遵循“反转型”催化机制的壳聚糖酶中,广义碱和广义酸残基之间的距离通常较远,常为10 Å左右,但在壳聚糖酶的失活突变体与底物的复合物结构中,由于关键残基侧链的缺失,以催化残基主链的间距进行测定,得到的距离会比实际值更大,在部分壳聚糖酶中为14 Å左右[40-42, 50, 52-53]

表 2 部分壳聚糖酶的催化机制和关键残基 Table 2 The key residues and mechanism of different chitosanases
Family Chitosanase Catalytic mechanism Catalytic residues Catalytic residue
distance (Å)
Water-localized residues References
GH2 CsxA Retaining Glu541, Asp469 6.2 [55]
GH8 Chok Inverting Glu122, Glu309 9.7 Asn319 [54]
GH46 N174 Inverting Glu22, Asp40 12.0–13.8 Thr45 [40]
SACTE_5457 Inverting Glu74, Asp92 10.3 Thr97 [41]
MH-K1 Inverting Glu37, Asp55 10.9 Thr60 [42]
OU01 Inverting Glu25, Asp43 14.3 Thr48 [50]
CsnMY002 Inverting Glu19, Asp35 14.6 Thr40 [52]
GH80 McChoA Inverting Glu122, Glu61 10.8 Thr73 [53]
The distances between catalytic residues are the determined values in the relevant reports.
5.1 “保留型”机制

“保留型”机制包括2步反应,糖苷酶的关键催化残基在2步反应过程中依次作为广义酸和广义碱发挥功能(图 6A)。在第一步反应中,催化残基首先作为广义酸向糖苷键中的氧原子提供一个质子以促进糖苷键的断裂,同时,亲核试剂在α侧攻击底物异头碳(C1)并形成中间体;在第二步反应中,催化残基作为广义碱激活水分子在β侧对中间体的亲核攻击,水分子的羟基基团与异头碳成键并生成新的还原端,最终使得产物的异头碳构象在经历2次反转后与底物的异头碳构象保持一致[61, 63]

图 6 壳聚糖酶的催化机制[46, 50, 55, 61] Fig. 6 Retaining and inverting mechanisms in chitosanase[46, 50, 55, 61]. A: Retaining type catalytic mechanism. B: The catalytic center of chitosanase CsxA. C: Inverting type catalytic mechanism. D: The catalytic center of chitosanase OU01. The key catalytic residues shown as orange pink sticks, the substrates shown as green sticks, the key water molecules shown as red spheres, and the red spaced line segments indicate the distance of the measured atoms.

GH2家族的壳聚糖酶CsxA通过“保留型”机制水解底物[55]。Asp469和Glu541分别作为壳聚糖酶CsxA的广义酸/碱残基和亲核试剂,在壳聚糖酶CsxA/GlcN的复合物结构中相距6.2 Å,而Asp469侧链羧基氧原子与糖苷键中的氧原子距离为2.7 Å,Glu541与–1位点糖环的C1原子相距2.9 Å。可见,Asp469和Glu541与底物的相互作用支持“保留型”反应机制的发生,Asp469能向糖苷键中的氧原子提供质子,而定位在–1位点的Glu541以带电荷的羧酸盐形式攻击底物糖环的C1原子(图 6B)。

5.2 “反转型”机制

在“反转型”机制中,催化功能分别由一个广义酸和一个广义碱行使(图 6C)。在水解反应发生时,广义酸向糖苷键的氧原子提供一个质子以促进糖苷键断裂,而广义碱激活水分子后,使其在α侧攻击异头碳并生成新的还原端,最终产物的异头碳由β构型反转为α构型[61, 64]。因此,可以通过核磁共振技术测定产物还原端的α构型异头碳在水解过程中的所占比例来区分壳聚糖酶的催化反应类型[46]

GH46家族壳聚糖酶中的关键催化残基高度保守(图 2),在壳聚糖酶OU01中分别为Asp43和Glu25。壳聚糖酶OU01_E25A/(GlcN)6的复合物结构显示,Asp43和Glu25(E25A)分别位于–1和+1位点间的糖苷键两侧,2个关键催化残基的主链(Asp43和E25A)之间相距14.3 Å,水分子(W1)被广义碱Asp43与Thr48共同锚定在距离异头碳3.6 Å处;另外,在壳聚糖酶OU01_D43A/(GlcN)6的复合物结构(PDB ID:4QWP)中,Glu25与糖苷键中的氧原子相距3.6 Å (图 6D)。可见,Glu25和Asp43的空间位置支持“反转型”催化反应的发生,Glu25作为广义酸发挥功能,促进–1和+1位点之间的糖苷键断裂,而Asp43作为广义碱夺取水分子的一个质子后,激活其对异头碳的亲核攻击,促使新的还原端产生[46, 50]

6 壳聚糖酶的蛋白质工程 6.1 利用壳聚糖酶突变体制备特定聚合度的壳寡糖

壳寡糖的生理功能与其聚合度相关[65-66]。然而,由于壳寡糖纯品的制备成本较高,大多数研究采用壳寡糖混合物开展生理效应试验,导致了壳寡糖的功能机制不易阐明。到目前为止,酸水解法是制备壳寡糖的主要方式,但该法会难以避免地产生大量酸性废料。除此之外,酸水解法还存在产物组成复杂、产量不稳定、产物可能被引入额外的化学修饰等问题。鉴于酸水解法的不足,通过壳聚糖酶制备壳寡糖受到了越来越多的重视。除了发掘新型壳聚糖酶资源外,对现有的壳聚糖酶进行蛋白质工程改造是当前研究的热点之一,而壳聚糖酶的理性设计已经被证实为是一种能够获得特定聚合度产物的有效途径。

来源于Bacillus sp. MN的壳聚糖酶CSN属于GH8家族,CSN水解壳聚糖的产物为壳二糖和壳三糖。结构分析表明,壳四糖水解时会在–2和+2位点之间以“V型”构象对称地结合在活性中心,如果减弱或消除CSN在–2或+2位点处与糖环的相互作用,则可能抑制壳四糖的结合,从而在水解产物中积累壳四糖。由于长链底物在–2和+2位点之外具有更多的结合位点,因此,在–2或+2位点处的突变可能不会过度影响长链底物的结合和水解。基于这一策略,研究人员选择–2和+2位点附近的残基进行突变,其中突变体CSN_E59A和CSN_W118A能够累积壳四糖,而且这2种突变体仍然保持了对壳聚糖较高的转化率,可以用于纯品壳四糖的制备[67]

壳聚糖酶OU01和CsnMY002水解壳六糖都会产生壳二糖和壳三糖,而OU01_E25A/ (GlcN)6和CsnMY002_E19A/(GlcN)6复合物晶体结构分别代表了壳六糖“3+3”和“4+2”的切割模式,两种切割模式的不同在于壳六糖结合位置的差异[50, 52]。如果在壳聚糖酶+3位点引入长侧链残基增加空间位阻,糖环在该位点的结合将会受到阻碍,“3+3”的水解模式将显著减弱,“4+2”的切割模式将成为主要水解方式,相应地,壳二糖将成为主要水解产物。基于这一策略,研究人员在壳聚糖酶CsnMY002的+3位点附近选择残基进行突变,最终获得了突变体CsnMY002_ G21K,其水解终产物主要是壳二糖,含量约为壳三糖的29倍,而在野生型CsnMY002的水解产物中,壳二糖和壳三糖的含量接近。因此,可以利用突变体G21K制备纯品壳二糖[52]

来源于Streptomyces sp. N174的壳聚糖酶SsCsn46属于GH46家族,删除SsCsn46底物结合口袋表面的4个氨基酸后,获得了倾向于累积壳五糖的突变体。研究推测,氨基酸残基的删除增大了壳聚糖酶的底物结合口袋,使其能够更有效地结合较大的底物,导致了聚合度更小的壳寡糖产量减少,这被认为是突变体能够有效积累壳五糖的原因[68]。另外,来源于植物内生菌Gynuella sunshinyii的壳聚糖酶GsCsn46A,在增加+2和+3结合位点之间残基的侧链位阻后,获得了几乎无法水解壳四糖并对壳五糖水解能力减弱的突变体[51]

总之,通过理性设计获得累积特定聚合度产物的突变体拓宽了壳聚糖酶的适用性,促进了酶法制备壳寡糖技术的发展。酸水解制备壳寡糖通常是随机水解(random hydrolysis)的过程,酶法制备壳寡糖实现了可控水解(controlled hydrolysis),而通过壳聚糖酶蛋白质工程则有望按照设计水解(designed hydrolysis)制备壳寡糖。现有的研究中,以结构为基础的突变设计主要是干预底物在活性位点的结合或改变底物结合的倾向性,从而达到了改变产物组成的目的。不足的是,对于能够累积较高聚合度产物的突变体而言,其酶活通常都显著降低,因此,要获得具有良好酶学性质的壳聚糖酶突变体仍然需要进一步地探究。

6.2 提高壳聚糖酶的热稳定性和催化活性

提高壳聚糖酶的热稳定性有利于酶法制备壳寡糖的规模化应用。有研究将芽孢杆菌(Bacillus sp.) TS的壳聚糖酶CsnTS与热纤梭菌(Clostridium thermocellum)中的糖苷水解酶进行序列比对,确定了潜在的与热稳定性相关的15个丝氨酸,将其突变为丙氨酸或甘氨酸后,突变体S265G、S276A和S347G表现出更强的热稳定性,在相同的条件下,3种突变体的半衰期分别为34.57、36.79和7.20 min,而野生型壳聚糖酶CsnTS的半衰期仅为5.32 min[69]。在壳聚糖酶EAG1中,通过在柔性区引入二硫键,突变体A207C/L286C的热稳定性显著提高,热失活实验表明,在50 ℃条件下反应50 min,突变体A207C/L286C的残留酶活性保持了67%,而野生型酶仅保留5%的酶活;另外,在相同测定条件下,突变体A207C/L286C的半衰期为69.3 min,与野生型酶相比高出10.5 min[70]。更多的是,在壳聚糖酶CsnA的C端融合碳水化合物结合模块(carbohydrate-binding modules, CBM)后,融合蛋白CsnA-CBM5的T50Tm分别提高了8.9 ℃和2.9 ℃[71]

壳聚糖酶的催化活性是影响其工业应用的另一个关键因素。为了提高来源于枯草芽孢杆菌(Bacillus subtilis)的壳聚糖酶BsCsn46A的酶活,研究人员对BsCsn46A所有氨基酸残基的折叠自由能进行计算,筛选获得一个候选残基Pro121,对其进行饱和突变后获得了P121N、P121C和P121V三种突变体,与野生型相比,突变体对胶体壳聚糖的比活力分别提高了1.69、1.97和2.15倍,其中,P121N的热稳定性与野生型壳聚糖酶相当,这为改善壳聚糖酶的酶学性质提供了新的策略[72]

虽然壳聚糖酶的蛋白质工程研究已经得到了不少设计成功的突变体酶,然而,由于壳聚糖酶构效关系复杂,改造壳聚糖酶的相关研究仍然存在一定的盲目性。因此,继续深入研究壳聚糖酶的催化机理和作用机制是非常必要的,能够为壳聚糖酶蛋白质工程提供更多的理论依据。

7 问题与展望

目前,对壳聚糖酶结构、功能和水解机制的研究已经具备了一定的基础,利用壳聚糖酶制备壳寡糖的应用研究也在不断发展和完善。然而,实现壳寡糖工业级的酶法制备仍然面临阻碍。一方面,天然壳聚糖酶的水解产物常以低聚形式的壳寡糖为主,难以获得较高聚合度的壳寡糖,虽然通过蛋白质设计改造壳聚糖酶是可行的方式,但壳聚糖酶突变体往往难以达到工业用酶的要求。另一方面,纯品壳寡糖的生产成本较高,关键问题在于不同组分的壳寡糖分离难度较大,因此,有必要研究更加有效的分离制备工艺。

总的来说,在发展更加高效的分离纯化技术之外,获取酶学性质更好、能够累积高聚合度壳寡糖的壳聚糖酶是值得继续研究的方向之一。随着生物信息学的飞速发展,利用人工智能等新技术对壳聚糖酶进行设计改造,通过大量的理论计算和评估分析为壳聚糖酶突变体构建提供快捷的技术支持,将有助于获得理想的壳聚糖酶。壳寡糖作为一类多功能的活性分子,具有广泛的应用前景,随着酶法制备壳寡糖技术的日趋成熟,低成本制备壳寡糖纯品值得期待,这将极大地促进壳寡糖在不同工业领域的应用。

参考文献
[1]
JIA SL, LIU XC, HUANG Z, LI Y, ZHANG LT, LUO YK. Effects of chitosan oligosaccharides on microbiota composition of silver carp (Hypophthalmichthys molitrix) determined by culture-dependent and independent methods during chilled storage. International Journal of Food Microbiology, 2018, 268: 81-91. DOI:10.1016/j.ijfoodmicro.2018.01.011
[2]
QIN Z, CHEN QM, LIN S, LUO S, QIU YJ, ZHAO LM. Expression and characterization of a novel cold-adapted chitosanase suitable for chitooligosaccharides controllable preparation. Food Chemistry, 2018, 253: 139-147. DOI:10.1016/j.foodchem.2018.01.137
[3]
AFFES S, ARANAZ I, HAMDI M, ACOSTA N, GHORBEL-BELLAAJ O, HERAS Á, NASRI M, MAALEJ H. Preparation of a crude chitosanase from blue crab viscera as well as its application in the production of biologically active chito-oligosaccharides from shrimp shells chitosan. International Journal of Biological Macromolecules, 2019, 139: 558-569. DOI:10.1016/j.ijbiomac.2019.07.116
[4]
ZHENG JP, YUAN XB, CHENG G, JIAO SM, FENG C, ZHAO XM, YIN H, DU YG, LIU HT. Chitosan oligosaccharides improve the disturbance in glucose metabolism and reverse the dysbiosis of gut microbiota in diabetic mice. Carbohydrate Polymers, 2018, 190: 77-86. DOI:10.1016/j.carbpol.2018.02.058
[5]
SÁNCHEZ Á, MENGÍBAR M, RIVERA-RODRÍGUEZ G, MOERCHBACHER B, ACOSTA N, HERAS A. The effect of preparation processes on the physicochemical characteristics and antibacterial activity of chitooligosaccharides. Carbohydrate Polymers, 2017, 157: 251-257. DOI:10.1016/j.carbpol.2016.09.055
[6]
de ANDRADE RCLC, de ARAÚJO NK, TORRES-RÊGO M, FURTADO AA, DANIELE-SILVA A, de SOUZA PAIVA W, de MEDEIROS DANTAS JM, da SILVA NS, da SILVA-JÚNIOR AA, URURAHY MAG, de ASSIS CF, De SANTIS FERREIRA L, ROCHA HAO, de FREITAS FERNANDES-PEDROSA M. Production and characterization of chitooligosaccharides: evaluation of acute toxicity, healing, and anti-inflammatory actions. International Journal of Molecular Sciences, 2021, 22(19): 10631. DOI:10.3390/ijms221910631
[7]
JITPRASERTWONG P, KHAMPHIO M, PETSRICHUANG P, EIJSINK VGH, POOLSRI W, MUANPRASAT C, RANGNOI K, YAMABHAI M. Anti-inflammatory activity of soluble chito-oligosaccharides (CHOS) on VitD3-induced human THP-1 monocytes. PLoS One, 2021, 16(2): e0246381. DOI:10.1371/journal.pone.0246381
[8]
ZHAI XC, LI CN, REN DF, WANG J, MA C, ABD EL-ATY AM. The impact of chitooligosaccharides and their derivatives on the in vitro and in vivo antitumor activity: a comprehensive review. Carbohydrate Polymers, 2021, 266: 118132. DOI:10.1016/j.carbpol.2021.118132
[9]
THADATHIL N, VELAPPAN SP. Recent developments in chitosanase research and its biotechnological applications: a review. Food Chemistry, 2014, 150: 392-399. DOI:10.1016/j.foodchem.2013.10.083
[10]
SEKI K, NISHIYAMA Y, MITSUTOMI M. Characterization of a novel exo-chitosanase, an exo-chitobiohydrolase, from Gongronella butleri. Journal of Bioscience and Bioengineering, 2019, 127(4): 425-429. DOI:10.1016/j.jbiosc.2018.09.009
[11]
IN-PYO H, JANG H, LEE SY, CHOI SG. Cloning and characterization of a bifunctional cellulase-chitosanase gene from Bacillus licheniformis NBL420. Journal of Microbiology and Biotechnology, 2003, 13: 35-42.
[12]
SU HP, SUN JN, CHU WQ, YUAN B, MAO XZ. Biochemical characterization and cleavage pattern analysis of a novel chitosanase with cellulase activity. Applied Microbiology and Biotechnology, 2022, 106(5/6): 1979-1990.
[13]
JIANG ZQ, MA, GUAN, YAN QJ, YANG SQ. Biochemical characterization of a novel bifunctional chitosanase from Paenibacillus barengoltzii for chitooligosaccharide production. World Journal of Microbiology and Biotechnology, 2021, 37(5): 1-13.
[14]
NA HB, JUNG WK, JEONG YS, KIM HJ, KIM SK, KIM J, YUN HD, LEE JK, KIM H. Characterization of a GH family 8 β-1, 3-1, 4-glucanase with distinctive broad substrate specificity from. X4Paenibacillus sp. Biotechnology Letters, 2015, 37(3): 643-655. DOI:10.1007/s10529-014-1724-x
[15]
ZITOUNI M, FORTIN M, SCHEERLE RK, LETZEL T, MATTEAU D, RODRIGUE S, BRZEZINSKI R. Biochemical and molecular characterization of a thermostable chitosanase produced by the strain Paenibacillus sp. 1794 newly isolated from compost. Applied Microbiology and Biotechnology, 2013, 97(13): 5801-5813. DOI:10.1007/s00253-012-4483-4
[16]
WANG JR, LI XM, CHEN H, LIN BL, ZHAO LZ. Heterologous expression and characterization of a high-efficiency chitosanase from Bacillus mojavensis SY1 suitable for production of chitosan oligosaccharides. Frontiers in Microbiology, 2021, 12: 781138. DOI:10.3389/fmicb.2021.781138
[17]
CUI DD, YANG J, LU BS, SHEN H. Efficient preparation of chitooligosaccharide with a potential chitosanase csn-SH and its application for fungi disease protection. Frontiers in Microbiology, 2021, 12: 682829. DOI:10.3389/fmicb.2021.682829
[18]
PENG YH, WANG YP, LIU XY, ZHOU RH, LIAO XQ, MIN Y, MA LX, WANG Y, RAO B. Expression and surface display of an acidic cold-active chitosanase in Pichia pastoris using multi-copy expression and high-density cultivation. Molecules, 2022, 27(3): 800. DOI:10.3390/molecules27030800
[19]
GUO N, SUN JN, WANG W, GAO L, LIU JB, LIU Z, XUE CH, MAO XZ. Cloning, expression and characterization of a novel chitosanase from Streptomyces albolongus ATCC 27414. Food Chemistry, 2019, 286: 696-702. DOI:10.1016/j.foodchem.2019.02.056
[20]
CHEN T, CHENG G, JIAO SM, REN LS, ZHAO CF, WEI JH, HAN JT, PEI MS, DU YG, LI JJ. Expression and biochemical characterization of a novel marine chitosanase from Streptomyces niveus suitable for preparation of chitobiose. Marine Drugs, 2021, 19(6): 300. DOI:10.3390/md19060300
[21]
CHEN D, CHEN C, ZHENG X, CHEN J, HE W, LIN C, CHEN H, CHEN Y, XUE T. Chitosan oligosaccharide production potential of Mitsuaria sp. C4 and its whole-genome sequencing. Frontiers in Microbiology, 2021, 12: 695571. DOI:10.3389/fmicb.2021.695571
[22]
PARK JK, SHIMONO K, OCHIAI N, SHIGERU K, KURITA M, OHTA Y, TANAKA K, MATSUDA H, KAWAMUKAI M. Purification, characterization, and gene analysis of a chitosanase (ChoA) from Matsuebacter chitosanotabidus 3001. Journal of Bacteriology, 1999, 181(21): 6642-6649. DOI:10.1128/JB.181.21.6642-6649.1999
[23]
PENG N, XU WL, WANG F, HU JL, MA MH, HU YL, ZHAO SM, LIANG YX, GE XY. Mitsuaria chitosanase with unrevealed important amino acid residues: characterization and enhanced production in Pichia pastoris. Applied Microbiology and Biotechnology, 2013, 97(1): 171-179. DOI:10.1007/s00253-012-3901-y
[24]
ZHANG JP, CAO HL, LI SG, ZHAO Y, WANG WX, XU QS, DU YG, YIN H. CÔTÉ N, FLEURY A, DUMONT-BLANCHETTE E, FUKAMIZO T, MITSUTOMI M, BRZEZINSKI R. The Biochemical Journal, 2006, 394(Pt 3): 675-686.
[25]
ZHANG JP, CAO HL, LI SG, ZHAO Y, WANG WX, XU QS, DU YG, YIN H. Characterization of a new family 75 chitosanase from Aspergillus sp. W-2. International Journal of Biological Macromolecules, 2015, 81: 362-369. DOI:10.1016/j.ijbiomac.2015.08.026
[26]
CAO SN, GAO P, XIA WS, LIU SQ, WANG B. A novel chitosanase from Penicillium oxalicum M2 for chitooligosaccharide production: purification, identification and characterization. Molecular Biotechnology, 2022, 64(9): 947-957. DOI:10.1007/s12033-022-00461-9
[27]
CHANG CT, LIN YL, LU SW, HUANG CW, WANG YT, CHUNG YC. Characterization of a chitosanase from jelly fig (Ficus awkeotsang makino) latex and its application in the production of water-soluble low molecular weight chitosans. PLoS One, 2016, 11(3): e0150490. DOI:10.1371/journal.pone.0150490
[28]
SUN L, ADAMS B, GURNON JR, YE Y, VAN ETTEN JL. Characterization of two chitinase genes and one chitosanase gene encoded by Chlorella virus PBCV-1. Virology, 1999, 263(2): 376-387. DOI:10.1006/viro.1999.9958
[29]
CHAO CF, CHEN YY, CHENG CY, LI YK. Catalytic function of a newly purified exo-β-d-glucosaminidase from the entomopathogenic fungus Paecilomyces lilacinus. Carbohydrate Polymers, 2013, 93(2): 615-621. DOI:10.1016/j.carbpol.2012.12.030
[30]
HSU SK, CHUNG YC, CHANG CT, SUNG HY. Purification and characterization of two chitosanase isoforms from the sheaths of bamboo shoots. Journal of Agricultural and Food Chemistry, 2012, 60(2): 649-657. DOI:10.1021/jf203976x
[31]
LIANG TW, CHEN WT, LIN ZH, KUO YH, NGUYEN AD, PAN PS, WANG SL. An amphiprotic novel chitosanase from Bacillus mycoides and its application in the production of chitooligomers with their antioxidant and anti-inflammatory evaluation. International Journal of Molecular Sciences, 2016, 17(8): 1302. DOI:10.3390/ijms17081302
[32]
AZEVEDO MIG, OLIVEIRA ST, SILVA CFB, CARNEIRO RF, NAGANO CS, GADELHA ACS, TORRES DC, MONTEIRO-JÚNIOR JR, GIRÃO MS, MUNIZ CR, FREITAS CDT, GRANGEIRO TB. Secretory production in Escherichia coli of a GH46 chitosanase from Chromobacterium violaceum, suitable to generate antifungal chitooligosaccharides. International Journal of Biological Macromolecules, 2020, 165: 1482-1495. DOI:10.1016/j.ijbiomac.2020.09.221
[33]
AKTUGANOV GE, GALIMZIANOVA NF, GILVANOVA EA, PUDOVA EA, KUZMINA LY, MELENTIEV AI, SAFINA VR. Purification and characterization of exo-β-1, 4-glucosaminidase produced by chitosan-degrading fungus, Penicillium sp. IB-37-2A. World Journal of Microbiology and Biotechnology, 2019, 35(2): 18. DOI:10.1007/s11274-019-2590-4
[34]
DOAN CT, TRAN TN, NGUYEN VB, NGUYEN AD, WANG SL. Production of a thermostable chitosanase from shrimp heads via Paenibacillus mucilaginosus TKU032 conversion and its application in the preparation of bioactive chitosan oligosaccharides. Marine Drugs, 2019, 17(4): 217. DOI:10.3390/md17040217
[35]
CHEN XM, ZHAI C, KANG LX, LI CH, YAN H, ZHOU YL, YU XL, MA LX. High-level expression and characterization of a highly thermostable chitosanase from Aspergillus fumigatus in Pichia pastoris. Biotechnology Letters, 2012, 34(4): 689-694. DOI:10.1007/s10529-011-0816-0
[36]
ZHANG LL, JIANG XH, XIAO XF, ZHANG WX, SHI YQ, WANG ZP, ZHOU HX. Expression and characterization of a novel cold-adapted chitosanase from marine Renibacterium sp. suitable for chitooligosaccharides preparation. Marine Drugs, 2021, 19(11): 596. DOI:10.3390/md19110596
[37]
DESBRIERES J. Viscosity of semiflexible chitosan solutions: influence of concentration, temperature, and role of intermolecular interactions. Biomacromolecules, 2002, 3(2): 342-349. DOI:10.1021/bm010151+
[38]
PAN AD, ZENG HY, FOUA GB, ALAIN C, LI YQ. Enzymolysis of chitosan by papain and its kinetics. Carbohydrate Polymers, 2016, 135: 199-206. DOI:10.1016/j.carbpol.2015.08.052
[39]
ZHANG J, MEI ZW, HUANG XX, DING YY, LIANG YX, MEI YX. Inhibition of Maillard reaction in production of low-molecular-weight chitosan by enzymatic hydrolysis. Carbohydrate Polymers, 2020, 236: 116059. DOI:10.1016/j.carbpol.2020.116059
[40]
MARCOTTE EM, MONZINGO AF, ERNST SR, BRZEZINSKI R, ROBERTAS JD. X-ray structure of an anti-fungal chitosanase from streptomyces N174. Nature Structural Biology, 1996, 3(2): 155-162. DOI:10.1038/nsb0296-155
[41]
TAKASUKA TE, BIANCHETTI CM, TOBIMATSU Y, BERGEMAN LF, RALPH J, FOX BG. Structure-guided analysis of catalytic specificity of the abundantly secreted chitosanase SACTE_5457 from Streptomyces sp. SirexAA-E. Proteins, 2014, 82(7): 1245-1257. DOI:10.1002/prot.24491
[42]
SAITO J, KITA A, HIGUCHI Y, NAGATA Y, ANDO A, MIKI K. Crystal structure of chitosanase from Bacillus circulans MH-K1 at 1.6-a resolution and its substrate recognition mechanism. The Journal of Biological Chemistry, 1999, 274(43): 30818-30825. DOI:10.1074/jbc.274.43.30818
[43]
SAKIHAMA Y, ADACHI W, SHIMIZU S, SUNAMI T, FUKAZAWA T, SUZUKI M, YATSUNAMI R, NAKAMURA S, TAKÉNAKA A. Crystallization and preliminary X-ray analyses of the active and the inactive forms of family GH-8 chitosanase with subclass Ⅱ specificity from Bacillus sp. strain K17. Acta Crystallographica Section D, Biological Crystallography, 2004, 60(Pt 11): 2081-2083.
[44]
HIRANO K, WATANABE M, SEKI K, ANDO A, SAITO A, MITSUTOMI M. Classification of chitosanases by hydrolytic specificity towardN1, N4-diacetylchitohexaose. Bioscience, Biotechnology, and Biochemistry, 2012, 76(10): 1932-1937. DOI:10.1271/bbb.120408
[45]
HEGGSET EB, DYBVIK AI, HOELL IA, NORBERG AL, SØRLIE M, EIJSINK VGH, VÅRUM KM. Degradation of chitosans with a family 46 chitosanase from Streptomyces coelicolor A3(2). Biomacromolecules, 2010, 11(9): 2487-2497. DOI:10.1021/bm1006745
[46]
LYU QQ, SHI YH, WANG S, YANG Y, HAN BQ, LIU WS, JONES DNM, LIU WZ. Structural and biochemical insights into the degradation mechanism of chitosan by chitosanase OU01. Biochimica et Biophysica Acta: BBA-General Subjects, 2015, 1850(9): 1953-1961.
[47]
HEGGSET EB, TUVENG TR, HOELL IA, LIU ZL, EIJSINK VGH, VÅRUM KM. Mode of action of a family 75 chitosanase from Streptomyces avermitilis. Biomacromolecules, 2012, 13(6): 1733-1741. DOI:10.1021/bm201521h
[48]
PECHSRICHUANG P, LORENTZEN SB, AAM BB, TUVENG TR, HAMRE AG, EIJSINK VGH, YAMABHAI M. Bioconversion of chitosan into chito-oligosaccharides (CHOS) using family 46 chitosanase from Bacillus subtilis (BsCsn46A). Carbohydrate Polymers, 2018, 186: 420-428. DOI:10.1016/j.carbpol.2018.01.059
[49]
WEIKERT T, NIEHUES A, CORD-LANDWEHR S, HELLMANN MJ, MOERSCHBACHER BM. Reassessment of chitosanase substrate specificities and classification. Nature Communications, 2017, 8: 1698. DOI:10.1038/s41467-017-01667-1
[50]
LYU QQ, WANG S, XU WH, HAN BQ, LIU WS, JONES DNM, LIU WZ. Structural insights into the substrate-binding mechanism for a novel chitosanase. The Biochemical Journal, 2014, 461(2): 335-345. DOI:10.1042/BJ20140159
[51]
WANG YN, QIN Z, FAN LQ, ZHAO LM. Structure-function analysis of Gynuella sunshinyii chitosanase uncovers the mechanism of substrate binding in GH family 46 members. International Journal of Biological Macromolecules, 2020, 165: 2038-2048. DOI:10.1016/j.ijbiomac.2020.10.066
[52]
LI Y, GOU Y, LIU Z, XIE T, WANG G. Structure-based rational design of chitosanase CsnMY002 for high yields of chitobiose. Colloids and Surfaces B, Biointerfaces, 2021, 202: 111692. DOI:10.1016/j.colsurfb.2021.111692
[53]
YORINAGA Y, KUMASAKA T, YAMAMOTO M, HAMADA K, KAWAMUKAI M. Crystal structure of a family 80 chitosanase from Mitsuaria chitosanitabida. FEBS Letters, 2017, 591(3): 540-547. DOI:10.1002/1873-3468.12557
[54]
ADACHI W, SAKIHAMA Y, SHIMIZU S, SUNAMI T, FUKAZAWA T, SUZUKI M, YATSUNAMI R, NAKAMURA S, TAKÉNAKA A. Crystal structure of family GH-8 chitosanase with subclass Ⅱ specificity from Bacillus sp. K17. Journal of Molecular Biology, 2004, 343(3): 785-795. DOI:10.1016/j.jmb.2004.08.028
[55]
van BUEREN AL, GHINET MG, GREGG K, FLEURY A, BRZEZINSKI R, BORASTON AB. The structural basis of substrate recognition in an exo-beta-D-glucosaminidase involved in chitosan hydrolysis. Journal of Molecular Biology, 2009, 385(1): 131-139. DOI:10.1016/j.jmb.2008.10.031
[56]
ZAKARIASSEN H, AAM BB, HORN SJ, VÅRUM KM, SØRLIE M, EIJSINK VGH. Aromatic residues in the catalytic center of chitinase A from Serratia marcescens affect processivity, enzyme activity, and biomass converting efficiency. The Journal of Biological Chemistry, 2009, 284(16): 10610-10617. DOI:10.1074/jbc.M900092200
[57]
VARROT A, FRANDSEN TP, VON OSSOWSKI I, BOYER V, COTTAZ S, DRIGUEZ H, SCHÜLEIN M, DAVIES GJ. Structural basis for ligand binding and processivity in cellobiohydrolase Cel6A from Humicola insolens. Structure: London, England: 1993, 2003, 11(7): 855-864.
[58]
SHINYA S, FUKAMIZO T. Interaction between chitosan and its related enzymes: a review. International Journal of Biological Macromolecules, 2017, 104(pt b): 1422-1435.
[59]
FUKAMIZO T, HONDA Y, GOTO S, BOUCHER I, BRZEZINSKI R. Reaction mechanism of chitosanase from Streptomyces sp. N174. BMC Anesthesiology, 1995, 311(Pt 2): 377-383.
[60]
KOSHLAND DE. Stereochemistry and the mechanism of enzymatic reactions. Biological Reviews, 1953, 28(4): 416-436. DOI:10.1111/j.1469-185X.1953.tb01386.x
[61]
SPECIALE G, THOMPSON AJ, DAVIES GJ, WILLIAMS SJ. Dissecting conformational contributions to glycosidase catalysis and inhibition. Current Opinion in Structural Biology, 2014, 28: 1-13. DOI:10.1016/j.sbi.2014.06.003
[62]
VUONG TV, WILSON DB. Glycoside hydrolases: catalytic base/nucleophile diversity. Biotechnology and Bioengineering, 2010, 107(2): 195-205. DOI:10.1002/bit.22838
[63]
LABOUREL A, BASLÉ A, MUNOZ-MUNOZ J, NDEH D, BOOTH S, NEPOGODIEV SA, FIELD RA, CARTMELL A. Structural and functional analyses of glycoside hydrolase 138 enzymes targeting chain A galacturonic acid in the complex pectin rhamnogalacturonan Ⅱ. The Journal of Biological Chemistry, 2019, 294(19): 7711-7721. DOI:10.1074/jbc.RA118.006626
[64]
NAKAMURA S, NIHIRA T, KURATA R, NAKAI H, FUNANE K, PARK EY, MIYAZAKI T. Structure of a bacterial α-1, 2-glucosidase defines mechanisms of hydrolysis and substrate specificity in GH65 family hydrolases. The Journal of Biological Chemistry, 2021, 297(6): 101366. DOI:10.1016/j.jbc.2021.101366
[65]
HAO WT, LI KC, LI PC. Review: advances in preparation of chitooligosaccharides with heterogeneous sequences and their bioactivity. Carbohydrate Polymers, 2021, 252: 117206. DOI:10.1016/j.carbpol.2020.117206
[66]
ZOU P, YUAN S, YANG X, ZHAI X, WANG J. Chitosan oligosaccharides with degree of polymerization 2-6 induces apoptosis in human colon carcinoma HCT116 cells. Chemico-Biological Interactions, 2018, 279: 129-135. DOI:10.1016/j.cbi.2017.11.010
[67]
GERCKE D, REGEL EK, SINGH R, MOERSCHBACHER BM. Rational protein design of Bacillus sp. MN chitosanase for altered substrate binding and production of specific chitosan oligomers. Journal of Biological Engineering, 2019, 13: 23. DOI:10.1186/s13036-019-0152-9
[68]
DING M, ZHANG T, SUN C, ZHANG H, ZHANG Y. A Chitosanase mutant from Streptomyces sp. N174 prefers to produce functional chitopentasaccharide. International Journal of Biological Macromolecules, 2020, 151: 1091-1098. DOI:10.1016/j.ijbiomac.2019.10.151
[69]
ZHOU ZP, WANG X. Improve thermostability of Bacillus sp. TS chitosanase through structure-based alignment. Scientific Reports, 2021, 11: 15846. DOI:10.1038/s41598-021-95369-w
[70]
SHENG J, JI XF, ZHENG Y, WANG ZP, SUN M. Improvement in the thermostability of chitosanase from Bacillus ehimensis by introducing artificial disulfide bonds. Biotechnology Letters, 2016, 38(10): 1809-1815. DOI:10.1007/s10529-016-2168-2
[71]
HAN YJ, GAO PX, YU WG, LU XZ. Thermostability enhancement of chitosanase CsnA by fusion a family 5 carbohydrate-binding module. Biotechnology Letters, 2017, 39(12): 1895-1901. DOI:10.1007/s10529-017-2406-2
[72]
GUO J, WANG Y, ZHANG X, GAO WJ, CAI ZQ, HONG TT, MAN ZW, QING Q. Improvement of the catalytic activity of chitosanase BsCsn46A from Bacillus subtilis by site-saturation mutagenesis of proline121. Journal of Agricultural and Food Chemistry, 2021, 69(40): 11835-11846. DOI:10.1021/acs.jafc.1c04206