生物工程学报  2023, Vol. 39 Issue (2): 724-740
http://dx.doi.org/10.13345/j.cjb.220578
中国科学院微生物研究所、中国微生物学会主办
0

文章信息

余瑶, 王紫瑶, 许以灵, 马伯军, 陈析丰
YU Yao, WANG Ziyao, XU Yiling, MA Bojun, CHEN Xifeng
森林草莓SUN基因家族的鉴定及其对逆境的响应
Genome-wide identification of SUN gene family in Fragaria vesca and stresses-response analysis
生物工程学报, 2023, 39(2): 724-740
Chinese Journal of Biotechnology, 2023, 39(2): 724-740
10.13345/j.cjb.220578

文章历史

Received: July 25, 2022
Accepted: October 5, 2022
Published: October 11, 2022
森林草莓SUN基因家族的鉴定及其对逆境的响应
余瑶 , 王紫瑶 , 许以灵 , 马伯军 , 陈析丰     
浙江师范大学生命科学学院, 浙江 金华 321004
摘要SUN基因是调控植物生长发育的关键基因。本研究鉴定了二倍体森林草莓(Fragaria vesca)的SUN基因家族,并对各成员的理化性质、基因结构、系统进化以及基因表达进行了分析。结果表明,森林草莓有31个FvSUN基因,其编码蛋白可聚类为7个组,同一组内成员具有高度相似的基因结构与编码蛋白保守域;FvSUNs蛋白的亚细胞定位主要在细胞核中。共线性分析表明森林草莓FvSUNs基因家族主要通过染色体片段复制产生,拟南芥与森林草莓存在23对直系同源基因。利用森林草莓的转录组数据,对FvSUNs基因的组织表达特征进行分析,发现主要可归为3类:各组织均表达、组织中几乎不表达、组织特异性表达,并通过实时荧光定量PCR (quantitative real-time polymerase chain reaction, qRT-PCR)进一步验证结果。此外,还对森林草莓进行不同的逆境胁迫处理,qRT-PCR分析了31个FvSUNs基因的表达情况,发现大部分基因均在不同程度上受低温、高盐或干旱胁迫的诱导表达。这些研究结果为深入揭示草莓SUN基因的生物学功能及其分子机制奠定了基础。
关键词森林草莓    SUN基因家族    序列鉴定    表达模式    逆境响应    
Genome-wide identification of SUN gene family in Fragaria vesca and stresses-response analysis
YU Yao , WANG Ziyao , XU Yiling , MA Bojun , CHEN Xifeng     
College of Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
Abstract: SUN gene is a group of key genes regulating plant growth and development. Here, SUN gene families of strawberry were identified from the genome of the diploid Fragaria vesca, and their physicochemical properties, genes structure, evolution and genes expression were also analyzed. Our results showed that there were thirty-one FvSUN genes in F. vesca and the FvSUNs encoded proteins were classified into seven groups, and the members in the same group showed high similarity in gene structures and conservative motifs. The electronic subcellular localization of FvSUNs was mainly in the nucleus. Collinearity analysis showed that the members of FvSUN gene family were mainly expanded by segmental duplication in F. vesca, and Arabidopsis and F. vesca shared twenty-three pairs of orthologous SUN genes. According to the expression pattern in different tissues shown by the transcriptome data of F. vesca, the FvSUNs gene can be divided into three types: (1) expressed in nearly all tissues, (2) hardly expressed in any tissues, and (3) expressed in special tissues. The gene expression pattern of FvSUNs was further verified by quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, the seedlings of F. vesca were treated by different abiotic stresses, and the expression level of 31 FvSUNs genes were assayed by qRT-PCR. The expression of most of the tested genes was induced by cold, high salt or drought stress. Our studies may facilitate revealing the biological function and molecular mechanism of SUN genes in strawberry.
Keywords: Fragaria vesca    SUN gene family    sequence identification    expression pattern    stress-response    

钙离子(Ca2+)是一种关键的胞质第二信使,胞内Ca2+浓度发生改变会通过Ca2+传感蛋白及其靶蛋白调节各种细胞反应[1]。目前,Ca2+传感器主要分为4类:钙调素蛋白(calmodulin, CaM)、钙调神经磷酸酶B样蛋白(calcineurin B-like protein, CBL)、钙依赖性蛋白激酶(Ca2+-dependent protein kinases, CDPKs)以及缺乏EF手基序的Ca2+传感器[2]。其中,CaM是钙信号转导途径中的主要信号分子,与Ca2+结合后构象发生变化,激活靶蛋白即钙调素结合蛋白(calmodulin- binding proteins, CaMBPs)。CaM能与CaMBPs中的钙调素结构域(CaM binding domains, CaMBDs)发生相互作用[3-4]。CaMBD氨基酸序列包含3种基序(motif):一个不依赖Ca2+的IQ基序与2个依赖Ca2+的1-5-10和1-8-14基序[5]。由于CaMBDs基序的数量以及排列不同,造成了CaMBPs具有可变性,从而在植物发育[6]、激素调节[7]、防御反应[8]等过程中发挥多样性的功能。IQD (IQD67-domain containing protein)基因编码一类植物特有的CaMBPs,均含有一个由67个保守氨基酸组成的IQ67结构域,具有IQ基序(IQxxxRGxxxR)或([ILV]QxxxRxxxx[R, K])、1-5-10基序([FILVW]x3[FILV]x4[FILVW])和1-8-14基序([FILVW]x6[FAILVW]x5[FILVW])[9-10]。拟南芥AtIQD1是最早发现的IQD基因,之后在拟南芥中又鉴定出32个IQD1同源基因[11]IQD基因普遍存在于各种植物中,从低等的苔藓到高等的被子植物,在高等植物中多以基因家族的形式存在,如水稻[11]、玉米[12]、大豆[13]、番茄[14]、黄瓜[15]、葡萄[16]、二穗短柄草[17]、毛果杨[18]IQD基因都有相应的报道。

研究发现AtIQD1定位于细胞核中,正调节拟南芥植株的芥子糖含量,从而提高昆虫对草食的耐受性[19]。AtIQD22在植物激素赤霉素的反应中起负调节作用[20]。过度表达AtIQD11AtIQD16的转基因植株的莲座叶、子叶和下胚轴细胞显著伸长,并表现出左螺旋生长,而过表达AtIQD14则使转基因植株出现强烈的器官扭曲,但叶片伸长无明显变化[21-23]AtIQD5的功能性缺失会导致表皮铺面细胞形态发生缺陷[24],而AtIQD13被证明可以调节次生细胞壁凹坑的大小和密度[25]。将小麦IQD基因遗传转化到拟南芥中,发现过表达TaIQD18-2后子叶变细长,而过表达TaIQD2-2后子叶形态没有变化,但会明显影响叶片和后期角果的空间排列[26]。这些研究结果表明IQD蛋白在调节细胞形态和细胞骨架方面功能具有多样性。番茄SlIQD12与拟南芥AtIQD12高度同源,在番茄品种“Sun1642”中其第7号染色体上由逆转座介导插入了一段24.7 kb的片段,该片段中SlIQD12基因被重新排列,使SlIQD12基因的拷贝数增加,从而表达量上升,导致番茄果实变得细长,并影响叶片、花器官等形态的变化[27-28]。此后,又将IQD基因称为SUN基因。SUN基因在开花期对果形的影响是显著的,尤其是在授粉及受精之后子房形状出现较大差异。SUN基因的表达量与子叶、花器官、子房细长表型呈正相关,与种子生物量呈负相关。总的来说,番茄果实的形态变化是由SUN基因通过影响生长素分布,增加了果实纵向的细胞分裂、减少了果实横向的细胞分裂导致的[29]

草莓是一种口感好、营养丰富的水果,属蔷薇科植物[30]。草莓栽培种多为八倍体,而野生种森林草莓(Fragaria vesca)是二倍体,其基因组大小为240 Mb,已完成高质量测序[31],为草莓的基因家族鉴定提供了很好的工作基础。尽管SUN基因已在多种植物中被研究,但是草莓SUN基因的研究还未见报道。本文通过生物信息学方法鉴定了森林草莓的SUN基因家族,并对基因的结构、蛋白保守结构域、系统进化、顺式作用元件以及组织表达模式进行了分析,为进一步研究草莓SUN基因的生物学功能及其分子机制奠定了基础。

1 材料与方法 1.1 植物材料和处理

森林草莓(F. vesca) “Ruegen”种子来自沈阳农业大学果树分子生物学实验室,种植在含有土壤的塑料盆中,在温度25 ℃/23 ℃ (16 h光照/8 h黑暗)条件下生长。在播种75 d后,挑选生长状况一致的森林草莓,分别取根、茎、叶、花、花柱、花药、绿色花托、绿色瘦果组织,用于基因的组织表达分析,每个组织3次生物学重复。在播种40 d后,选择生长状况一致的森林草莓“Ruegen”苗,分别用4 ℃、200 mmol/L NaCl和20% PEG6000进行逆境胁迫处理,在处理后0、2、12和24 h进行取样,每个样品3次生物学重复。以上材料均采用液氮速冻,保存于–80 ℃备用。

1.2 森林草莓SUN基因家族的鉴定

以拟南芥AtSUNs蛋白序列[32]为Query,使用蔷薇科基因组GDR数据库的tBlastn工具(https://www.rosaceae.org/blast/protein/nucleotide),选择森林草莓基因组(F. vesca genome v4.0.a2)作为数据库进行比对;使用Pfam (http://pfam.xfam.org/)和SMART (http://smart.embl-heidelberg.de/)对候选的FvSUN蛋白进行IQ结构域验证。通过ExPASy在线软件(https://web.expasy.org/protparam/)分析FvSUNs蛋白的分子量、等电点(pI)、脂肪族指数、不稳定性指数等[33]。采用Cell-PLoc 2.0在线软件(http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/)预测FvSUNs蛋白的亚细胞定位。

1.3 基因的染色体定位、共线性与系统发育树分析

从GDR数据库中下载F. vesca v4.0.a2的基因组注释文件,使用TBtools软件对FvSUNs基因的染色体定位进行可视化。使用MCScanX[34]进行基因组的共线性分析,参数设为默认值E-value≤1e–10。将森林草莓的基因组进行自身比较,根据结果筛选出森林草莓中的旁系同源基因,即重复基因;若1对重复基因位于染色体上的邻近位置(< 100 kb),就可以认定为串联重复基因(tandem duplication),其他则为片段重复基因(segmental duplication);将森林草莓与拟南芥的基因组进行比较,可筛选出这两者间的直系同源基因。使用TBtools软件绘制共线性图。使用MEGA软件[35],选用neighbor-joining法,构建植物SUNs蛋白的无根系统发育树,bootstrap值设定为1 000。

1.4 基因结构与氨基酸序列分析

从森林草莓的基因组注释文件中获取基因外显子的信息,用TBtools绘制基因结构图。利用MEME软件(https://meme-suite.org/meme/tools/meme)鉴定FvSUNs蛋白的保守基序,利用钙调素靶数据库(http://calcium.uhnres.utoronto.ca/ctdb/ctdb/home.html)预测FvSUNs蛋白的钙调素结合位点。

1.5 基于RNA-Seq数据的基因表达分析

利用已公布的森林草莓RNA-Seq转录数据[31],获得其根、茎、叶、花、花托、种子等不同组织、不同发育时期的FvSUNs基因转录本的TPM (transcripts per million)值,并通过TBtools软件对FvSUNs基因的表达水平进行聚类及绘制热图。

1.6 基因表达的实时荧光定量PCR (quantitative real-time polymerase chain reaction, qRT-PCR)验证

采用EASY Spin Plus Plant RNA Rapid Extraction Kit (Aidlab公司)提取森林草莓组织样品的总RNA,再用Prime Script RT Reagent Kit试剂盒(TaKaRa公司)合成cDNA,操作步骤按产品说明进行。用TB Green® Premix Ex TaqTM Ⅱ (Tli RNaseH Plus)试剂盒(TaKaRa公司),10 µL体积中含有5 µL 2×SYBR®预混料Ex TaqTM Ⅱ、3.3 µL ddH2O、0.5 µL基因特异性引物(表 1)、0.2 µL ROX参考染料Ⅱ和1 µL cDNA,在ABI 7500快速实时PCR系统(ABI公司)中运行real-time PCR,程序如下:95 ℃ 5 min;95 ℃ 15 s和60 ℃ 30 s,共40个循环。实验重复3次,以草莓Actin基因作为标准化的内部对照[36],数据分析采用2‒ΔΔCt[37]

表 1 本研究采用的定量PCR引物 Table 1 qPCR primers used in this study
Gene Former primer (5′→3′) Reverse primer (5′→3′)
FvActin GAGGCAATTTAGACGCGCAA GCTCAAGAATGTCAGTGGCG
FvSUN1 AGACCAACACTACAAACCCAGTT GGCCGGATTATGACAAAGC
FvSUN2 GTTTCCCGAATCAATGGTG TGCAGAACTCCTGGCTCAT
FvSUN3 ATCCGAAGAAAGTTTGTGAGA CTTGAGTGCTCGAAATGCTC
FvSUN4 GATGGTGAAATCGTGGAGGT TCAGGATCTTTGGGATAGGC
FvSUN5 TGTTGTTGGGTCTCGTGTCT TGTTGTTGGGTCTCGTGTCT
FvSUN6 GGAAGGGCACCAAGGTCTG CTCCCGGCTCGTTCAAGTA
FvSUN7 GTGGGAAGAATAAGAAGTGGAA TCTTGCCTGACAACTCTGAAAT
FvSUN8 CAACGATTCAGCGGACAAAG TGGGCTCTTCTCATTTCCTG
FvSUN9 TTGGCAGTTCAAAACGAGTG ACAGGGTATTGCTGGGTCAG
FvSUN10 GGTGCCAATGCTGCTCTA GGGCTTGAAGTCTTACTAATC
FvSUN11 AAATGTCCCACCACTACTACTACCT CCTTCTGAAACTCCACCTCC
FvSUN12 GTTGTGGCCAAAGCATCC TCACCTAAAGGCACTCCTCTATAC
FvSUN13 AGAACCGAGCAGCATTGAGA TCCTTATGGTGATGAACGAT
FvSUN14 AGTAAAGGGGAGTCGGTGTTC TTTCCCGACGAAAGTGTAATG
FvSUN15 CCGTCCTTCCAGTCAATCC CAGAATCCAGGTCTTCATCAC
FvSUN16 CCCCACCACCACCTCATCCT GCAACTGCGGCTTCGGCTA
FvSUN17 GACCAAAAGAGCAGCAGAAGAA AGCCAAAACAGGAGTCACAGAT
FvSUN18 TGAAAGCACGAACACCACAG ACCAAGTGCCCACGGATAAG
FvSUN19 TAGCAATGGGAAGAAGATGG ATGGGTTAATGGCAATAAGG
FvSUN20 GAAATGTGCGTCTTCTACCC CTCAGCCTGTATTGTCACCC
FvSUN21 CCCACATTGCCACCTCTT GCCTCACCAGCCCTCTTA
FvSUN22 CCTAGCGGGATCTTCTCAAT CTCCTTTTCATAACCTCTGTCTG
FvSUN23 GATGGTTGAAGGGTCTGTTGG ATTGCGTGCTTGTTCTGTTCC
FvSUN24 AAGCCCACATTAACTGACCAA AGCCATAGCAGCAGCCAAC
FvSUN25 CAATGGGAGGAACAATATGACA AGAATCCACCTCTACAAGCACC
FvSUN26 CAGTCGAAGCAAAATAGTAAGGAG GAGATTTAAGACCAGTTAGCCACA
FvSUN27 AAAGAGAGAAGCGTCGGTGGA TGGTTAGATGGCCTGGTCAGC
FvSUN28 CTCCTCCACCAGCTCTTCCTAC AGTCCAGTGAGACGAACAACCT
FvSUN29 CGGAGGTTGTCAGGCTCACTA GCCGTTTGTTTCCTTACTATGT
FvSUN30 CAACTCCTGCGAACAATGAAG CGTCCATAACCAGCCAATCTT
FvSUN31 GAGAGAAGAACTACAAGAACACGAGG TGCTAAGGTTTTCTCTTCAGTATGCT
2 结果与分析 2.1 森林草莓FvSUNs基因家族的鉴定

利用已报道的33个拟南芥AtSUNs蛋白序列在森林草莓基因组中进行BLAST分析,搜索SUN同源基因,并根据基因组注释获取相应基因的编码区序列与编码蛋白序列,再对这些蛋白序列进行保守结构域分析,筛选出含有IQD67结构域的蛋白,确定为SUN蛋白,最终鉴定出31个SUN同源基因。根据基因在染色体上的位置顺序(图 1A),依次命名为FvSUN1FvSUN31 (表 2)。FvSUNs基因序列的长度存在明显的差异,编码区序列(CDS)为426–4 590 bp,编码蛋白的序列为141–1 529 aa,蛋白的分子量在16.1–591.1 kDa之间;除FvSUN8 (pI 5.28)、FvSUN5 (pI 5.72)和FvSUN12 (pI 6.35)外,其余FvSUNs蛋白均具有相对较高的等电点(pI > 7.0,平均值为9.77),且大多数含有碱性氨基酸;FvSUNs蛋白的不稳定系数在34.30–69.27之间,都属于不稳定蛋白;蛋白的总亲水性均小于0,均为亲水蛋白;脂肪族氨基酸指数分布在54.81–98.94之间,其热稳定差异较大。FvSUN基因家族各个成员的基本信息与理化特征详见表 2

图 1 森林草莓FvSUN基因的染色体分布与序列特征 Fig. 1 Chromosome distribution and sequence characteristics of FvSUN genes in Fragaria vesca. A: Chromosome location of FvSUN genes. B: Cluster tree of 31 FvSUN proteins, seven subfamilies (I‒VII) are highlighted with different colors. C: Gene structure, exon and intron are represented by yellow box and black line, respectively, and untranslated regions (UTRs) are represented by green boxes. D: Motif pattern of amino acid, each motif is represented by a different colored box. E: LOGO of the three motifs.
表 2 森林草莓FvSUNs基因的基本信息与理化特征 Table 2 Basic information and physicochemical properties of FvSUN genes in Fragaria vesca
Name Accession (V4.0.a2) Chromosome location (bp) CDS (bp) MW (Da) pI Aliphatic index Instability index GRAVY Subcellular localization
FvSUN1 FvH4_1g06300 Fvb1: 3 329 144–3 331 608 1 320 48 430.77 10.00 66.30 62.18 –0.560 Chloroplast
FvSUN2 FvH4_1g08090 Fvb1: 4 268 197–4 281 821 4 590 172 792.65 8.25 88.31 46.45 –0.340 Nucleus
FvSUN3 FvH4_1g10950 Fvb1: 5 960 069–5 960 769 426 16 071.75 10.74 98.94 34.40 –0.147 Chloroplast
FvSUN4 FvH4_2g20160 Fvb2:
16 937 924–16 951 550
4 542 171 920.36 7.15 86.89 45.66 –0.379 Nucleus
FvSUN5 FvH4_2g22050 Fvb2:
18 179 447–18 191 677
3 498 131 031.12 5.72 84.45 45.58 –0.337 Nucleus
FvSUN6 FvH4_2g30900 Fvb2:
23 814 703–23 826 773
4 569 173 380.27 8.95 87.11 45.95 –0.387 Nucleus
FvSUN7 FvH4_2g31650 Fvb2:
24 219 624–24 222 651
1 347 50 275.69 10.59 56.88 49.16 –0.871 Nucleus
FvSUN8 FvH4_2g38820 Fvb2:
28 012 900–28 017 756
2 478 90 340.36 5.28 62.86 57.48 –0.885 Nucleus
FvSUN9 FvH4_3g08170 Fvb3: 4 801 572–4 805 080 849 31 925.56 10.51 70.64 46.95 –0.734 Chloroplast; nucleus
FvSUN10 FvH4_3g26200 Fvb3:
19 077 865–19 086 434
1 266 46 677.60 10.08 70.95 54.15 –0.760 Nucleus
FvSUN11 FvH4_4g01000 Fvb4: 962 395–964 962 1 401 51 219.39 10.03 54.81 62.33 –0.775 Nucleus
FvSUN12 FvH4_4g05270 Fvb4: 4 518 630–4 535 646 4 524 170 170.62 6.35 84.13 46.41 –0.397 Nucleus
FvSUN13 FvH4_4g10360 Fvb4:
13 835 077–13 840 896
1 635 61 193.56 10.54 57.24 69.27 –0.892 Nucleus
FvSUN14 FvH4_4g31720 Fvb4:
30 746 043–30 751 488
1 797 66 358.85 9.80 70.05 48.59 –0.850 Nucleus
FvSUN15 FvH4_4g37130 Fvb4:
33 730 414–33 740 179
3 507 132 245.59 7.08 84.06 51.41 –0.472 Nucleus
FvSUN16 FvH4_5g01680 Fvb5: 1 081 521–1 087 086 1 407 51 653.50 10.34 55.58 63.86 –0.890 Nucleus
FvSUN17 FvH4_5g10710 Fvb5: 6 080 524–6 083 108 1 467 54 850.91 10.12 62.32 63.71 –0.830 Nucleus
FvSUN18 FvH4_5g15290 Fvb5: 8 651 060–8 656 248 1 773 64 816.97 9.86 71.56 53.37 –0.801 Nucleus
FvSUN19 FvH4_6g02450 Fvb6: 1 406 804–1 418 526 4 590 173 144.56 8.99 86.47 44.49 –0.410 Nucleus
FvSUN20 FvH4_6g03280 Fvb6: 1 819 961–1 821 816 1 140 43 515.22 10.23 64.41 56.98 –0.928 Nucleus
FvSUN21 FvH4_6g15440 Fvb6: 9 594 814–9 599 028 1 440 53 335.54 10.21 64.99 65.64 –0.838 Nucleus
FvSUN22 FvH4_6g24720 Fvb6:
18 725 834–18 729 595
849 32 094.04 10.64 76.88 52.47 –0.568 Chloroplast; nucleus
FvSUN23 FvH4_6g32490 Fvb6:
25 543 532–25 547 356
1 224 45 695.13 10.22 66.54 61.86 –0.651 Nucleus
FvSUN24 FvH4_6g33840 Fvb6:
26 803 107–26 806 984
1 293 48 237.47 10.13 60.63 55.02 –0.813 Nucleus
FvSUN25 FvH4_6g41680 Fvb6:
32 715 849–32 718 655
1 194 44 786.91 8.57 64.06 62.62 –0.774 Nucleus
FvSUN26 FvH4_7g02140 Fvb7: 2 479 653–2 482 593 1 365 51 854.20 9.95 72.05 61.51 –0.802 Nucleus
FvSUN27 FvH4_7g17520 Fvb7:
14 849 287–14 852 177
1 590 591 121.76 10.41 55.22 66.49 –0.961 Nucleus
FvSUN28 FvH4_7g20080 Fvb7:
16 398 396–16 402 301
1 626 60 066.36 10.20 58.35 67.70 –0.951 Nucleus
FvSUN29 FvH4_7g29094 Fvb7:
21 515 658–21 518 384
1 239 45 819.52 10.32 67.11 60.61 –0.616 Nucleus
FvSUN30 FvH4_7g31490 Fvb7:
22 741 306–22 744 782
1 407 52 307.29 9.80 55.51 60.31 –0.937 Nucleus
FvSUN31 FvH4_7g32790 Fvb7:
23 502 054–23 504 694
1 581 59 149.23 9.74 59.11 62.77 –0.871 Nucleus
2.2 森林草莓FvSUNs基因及其编码蛋白的序列特征

在系统发育树中,31个FvSUNs被归为7个组(图 1B)。尽管FvSUNs基因间的外显子数目差异较大(2‒38个),但是同一组基因的外显子数目非常相似,而第Ⅱ组FvSUN基因外显子数目明显多于其他组,其中FvSUN15存在较少的外显子,为29个,而FvSUN6FvSUN14包含多达38个外显子(图 1C)。在FvSUNs基因编码的蛋白中,鉴定到3类不同的保守基序,基序1即为IQD结构域,所有FvSUNs蛋白都含有;而基序2和基序3是第Ⅱ组特有的,目前功能仍未知(图 1D1E)。通过FvSUN蛋白的序列比对,也发现同一组内成员的IQD结构域序列一致性更高(图 2)。Ⅰ、Ⅳ、Ⅵ和Ⅶ组成员的IQ67结构域含有3个精确间隔的IQ基序、3个1-5-10基序和3个1-8-14基序;而在第Ⅱ组成员的IQ67结构域则含有4个IQ基序,3个1-5-10基序和4个1-8-14基序;每个IQ基序与1-5-10基序或1-8-14存在部分重叠(图 2)。已有研究表明SUN蛋白通过CaM结合位点与Ca2+特异性结合,从而传递细胞核的钙信号[22]。我们对FvSUNs蛋白的CaM结合位点进行了预测,结果表明FvSUNs蛋白都含有1‒3个高评分的氨基酸残基区(表 3),这些残基区域可能就是SUN蛋白的CaM结合位点。同时也对FvSUNs蛋白的亚细胞定位进行了预测,发现27个蛋白定位于细胞核,而FvSUN9和FvSUN22定位于细胞核和叶绿体,FvSUN1和FvSUN2定位于叶绿体(表 2)。

图 2 森林草莓FvSUN基因家族编码蛋白的IQ67结构域序列比对 Fig. 2 Sequence alignment of IQ67 domains in the proteins encoded by FvSUN gene family of Fragaria vesca. Five subfamilies (I, II, IV, VI and VII from Figure 1B) of FvSUN proteins were analyzed.
表 3 森林草莓FvSUN基因家族蛋白的钙调素结合位点预测 Table 3 Prediction of calmodulin binding sites in FvSUN proteins of Fragaria vesca
Group Name Predicted calmodulin binding sequence
FvSUN1 126-GGRERWAAVKVQTCYRG
FvSUN8 208-NVVKLQAAVRGHLVRRHA
FvSUN11 182-KQAKATLRCMQALVTAQARAR
FvSUN14 116-YVARRAYRTLKGI
FvSUN16 151-LQALVRGHIERKKWAKRL
FvSUN18 109-EQAATKAQAAFRGYLAR 156-SMLGIVKLQALSRGRQV
FvSUN23 124-LFGKRERWAAMKIQTVFRGYLARKAHRA
FvSUN29 62-IQSAFRRYLARRALR
FvSUN2 92-VKLQALVRGVCVRKQA
FvSUN4 742-IQRKVRSYLARRSYAKLRLSAIRIQSALRGQL 859-VTTQCAWRGRVARLELRKLKMAARET
FvSUN5 497-EQKKGGIIALL
FvSUN6 782-AAAIFIQKHVRRWL
FvSUN12 224-DKRGRISGAA 742-IQNKIRSYVCL 837-IIQSQGRRYLSRARYLRMK
FvSUN15 782-SHQKFARR
FvSUN19 741-TIQRRVRTHYARKRFIAL 804-KKLHLSGLVLQTGLRAM 838-LQAIWRCHKAASYLKRLKRGTVVA
FvSUN25 225-ERALAYAFSQQLRI
FvSUN7 122-VRGRQVRKQAAVTLRCMQALVRVQA
FvSUN9 63-VARKALRRLKGIV
FvSUN10 5-GKWIKALVGLKKSEKSHS
FvSUN24 123-GRRVRKQAAVTLRCMQALV
FvSUN13 1-MGKKGSWFSAI
FvSUN3 92-VKLQALVRGVCVRKQA
FvSUN17 236-KEASLKREKALAYAF
FvSUN20 112-VKLQALIRGHFVRKQTN
FvSUN27 129-LVKLQALVRGHNVR
FvSUN30 128-LARRARRALKGLVR
FvSUN31 186-LVKLQALVRGHNVR
FvSUN21 348-GSTKVARK
FvSUN22 141-VRGRAVRRQLIS
FvSUN26 120-AAVKIQTAFRGYLA
FvSUN28 1-MGRKGSWFSAV
The putative calmodulin binding sites predicted by calmodulin target database are shown as strings of amino acid residues with a score of at least 7, with the highest score 9 highlighted in bold. Numbers before strings indicate the location of the first amino acid residues of the strings in F. vesca SUN protein sequences.
2.3 草莓SUN基因家族的进化分析

为了研究森林草莓FvSUNs基因的进化关系,利用森林草莓、拟南芥、玉米、黄瓜和二穗短柄草的SUN蛋白家族共142个成员构建了一个系统发育树(图 3),可归为6个进化分支。在同一进化分支,来自5个不同物种的SUN成员间的进化关系要比来自同一物种不同亚组的SUN成员间的关系更加亲近一些。进一步的分析表明,同为双子叶植物的森林草莓和黄瓜的SUN结构域进化关系非常接近,从进化树上可以看到存在15对直系同源基因,如FvSUN29/ CsSUN9FvSUN16/CsSUN20FvSUN20/CsSUN3FvSUN1/CsSUN8FvSUN26/CsSUN21等;单子叶植物的二穗短柄草和玉米之间存在11对直系同源基因,如BdSUN10/ZmSUN26BdSUN23/ ZmSUN24等;而双子叶的模式植物拟南芥与森林草莓之间存在23对直系同源基因,如FvSUN25/AtSUN33FvSUN22/AtSUN12等。这些结果与物种间的进化关系一致,双子叶SUN基因通常与最近的双子叶植物直系同源物是姐妹对,而单子叶植物SUN基因也是与最近的单子叶植物直系同源基因共享分支。每个进化分支中都包含玉米、黄瓜、森林草莓、拟南芥和二穗短柄草5个物种的SUN基因,这表明不同物种的成员可能来自共同的祖先,在单子叶和双子叶植物进化之前就已经发生了分化。

图 3 森林草莓FvSUN基因家族的进化分析 Fig. 3 Phylogenetic analysis of FvSUN gene family of Fragaria vesca. Neighbor-joining tree of SUN proteins was generated by MEGA v7.0 with bootstrap-1 000 repeats tests.

通过森林草莓基因组自身的共线性分析(图 4A),检测到7对FvSUN基因是由染色体片段复制而产生的:FvSUN4-FvSUN12FvSUN7- FvSUN24FvSUN14-FvSUN18FvSUN16-FvSUN29FvSUN17-FvSUN27FvSUN17-FvSUN31FvSUN21-FvSUN28;而在7号染色体上存在一对串联重复基因,FvSUN27FvSUN31。进一步对森林草莓与拟南芥的SUN基因家族共线性分析(图 4B),发现了23对直系同源基因,其中10对直系同源基因为一对一,如FvSUN7-AtSUN6FvSUN8-AtSUN32FvSUN11-AtSUN19FvSUN16-AtSUN22FvSUN17-AtSUN16FvSUN22-AtSUN12FvSUN23-AtSUN27FvSUN25-AtSUN33FvSUN28-AtSUN3FvSUN31-AtSUN15,这些基因很可能来自森林草莓和拟南芥的共同祖先;而其他直系同源基因则显示更加复杂的情况,多个森林草莓片段重复基因FvSUN在拟南芥中存在SUN直系同源基因,如FvSUN18-AtSUN29/AtSUN30/AtSUN31FvSUN14-AtSUN28/AtSUN29等。

图 4 森林草莓FvSUNs基因家族的共线性分析 Fig. 4 Synteny analysis of FvSUNs gene family of Fragaria vesca. A: Synteny between FvSUN family members; the number in the outer circle represents the chromosome length (Mb); gray lines represent the syntenic regions, red lines represent the segmental duplication and blue line represents the tandem duplication. B: Synteny of SUN family members between A. thaliana and F. vesca; gray lines represent the syntenic regions and red lines represents the syntenic gene pairs of SUNs; Fv1‒Fv7 refer to the chromosomes of F. vesca; Chr1‒Chr5 refer to the chromosomes of A. thaliana.
2.4 森林草莓FvSUNs基因的组织表达模式

首先,利用RNA-Seq数据对FvSUN家族31个基因的时空表达模式进行了聚类分析(图 5),其基因的表达情况可分为3类:第一类基因在苗期、叶片、花药和果实的发育过程和种子的形成过程中广谱表达,包括FvSUN2FvSUN8FvSUN10FvSUN13FvSUN14FvSUN15FvSUN18FvSUN21;第二类基因在整个植物的各个发育时期(根、茎、叶、花柱、花药、花托和瘦果)的表达量均比较低,包括FvSUN3FvSUN5FvSUN12FvSUN17FvSUN19等9个基因;第三类基因在组织中特异性表达,如FvSUN30在2–5期子房壁中具有高表达水平,FvSUN28在花药和子房壁中具有较高的表达量。为了验证RNA-Seq结果的可靠性,利用qRT-PCR对31个FvSUN基因在森林草莓各组织中进行了表达分析,其表达情况与RNA-Seq结果基本一致(图 6),进一步验证森林草莓FvSUN基因的组织表达特征。

图 5 基于RNA-Seq数据的森林草莓FvSUN基因家族组织表达情况 Fig. 5 Expression of FvSUN gene family in different tissues of Fragaria vesca based on RNA-Seq data. Heatmap was generated using the TPM (transcripts per million) value from RNA-Seq and then normalized by log2. The numbers after the tissues represent different development stages[31].
图 6 森林草莓FvSUN基因家族组织表达的定量PCR分析 Fig. 6 Expression analysis of FvSUN gene family in different tissues of Fragaria vesca by qRT-PCR. Error bars indicate the standard deviation.
2.5 森林草莓FvSUNs基因表达对非生物逆境胁迫的响应

对森林草莓植株分别进行了低温(4 ℃)、高盐(200 mmol/L NaCl)和模拟干旱(20% PEG6000)的逆境处理,并采用qRT-PCR分析了森林草莓中这31个FvSUNs基因在逆境胁迫后不同时间(0、6、12、24 h)的表达变化情况。结果如图 7所示,在冷胁迫下,FvSUN7FvSUN31受高诱导表达,而FvSUN1FvSUN12FvSUN13FvSUN18FvSUN20FvSUN25FvSUN28等基因也有一定程度的诱导表达;在高盐胁迫中,FvSUN17FvSUN22FvSUN31受高诱导表达,FvSUN7FvSUN3FvSUN24等基因也有一定程度的诱导表达;在干旱胁迫下,绝大部分FvSUNs基因都受诱导表达,其中FvSUN7FvSUN11FvSUN12FvSUN13FvSUN23FvSUN27FvSUN31受高诱导表达。可见,FvSUNs基因广泛参与非生物胁迫的应答,其中FvSUN31同时受这3种胁迫的高诱导表达,可能在其中发挥重要的作用。

图 7 逆境胁迫下森林草莓FvSUN基因家族表达的定量PCR分析 Fig. 7 Expression analysis of FvSUN gene family of Fragaria vesca under abiotic stresses by qRT-PCR. 0, 2, 12 and 24 h refer to the times after stress treatments. The circles at the right of the heat map represent the relative repression values calculated by the 2‒ΔΔCt.
3 讨论

SUN基因是一类植物特有的功能基因[10]。我们在森林草莓基因组中鉴定到了31个FvSUN基因(表 2)。一个物种SUN基因的数量与其基因组的大小似乎没有直接的关联,如拟南芥的基因组为125 Mb[33],森林草莓为240 Mb[31],番茄为950 Mb[38],但它们含有相似数量的SUN基因。异源四倍体陆地棉(Gossypium hirsutum)的SUN基因数量不是二倍体雷蒙德氏棉(Gossypium raimondii)的2倍,说明在进化过程中有些SUN基因发生了丢失[39]SUN基因起源于苔藓植物和维管植物分化前450–700 Mya[40],不晚于裸子植物和被子植物分离后300 Mya[41],并且一直都在扩张,扩张过程中经历了全基因组重复、染色体重排和片段复制等事件。在对森林草莓FvSUN基因的共线性分析中,发现了7对染色体片段重复基因和1对染色体串联重复基因(图 4A),其染色体片段复制是驱动森林草莓FvSUN基因家族扩张的主要机制。通过拟南芥与森林草莓的共线性分析,鉴定出了23对直系同源的基因(图 4B),其中包含了参与硫代葡萄糖苷的代谢AtSUN1[19],调控植株器官伸长的AtSUN16,调节植物赤霉素途径的AtSUN22[20],推测在森林草莓中与之对应的直系同源基因FvSUN21FvSUN17FvSUN16可能具有相似的功能。此外,在FvSUNs基因的聚类分析中,发现7个基因(FvSUN2FvSUN4FvSUN5FvSUN6FvSUN12FvSUN15FvSUN19)聚在同一分支上(图 1B),这类基因的外显子数量明显多于其他FvSUNs,无论从基因结构、编码蛋白的保守基序都高度相似(图 1C1D),推测这类基因可能具有特殊或相近的功能。

基因组织表达分析表明,森林草莓FvSUN基因家族成员在不同组织中的表达量存在一定差异,可分为在各组织中低表达、在各组织中均表达和组织特异性表达(图 5),其中少数基因在瘦果中的表达量显著偏高,猜测其可能在瘦果的发育中具有重要功能。玉米ZmSUN基因的表达模式与森林草莓相似,多数基因在发育阶段低表达,而ZmSUN12ZmSUN17在胚胎发育中高表达[12];大豆GmIQD22基因在幼叶和种子发育阶段高表达[13];番茄SlSUN1SlSUN28SlSUN33在成熟果实中高表达[14]。在以前研究中发现,植物中SUN基因在逆境胁迫下,普遍会受到诱导表达,如玉米26个ZmSUN基因受到干旱胁迫诱导或抑制表达[12];大白菜29个BrSUN基因在干旱处理后其表达量显著上调[42];黄瓜5个CsSUN基因在盐胁迫下表达受到抑制[15]。森林草莓中的31个FvSUN基因,大部分会受低温、盐、干旱等胁迫的诱导(图 7),说明FvSUN基因也参与了非生物逆境的应答。综上所述,对草莓SUN基因家族的鉴定及其表达分析,为进一步研究草莓SUN基因的生物学功能、调控草莓生长发育与逆境响应的分子机制奠定了一定的理论基础。

参考文献
[1]
左娜, 陈洁, 吕莹果. 植物钙调素及其结合蛋白的结构生物学进展. 粮食与油脂, 2016, 29(9): 1-5.
ZUO N, CHEN J, LÜ YG. Advance progress in plant calmodulin and calmodulin-binding proteins structure biology. Cereals & Oils, 2016, 29(9): 1-5 (in Chinese).
[2]
毛国红, 宋林霞, 孙大业. 植物钙调素结合蛋白研究进展. 植物生理与分子生物学学报, 2004, 30(5): 481-488.
MAO GH, SONG LX, SUN DY. Progress of study on calmodulin-binding proteins in plants. Acta Photophysiologica Sinica, 2004, 30(5): 481-488 (in Chinese).
[3]
田长恩, 周玉萍. 植物具IQ基序的钙调素结合蛋白的研究进展. 植物学报, 2013, 48(4): 447-460.
TIAN CE, ZHOU YP. Research progress in plant IQ motif-containing calmodulin-binding proteins. Chinese Bulletin of Botany, 2013, 48(4): 447-460 (in Chinese).
[4]
DEFALCO TA, BENDER KW, SNEDDEN WA. Breaking the code: Ca2+ sensors in plant signalling. Biochemical Journal, 2010, 425(1): 27-40. DOI:10.1042/BJ20091147
[5]
RHOADS AR, FRIEDBERG F. Sequence motifs for calmodulin recognition. The FASEB Journal, 1997, 11(5): 331-340. DOI:10.1096/fasebj.11.5.9141499
[6]
HEPLER PK, VIDALI L, CHEUNG AY. Polarized cell growth in higher plants. Annual Review of Cell and Developmental Biology, 2001, 17: 159-187. DOI:10.1146/annurev.cellbio.17.1.159
[7]
REDDY ASN. Calcium: silver bullet in signaling. Plant Science, 2001, 160(3): 381-404. DOI:10.1016/S0168-9452(00)00386-1
[8]
NG CK, MCAINSH MR, GRAY JE, HUNT L, LECKIE CP, MILLS L, HETHERINGTON AM. Calcium-based signalling systems in guard cells. The New Phytologist, 2001, 151(1): 109-120. DOI:10.1046/j.1469-8137.2001.00152.x
[9]
ABEL S, BÜRSTENBINDER K, MÜLLER J. The emerging function of IQD proteins as scaffolds in cellular signaling and trafficking. Plant Signaling & Behavior, 2013, 8(6): e24369.
[10]
尹倩倩, 李明, 丁博, 彭凌霄, 张欣, 宋晓培, 牛浩, 谢晓东. 植物钙调素结合蛋白IQD的研究概况. 分子植物育种, 2016, 14(11): 3224-3231.
YIN QQ, LI M, DING B, PENG LX, ZHANG X, SONG XP, NIU H, XIE XD. Research advances on plant calmodulin binding protein IQD. Molecular Plant Breeding, 2016, 14(11): 3224-3231 (in Chinese). DOI:10.13271/j.mpb.014.003224
[11]
ABEL S, SAVCHENKO T, LEVY M. Genome-wide comparative analysis of the IQD gene families in Arabidopsis thaliana and Oryza sativa. BMC Evolutionary Biology, 2005, 5: 72. DOI:10.1186/1471-2148-5-72
[12]
CAI RH, ZHANG CS, ZHAO Y, ZHU KJ, WANG YF, JIANG HY, XIANG Y, CHENG BJ. Genome-wide analysis of the IQD gene family in maize. Molecular Genetics and Genomics, 2016, 291(2): 543-558. DOI:10.1007/s00438-015-1122-7
[13]
PLOS ONE Staff. Correction: The IQD gene family in soybean: structure, phylogeny, evolution and expression. PLoS One, 2015, 10(3): e0119318. DOI:10.1371/journal.pone.0119318
[14]
HUANG ZJ, van HOUTEN J, GONZALEZ G, XIAO H, van der KNAAP E. Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato. Molecular Genetics and Genomics, 2013, 288(3): 111-129.
[15]
张清霞, 陈春花, 王丽娜, 任仲海. 黄瓜SUN家族的鉴定及其对逆境的响应[J]. 分子植物育种. https://kns.cnki.net/kcms/detail/46.1068.S.20210527.1117.004.htm.
ZHANG QX, CHEN CH, WANG LN, REN ZH. Inentification and response to adversity of cucumber SUN family[J]. Molecular Plant Breeding. https://kns.cnki.net/kcms/detail/46.1068.S.20210527.1117.004.htm (in Chinese).
[16]
张亚光, 袁月, 高世敏, 陶建敏. 葡萄VvSUN基因的克隆及其控制果形功能初探. 西北植物学报, 2017, 37(7): 1271-1277.
ZHANG YG, YUAN Y, GAO SM, TAO JM. Cloning of VvSUN gene in grape (Vitis L.) and a preliminary study on the function of controlling fruit shape. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(7): 1271-1277 (in Chinese).
[17]
FILIZ E, TOMBULOGLU H, OZYIGIT II. Genome wide analysis of IQ67 domain (IQD) gene families in Brachypodium distachyon. Plant Omics, 2013, 6(6): 425-432.
[18]
马慧. 毛果杨全基因组IQD基因的鉴定及表达分析[D]. 合肥: 安徽农业大学硕士学位论文, 2015.
MA H. Genome-wide identification and expression analysis of the IQD gene family in Populus trichocarpa[D]. Hefei: Master's Thesis of Anhui Agricultural University, 2015 (in Chinese).
[19]
LEVY M, WANG Q, KASPI R, PARRELLA MP, ABEL S. Arabidopsis IQD1, a novel calmodulin-binding nuclear protein, stimulates glucosinolate accumulation and plant defense. The Plant Journal, 2005, 43(1): 79-96. DOI:10.1111/j.1365-313X.2005.02435.x
[20]
ZENTELLA R, ZHANG ZL, PARK M, THOMAS SG, ENDO A, MURASE K, FLEET CM, JIKUMARU Y, NAMBARA E, KAMIYA Y, SUN TP. Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis. The Plant Cell, 2007, 19(10): 3037-3057. DOI:10.1105/tpc.107.054999
[21]
SHOJI T, NARITA NN, HAYASHI K, ASADA J, HAMADA T, SONOBE S, NAKAJIMA K, HASHIMOTO T. Plant-specific microtubule-associated protein SPIRAL2 is required for anisotropic growth in Arabidopsis. Plant Physiology, 2004, 136(4): 3933-3944. DOI:10.1104/pp.104.051748
[22]
BÜRSTENBINDER K, MÖLLER B, PLÖTNER R, STAMM G, HAUSE G, MITRA D, ABEL S. The IQD family of calmodulin-binding proteins links calcium signaling to microtubules, membrane subdomains, and the nucleus. Plant Physiology, 2017, 173(3): 1692-1708. DOI:10.1104/pp.16.01743
[23]
LI YF, DENG M, LIU HF, LI Y, CHEN Y, JIA M, XUE H, SHAO JX, ZHAO J, QI YF, AN LJ, YU F, LIU XY. ABNORMAL SHOOT 6 interacts with KATANIN 1 and SHADE AVOIDANCE 4 to promote cortical microtubule severing and ordering in Arabidopsis. Journal of Integrative Plant Biology, 2021, 63(4): 646-661. DOI:10.1111/jipb.13003
[24]
LIANG H, ZHANG Y, MARTINEZ P, RASMUSSEN CG, XU TD, YANG ZB. The microtubule-associated protein IQ67 DOMAIN5 modulates microtubule dynamics and pavement cell shape. Plant Physiology, 2018, 177(4): 1555-1568. DOI:10.1104/pp.18.00558
[25]
SUGIYAMA Y, WAKAZAKI M, TOYOOKA K, FUKUDA H, ODA Y. A novel plasma membrane-anchored protein regulates xylem cell-wall deposition through microtubule-dependent lateral inhibition of rho GTPase domains. Current Biology, 2017, 27(16): 2522-2528.e4. DOI:10.1016/j.cub.2017.06.059
[26]
阮氏兴. 小麦IQD家族基因的克隆及功能研究[D]. 杨凌: 西北农林科技大学硕士学位论文, 2015.
RUAN SX. Cloning and functional study of IQD family genes in Triticum aestivum[D]. Yangling: Master's Thesis of Northwest A & F University, 2005 (in Chinese).
[27]
XIAO H, JIANG N, SCHAFFNER E, STOCKINGER EJ, van der KNAAP E. A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science, 2008, 319(5869): 1527-1530. DOI:10.1126/science.1153040
[28]
JIANG N, GAO D, XIAO H, van der KNAAP E. Genome organization of the tomato SUN locus and characterization of the unusual retrotransposon rider. The Plant Journal, 2009, 60(1): 181-193. DOI:10.1111/j.1365-313X.2009.03946.x
[29]
WU S, XIAO H, CABRERA A, MEULIA T, van der KNAAP E. SUN regulates vegetative and reproductive organ shape by changing cell division patterns. Plant Physiology, 2011, 157(3): 1175-1186. DOI:10.1104/pp.111.181065
[30]
杨海艳, 王洪玲, 钟国跃, 曾庆雅, 朱继孝, 熊雯雯. 草莓属植物资源分布、化学成分、药理活性研究进展. 中成药, 2022, 44(2): 510-518.
YANG HY, WANG HL, ZHONG GY, ZENG QY, ZHU JX, XIONG WW. Research progress on resource distribution, chemical composition and pharmacological activity of strawberry. Chinese Traditional Patent Medicine, 2022, 44(2): 510-518 (in Chinese). DOI:10.3969/j.issn.1001-1528.2022.02.032
[31]
LI YP, PI MT, GAO Q, LIU ZC, KANG CY. Updated annotation of the wild strawberry Fragaria vesca V4 genome. Horticulture Research, 2019, 6: 61. DOI:10.1038/s41438-019-0142-6
[32]
CHENG CY, KRISHNAKUMAR V, CHAN AP, THIBAUD-NISSEN F, SCHOBEL S, TOWN CD. Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. The Plant Journal, 2017, 89(4): 789-804. DOI:10.1111/tpj.13415
[33]
ARTIMO P, JONNALAGEDDA M, ARNOLD K, BARATIN D, CSARDI G, de CASTRO E, DUVAUD S, FLEGEL V, FORTIER A, GASTEIGER E, GROSDIDIER A, HERNANDEZ C, IOANNIDIS V, KUZNETSOV D, LIECHTI R, MORETTI S, MOSTAGUIR K, REDASCHI N, ROSSIER G, XENARIOS I, et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Research, 2012, 40(W1): W597-W603. DOI:10.1093/nar/gks400
[34]
WANG YP, TANG HB, DEBARRY JD, TAN X, LI JP, WANG XY, LEE TH, JIN HZ, MARLER B, GUO H, KISSINGER JC, PATERSON AH. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 2012, 40(7): e49. DOI:10.1093/nar/gkr1293
[35]
KUMAR S, STECHER G, TAMURA K. MEGA 7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016, 33(7): 1870-1874. DOI:10.1093/molbev/msw054
[36]
陈建清, 刘悦滢, 宋娟娟, 王腾云, 张忆琳, 陈清西. 一组草莓果实qRT-PCR内参基因及其引物和应用: CN, 111118199A[P]. 2020-05-08.
CHEN JQ, LIU YY, SONG JJ, WANG TY, ZHANG YL, CHEN QX. A group of internal reference genes of qRT-PCR in strawberry fruit and its primers and application: CN, 111118199A[P]. 2020-05-08 (in Chinese).
[37]
LIVAK KJ, SCHMITTGEN TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods, 2001, 25(4): 402-408. DOI:10.1006/meth.2001.1262
[38]
SATO S, TABATA S, HIRAKAWA H, ASAMIZU E, SHIRASAWA K, ISOBE S, KANEKO T, NAKAMURA Y, SHIBATA D, AOKI K, EGHOLM M, KNIGHT JR, BOGDEN R, LI CB, SHUANG Y, XU X, PAN S, CHENG SF, LIU X, REN YY, et al. The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 2012, 485(7400): 635-641. DOI:10.1038/nature11119
[39]
REHMAN A, PENG Z, LI HG, QIN GY, JIA YH, PAN ZE, HE SP, QAYYUM A, DU XM. Genome wide analysis of IQD gene family in diploid and tetraploid species of cotton (Gossypium spp.). International Journal of Biological Macromolecules, 2021, 184: 1035-1061. DOI:10.1016/j.ijbiomac.2021.06.115
[40]
HEDGES SB. The origin and evolution of model organisms. Nature Reviews Genetics, 2002, 3(11): 838-849. DOI:10.1038/nrg929
[41]
BOWE LM, COAT G, dePAMPHILIS CW. Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales' closest relatives are conifers. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(8): 4092-4097. DOI:10.1073/pnas.97.8.4092
[42]
YUAN JP, LIU TK, YU ZH, LI Y, REN HB, HOU XL, LI Y. Genome-wide analysis of the Chinese cabbage IQD gene family and the response of BrIQD5 in drought resistance. Plant Molecular Biology, 2019, 99(6): 603-620. DOI:10.1007/s11103-019-00839-5