生物工程学报  2023, Vol. 39 Issue (1): 318-336
http://dx.doi.org/10.13345/j.cjb.220244
中国科学院微生物研究所、中国微生物学会主办
0

文章信息

汪涵, 邓鲤凌, 秦璇和
WANG Han, DENG Liling, QIN Xuanhe
基于小分子筛选的嗅上皮类器官培养体系的建立
Development of an olfactory epithelial organoid culture system based on small molecule screening
生物工程学报, 2023, 39(1): 318-336
Chinese Journal of Biotechnology, 2023, 39(1): 318-336
10.13345/j.cjb.220244

文章历史

Received: March 21, 2022
Accepted: June 27, 2022
Published: July 8, 2022
基于小分子筛选的嗅上皮类器官培养体系的建立
汪涵1 , 邓鲤凌1 , 秦璇和1,2     
1. 同济大学生命科学与技术学院, 上海 200092;
2. 同济大学附属东方医院, 上海 200120
摘要:嗅上皮接收和传导气味信号是嗅觉系统的重要组成部分。嗅上皮的损伤在通常情况下可自发恢复,但特定疾病或衰老造成的嗅上皮损伤会引起嗅觉功能减退和嗅觉障碍。嗅上皮主要由基底细胞、支持细胞以及嗅感觉神经元组成。为了在体外建立包含多种细胞类型的嗅上皮类器官,本研究采用3D细胞培养技术,通过筛选小分子药物,构建了包含多种细胞类型的嗅上皮类器官模型,包含水平基底样细胞、球形基底样细胞、支持样细胞和嗅感觉神经元样细胞多种细胞类型。类器官培养体系中多种生长因子和小分子化合物在细胞增殖速度、细胞组成以及不同细胞类型标志基因的表达水平等方面对类器官产生影响。Wnt信号通路激活剂CHIR-99021能够提高嗅上皮类器官的成克隆率和增殖速度且有利于提高嗅上皮类器官中嗅感觉神经元样细胞标志基因的表达水平;培养体系的任一因子均能提高类器官中c-Kit阳性的球形基底样细胞克隆比例;表皮生长因子(epidermal growth factor, EGF)和维生素C均有利于类器官中水平基底样细胞标志基因的表达。本研究建立的嗅上皮类器官系统模拟了嗅上皮干细胞分化产生多种嗅上皮细胞类型的过程,为研究嗅上皮组织损伤再生、嗅觉障碍病理机制和筛选治疗嗅觉障碍的药物提供了研究模型。
关键词嗅上皮    类器官    干细胞    筛选    
Development of an olfactory epithelial organoid culture system based on small molecule screening
WANG Han1 , DENG Liling1 , QIN Xuanhe1,2     
1. School of Life Science and Technology, Tongji University, Shanghai 200092, China;
2. Shanghai East Hospital, Tongji University, Shanghai 200120, China
Abstract: Olfactory epithelium, which detects and transmits odor signals, is critical for the function of olfactory system. Olfactory epithelium is able to recover spontaneously after injury under normal circumstances, but this ability is dampened in certain diseases or senility, which causes olfactory dysfunction. The olfactory epithelium consists of basal cells, sustentacular cells and olfactory sensory neurons. In order to develop an olfactory epithelial organoid containing multiple olfactory cell types in vitro, we used three-dimensional culture model and small molecules screening. This organoid system consists of horizontal basal-like cells, globose basal-like cells, sustentacular-like cells and olfactory sensory neurons-like cells. Through statistical analysis of clone diameter, immunofluorescence staining and qPCR detection of the expression level of related marker genes. We identified a series of growth factors and small molecule compounds that affected the proliferation, composition and gene expression of the organoids. CHIR-99021, an activator of Wnt signaling pathway, increased the colony formation and proliferation rate of olfactory epithelial organoids and the expression level of marker genes of olfactory sensory neurons-like cells. In addition, each factor in the culture system increased the proportion of c-Kit-positive globose basal-like cell colonies in organoids. Moreover, EGF and vitamin C were both beneficial to the expression of horizontal basal-like cell marker genes in organoids. The established olfactory epithelial organoid system mimicked the process of olfactory epithelial stem cells differentiating into various olfactory epithelial cell types, thus providing a research model for studying olfactory epithelial tissue regeneration, the pathological mechanism of olfactory dysfunction and drug screening for olfactory dysfunction treatment.
Keywords: olfactory epithelium    organoid    stem cells    screening    

嗅觉是人类的重要感觉之一,嗅觉功能减退和嗅觉障碍对人类的生活质量和生命健康都有重要的影响。常见的嗅觉障碍包括嗅觉过敏、嗅觉减退和部分、特定或全部嗅觉缺失[1]。此外,嗅觉障碍与阿尔茨海默病、帕金森病等神经退行性疾病密切相关[2]

嗅觉的产生起始于气味分子与嗅上皮的嗅感觉神经元(olfactory sensory neuron, OSN)上的气味受体的结合,感觉神经元将神经信号发送至嗅球并传导至脑的嗅觉皮层。嗅上皮是嗅觉接收和传导的重要结构[3],它是唯一能够终生再生的神经上皮。嗅上皮中除了嗅感觉神经元这类神经细胞外,还有几种非神经细胞类型,包括基底细胞、支持细胞(sustentacular cell, SC)、微绒毛细胞和鲍曼氏腺。其中基底细胞分为两种不同的干细胞,即水平基底细胞(horizontal basal cell, HBC)和球形基底细胞(globose basal cell, GBC)[4-5]。正常情况下HBC处于静息状态,GBC处于活跃状态,持续不断地分化为嗅感觉神经元,当嗅上皮中的GBC受到损伤后,HBC会被激活分化产生GBC[6-7]

嗅上皮中各类细胞的命运也受多种信号通路的调控,如Wnt和Notch信号通路。嗅上皮的神经发生在出生后和成年后十分突出,激活Wnt信号通路可以促进嗅上皮球形基底细胞的自我更新和向神经元分化[8];lgr5是Wnt信号通路重要的靶基因,有研究表明Wnt信号通路的激活能够促使Lgr5+球形基底细胞增殖和分化产生嗅感觉神经元[8-9],但同时发现持续的Wnt活性阻止了扩增的神经元祖细胞进一步分化为成熟的嗅感觉神经元[8];Notch信号通路在维持组织自我更新和整个生物体发育过程中发挥着重要作用[10],有研究表明Notch通路参与水平基底细胞的活化,ΔNp63是水平基底细胞转录因子,Notch通路能够维持ΔNp63的水平,Notch1、Notch2均在水平基底细胞中表达从而保持水平基底细胞的休眠状态[11];同时Notch通路也参与水平基底细胞向支持细胞的分化[12];另外Notch信号在嗅上皮再生过程中调控神经元分化,Notch1的激活增强了嗅上皮中Lgr5阳性前体细胞的增殖,并调节嗅上皮中成熟嗅感觉神经元的生成[13]。嗅上皮中各种细胞命运的维持、相互转换的信号通路网络还未完全明确,进一步解析信号通路调控嗅上皮干细胞自我更新和分化的作用和机制,对于研究嗅上皮的修复再生机制、寻找促进嗅上皮损伤修复的治疗方法具有重要的意义。

通常情况下,由物理、化学和生物学等因素引起的嗅上皮损伤造成的嗅觉功能减退可以自发恢复,但特定的疾病、衰老等因素引起的嗅觉损伤则会造成难以自发恢复的嗅觉障碍[11]。例如,在近两年的新冠疫情中,新冠患者大多伴随着嗅觉的损失,部分患者出现嗅觉长期丧失难以恢复的现象[14-16]。针对嗅觉障碍,目前并没有特定的治疗药物,包括糖皮质激素在内的大多数药物仅针对组织炎症,而无法促进嗅上皮的再生,这些药物长时间的使用反而会抑制嗅上皮干细胞的增殖[17];此外,嗅觉障碍的手术疗法切除部分嗅上皮组织[18],可能影响干细胞微环境,导致干细胞永久性损伤;嗅觉刺激训练恢复周期太长并且见效慢[17]。总之,现有嗅觉障碍的治疗手段效果并不显著。

近年来,嗅上皮干细胞分离和培养体系的建立为嗅觉障碍治疗提供了新策略。例如,通过移植体外扩增的嗅上皮干细胞,在体内促进嗅上皮的损伤修复[19];通过小分子药物促进体内嗅上皮干细胞的增殖和分化,促进嗅上皮损伤的原位修复[20]。然而,目前嗅上皮干细胞自我更新和嗅上皮损伤的再生机制仍不明确。因此,解析嗅上皮干细胞命运的调控机制对于开发新的嗅觉障碍治疗方法具有重要意义。同时,类器官系统的出现,为解析干细胞自我更新和分化调控机制提供了新的研究模型,为研究人类疾病提供了契机[21]。本研究通过筛选化学小分子药物,检测克隆增殖、蛋白表达和基因表达等指标,在体外构建了嗅上皮类器官,这一类器官模型为解析嗅上皮干细胞命运调控机制和筛选治疗嗅觉障碍药物提供了实验模型,也为嗅上皮干细胞移植疗法提供了潜在的细胞来源。

1 材料与方法 1.1 材料 1.1.1 试验动物

无特定病原体(specific pathogen-free, SPF)级,4–6周龄的C57BL/6小鼠购自上海灵畅生物科技有限公司,Lgr5-EGFP-IRES-creERT2小鼠购自Jackson Laboratory公司,Krt5-creERT2小鼠购自赛业生物科技有限公司,以上小鼠饲养于同济大学实验动物中心的SPF级实验室。本研究中动物实验严格按照同济大学实验动物管理委员会制定的动物伦理条例进行相关操作,经同济大学实验动物福利伦理审查工作组委员会批准(批准号:TJAB04720101)。

1.1.2 试剂

细胞基础培养基Advanced DMEM/F12 (Gibco),完全培养基中加入GlutaMAX™添加剂、4-羟乙基哌嗪乙磺酸、B27无血清添加剂(Gibco)、N-乙酰半胱氨酸、青霉素链霉素溶液(双抗, Gibco)、Rho相关卷曲螺旋形成蛋白激酶(Rho-associated coiled-coil forming kinase, ROCK)抑制剂Y-27632 (陶素),以及7种蛋白因子和小分子化合物(O7),包括BMP抑制剂DMH1 (ApexBio)、R-脊椎蛋白1 (R-spondin-1)重组蛋白(本实验室自制)、表皮生长因子、成纤维细胞生长因子(basic fibroblast growth factor, bFGF (PeproTech)、2-磷酸-L-抗坏血酸(2-phospho-l-ascorbic acid trisodium salt, PVC, Sigma)、GSK-3Α/Β抑制剂CHIR-99021 (陶素)、转化生长因子β (transforming growth factor beta, Tgfβ)抑制剂A8301 (陶素)。Matrigel Matrix基质胶(R & D)、杜氏磷酸缓冲盐溶液DPBS (Corning)、牛血清白蛋白(bovine serum albumin, BSA, Sigma)、非动物源性重组酶TrypLE (Gibco)、RNA提取试剂Trizol、RNA逆转录试剂盒(诺唯赞)、qPCR试剂盒(近岸蛋白)、iTaqTM; Universal SYBR® Green超混合液(Bio-Rad)、Ck8兔单抗(Abcam)、Ck14兔多抗(Proteintech)、P63鼠抗(Santa Cruz)、Ck5兔抗(Abcam)、Tuj1兔多抗(Biolgend)、c-Kit兔单抗(Cell signaling technology)、Donkey anti-rabbit R488、Donkey anti-rabbit R555、Donkey anti-mouse R555荧光二抗(Invitrogen)、DAPI染色液(ApexBio)。

1.1.3 嗅上皮类器官培养液的配制

在细胞基础培养基Advanced DMEM/F12中添加5% GlutaMAX™添加剂、5% 4-羟乙基哌嗪乙磺酸、10% B27无血清添加剂、5% N-乙酰半胱氨酸、0.5%双抗、10% R-spondin-1、50 ng/mL EGF、100 ng/mL bFGF、100 μg/mL PVC、2 μmol/L DMH1、4 μmol/L CHIR-99021、0.5 μmol/L A8301、10 μmol/L Y27632,混匀。

1.2 方法 1.2.1 嗅上皮的分离和培养

将6周C57BL/6小鼠断颈、取头去皮,接着用剪刀去掉鼻头软组织,并剪开鼻头两侧骨头,掀开鼻甲骨。在显微镜下去除嗅球、呼吸道上皮和周围杂细胞得到较干净的嗅上皮组织,用镊子取出嗅上皮并放入用牛血清白蛋白润洗过盛有磷酸缓冲盐溶液(phosphate buffered saline, PBS)的培养皿中,于显微镜下去除周边杂细胞,并将嗅上皮组织分离成约4 mm小块。在超净台中,将培养皿中的组织转移到用牛血清白蛋白润洗过的离心管中,室温300 r/min离心3 min去上清,用磷酸缓冲盐溶液重悬组织,重复两遍,加入300 μL的非动物源性重组酶,置于37 ℃培养箱中消化1 h,每隔20 min对组织进行吹打。消化后对组织进行过滤,分装到牛血清白蛋白润洗过的离心管中,室温7 000 r/min离心20 s弃去上清,加入基础培养基进行重悬,收集到EP管中进行计数并调整细胞浓度为18×105个/mL,与提前解冻的基质胶按1:4混合均匀后,置于预热的48孔板中,37 ℃孵育20 min使其凝固,每孔加入250 μL细胞完全培养基,于37 ℃培养箱中进行培养。

1.2.2 嗅上皮类器官的传代

通过将培养的初代嗅上皮类器官进行传代,由于球形基底样细胞和水平基底样细胞来源的类器官克隆在O7的培养条件优先生长,因此能达到进一步纯化的效果。将培养9−12 d的类器官收集到EP管中,室温7 000 r/min离心10 s后弃上清,加入300 μL的非动物源性重组酶,用大枪头将类器官吹散,反复吹打20−30次,吹打过程中尽量不要产生气泡,放置37 ℃培养箱中消化20 min。待消化后加入700 μL杜氏磷酸缓冲盐溶液稀释消化液,用Countstar细胞计数仪进行计数统计。随后以105个/mL的密度取对应的悬液,室温7 000 r/min离心20 s,与Matrigel按1:2混合均匀后,置于预热的48孔板中,37 ℃孵育20 min使其凝固。其后加入完全培养基进行培养。在细胞培养的第1−2天添加Y27632。

1.2.3 计数检测细胞增殖水平

将类器官培养9−12 d,进行消化传代,用Countstar细胞计数仪进行计数统计,重复3次,每次3个视野。

1.2.4 免疫荧光实验

从48孔板中取4孔三维球体,7 000 r/min离心10 s后弃掉上清液,加入30 μL 1×PBS重悬,涂抹于载玻片上,待细胞完全贴壁后,加入4%多聚甲醛常温固定30 min,1×PBS洗涤3次,每次5 min;加入封闭液(0.1% Triton X-100、5%脱脂奶粉和4% BSA)于常温封闭1 h;用抗体稀释液(0.1% Triton X-100/0.1% BSA)稀释一抗,4 ℃湿盒过夜孵育;1×PBS洗涤3次,每次5 min;用抗体稀释液(0.1% Triton X-100/0.1% BSA)稀释荧光二抗(稀释比例1:1 000),20 μL/组,常温孵育1 h;1×PBS洗涤3次,每次5 min;1×PBS稀释DAPI (1:1 000),常温孵育5 min,1×PBS洗涤3次,每次5 min;按20 μL每组滴加封片剂封片,及时进行荧光图片采集或干燥暂存。

1.2.5 RNA提取及qRT-PCR检测mRNA水平

将细胞培养9−12 d后用Trizol法提取总RNA,并按照逆转录试剂盒说明书,进行逆转录获得cDNA,目的基因的mRNA表达水平利用iTaqTM Universal SYBR® Green超混合液进行qRT-PCR检测,表 1为基因涉及的引物序列。

表 1 本研究所用的引物 Table 1 Primers used in this study
Primer
names
Primer sequences (5′→3′) Size
(bp)
Gapdh F: CGTGCCGCCTGGAGAAACCTG 21
R: GAGTGGGAGTTGCTGTTGAAGTCGC 25
krt5 F: TCTGCCATCACCCCATCTGT 20
R: CCTCCGCCAGAACTGTAGGA 18
krt14 F: AGCGGCAAGAGTGAGATTTCT 21
R: CCTCCAGGTTATTCTCCAGGG 21
lgr5 F: ACCCGCCAGTCTCCTACATC 20
R: GCATCTAGGCGCAGGGATTG 20
ascl1 F: GCAACCGGGTCAAGTTGGT 19
R: GTCGTTGGAGTAGTTGGGGG 20
Omp F: TCCGAGTAGAGAGCCTGAAGCA 22
R: CAGAACCACGTTCCAGTGATCG 22
β-tubulin F: CTCAGGGGCCTTTGGACATC 20
R: CAGGCAGTCGCAGTTTTCAC 20
trp63 F: TACTGCCCCGACCCTTACAT 20
R: GCTGAGGAACTCGCTTGTCTG 21
icam1 F: GTGATGCTCAGGTATCCATCCA 22
R: CACAGTTCTCAAAGCACAGCG 21
c-kit F: CTCCCCCAACAGTGTATTCAC 21
R: TAGCCCGAAATCGCAAATCTT 21
krt8 F: TGTCTACTCGGTCGGACTTCT 21
R: GCTGCTACCTAGCTGACATGC 21
krt18 F: CAGCCAGCGTCTATGCAGG 19
R: CTTTCTCGGTCTGGATTCCAC 21
jag1 F: CCTCGGGTCAGTTTGAGCTG 20
R: CCTTGAGGCACACTTTGAAGTA 22
1.2.6 统计学方法

结果代表至少3次独立实验,数据统计分析和图表制作均采用GraphPad Prism 7.0,实验数据以均数±标准差(x±s)表示,数据统计使用非配对t检验分析进行,P < 0.05时差异被认为具有统计学意义(ns:P≥0.05代表无统计学差异,*:P < 0.05,**:P < 0.01,***:P < 0.001,****:P < 0.000 1)。

2 结果与分析 2.1 嗅上皮组织分离及类器官培养

为了获得嗅上皮类器官的培养条件,我们首先分离了成体小鼠的嗅上皮,并将其置于三维基质胶中进行培养(图 1)。基于小肠类器官的培养条件(EGF、BMP抑制剂和R-Spondin-1),我们进行了小分子筛选,以鉴定能够促进嗅上皮类器官克隆形成、增殖及分化产生各种嗅上皮细胞类型的培养条件。我们发现,生长因子包括EGF和bFGF有利于类器官克隆的形成。在此基础上,我们鉴定出多个对于类器官克隆有促进作用的小分子,包括BMP信号通路的抑制剂DMH1、Wnt信号通路的激活剂CHIR-99021、TGF-β信号通路的抑制剂A8301及维生素C。在这些小分子和生长因子的共同作用下,分离的单个嗅上皮细胞在完全培养基中存活下来,在原代培养的第9−12 d形成透亮的球形细胞团,并且传代后克隆数目增加,克隆形态更加均一,且第2代嗅上皮类器官仍然可以存活(图 2)。

图 1 嗅上皮组织分离方法 Fig. 1 Method of olfactory epithelial tissue isolation. The tissue was rinsed 3 times with DPBS and digested with TrypLE for 1.5 h. The organoids were cultured in a 37 ℃ incubator and the culture medium was changed every 3−4 days.
图 2 嗅上皮类器官原代、1代和2代的形态和增殖状态 Fig. 2 Morphology and proliferative states of primary, 1st and 2nd generation of cultured olfactory epithelial organoids. A: The images of primary organoids (P0) were taken under 4× and 10× magnification by microscope on day 9. B: The images of first-generation (P1) and second-generation (P2) organoids were taken on day 10 and 12, respectively. The images were taken by OLYMPUS IX73 fluorescent microscopy (4×, 10×) with a scale bar of 200 μm and 100 μm, respectively.
2.2 嗅上皮类器官含有基底样细胞、支持样细胞和嗅感觉神经元样细胞

将原代克隆消化为单细胞并以1×105个/mL的密度进行重悬传代,待1代克隆生长至第9天后进行拍照记录和免疫荧光染色。

图 3所示,用O7体系培养的嗅上皮类器官表达嗅上皮主要细胞类型的特异性标志物。细胞角蛋白5 (cytokeratin 5, Ck5)、细胞角蛋白14 (cytokeratin 14, Ck14)和肿瘤蛋白(tumor protein 63, P63)是水平基底细胞的特异性标志物,均有Ck5、Ck14、P63阳性克隆存在嗅上皮类器官中,说明培养的类器官包含水平基底样细胞;βⅢ微管蛋白(β-tubulin, Tuj1)标志嗅上皮中所有神经元[20],免疫荧光结果显示有Tuj1阳性克隆存在于嗅上皮类器官中;嗅觉标记蛋白(olfactory marker protein, Omp)是成熟神经元的标志物[22],类器官中没有Omp阳性克隆的存在(结果未展示),表明培养的嗅上皮类器官中没有成熟神经元样细胞;细胞角蛋白8 (cytokeratin 8, Ck8)是SC的特异性标记物,结果显示培养的类器官存在Ck8阳性克隆,说明培养的类器官包含支持样细胞;已有研究人员用单细胞转录谱定义表面受体c-Kit是球形基底细胞表达的关键特异性标记物,c-Kit阳性的球形基底细胞处于干细胞向嗅感觉神经元分化的阶段[12],结果显示O7体系培养的类器官包含c-Kit阳性克隆,说明培养的嗅上皮类器官包含球形基底细胞样细胞。总之,我们通过免疫荧光检测发现培养的嗅上皮类器官包含基底样细胞、支持样细胞和不成熟嗅感觉神经元样细胞等多种细胞类型。

图 3 免疫荧光结果表明P1嗅上皮类器官包含基底样细胞、支持样细胞和不成熟神经元样细胞 Fig. 3 Immunofluorescence staining of 1st generation of cultured olfactory organoids. Horizontal basal-like cells were labeled with Ck5 (green), Ck14 (red), and P63 (red). Globose basal-like cells were labeled with c-Kit (red). Sustentacular-like cells were labeled with Ck8 (green). Neuron-like cells were labeled with Tuj1 (green), and the whole cells were labeled with DAPI (blue) in olfactory epithelial organoids. The images were taken by Thermo Fisher Scientific EVOS M7000 fluorescent microscopy (40×) with a scale bar of 75 μm.

小鼠体内的嗅上皮组织中存在两个细胞谱系,其中水平基底细胞谱系包含水平基底细胞和支持细胞,即支持细胞分化自水平基底细胞,另一个球形基底细胞谱系包含球形基底细胞和嗅感觉神经元,即嗅感觉神经元分化自球形基底细胞[12]

Lgr5阳性细胞在嗅上皮中起着祖细胞和干细胞的作用[23],为了确定培养的类器官中嗅感觉神经元样细胞是否来源于球形基底细胞,我们使用Lgr5-EGFP-IRES-creERT2小鼠[24]与ROSA26-CAG-LSL-tdTomato小鼠[25]杂交的后代鼠进行谱系追踪。结果显示,我们培养的类器官中少部分Tuj1阳性嗅感觉神经元样细胞来自Lgr5阳性的球形基底细胞,通过明场观察发现该类克隆周围具有大量类似神经元突触结构(图 4)。同时,在培养的类器官克隆中观察到tdTomato荧光与Lgr5-EGFP不完全重合,说明该克隆是来源于Lgr5干细胞,但无法维持在干性状态。

图 4 谱系追踪表明各类细胞的来源 Fig. 4 Lineage tracing indicates the origin of neuron-like cells, sustentacular-like cells, horizontal basal-like cells, globose basal-like cells. Horizontal basal-like cells were labeled with Ck5 (green). Globose basal-like cells were labeled with Lgr5 (green). Sustentacular-like cells were labeled with Ck8 (green). Neuron-like cells were labeled with Tuj1 (green), and the whole cells were labeled with DAPI (blue) in olfactory epithelial organoids. The images of immunofluorescence staining were taken by Thermo Fisher Scientific EVOS M7000 fluorescent microscopy (40×, 20×) with a scale bar of 75 μm and 150 μm, respectively (the three rows above). The images of lineage tracing were taken by OLYMPUS IX73 fluorescent microscopy (10×) with a scale bar of 100 μm.

为了确定培养的类器官中支持样细胞是否来源于水平基底细胞,我们使用Krt5-creERT2小鼠[26]与ROSA26-CAG-LSL-tdTomato小鼠杂交的后代鼠进行谱系追踪,结果显示我们培养的类器官中支持样细胞来自于Ck5阳性的水平基底细胞,这与体内一致(图 4)。

2.3 类器官培养条件中各因子对克隆形成能力和增殖的影响

为了探究培养体系中各个因子对嗅上皮类器官克隆形成能力和增殖的影响,我们分别去掉培养体系中各个因子,并对原代克隆直径大小分布情况、原代克隆数目以及单细胞总数进行统计。

对于成克隆能力,去掉EGF、PVC、bFGF、CHIR-99021、R-spondin-1后原代克隆的数目显著减少,表明原代类器官形成速度减慢,成克隆能力减弱,因此EGF、PVC、bFGF、CHIR-99021总体上有利于嗅上皮类器官克隆形成;去掉A8301、DMH1后,原代细胞总数明显少于对照,原代克隆数与对照无明显的差异,说明A8301、DMH1一定程度上有利于嗅上皮类器官增殖;而对于1代类器官,去掉bFGF、A8301和DMH1克隆数明显减少,表明它们对于类器官成克隆能力以及维持传代是必需的;去掉CHIR-99021克隆大小明显减小,表明其有利于类器官的形成(图 5)。

图 5 各因子对克隆形成能力和增殖的影响 Fig. 5 Effect of small molecules on colony formation ability and cell proliferation. A: The primary and first generation of olfactory epithelial organoids were photographed on day 10 and day 12 under different conditions. The images were taken by OLYMPUS IX73 fluorescent microscopy (4×) with a scale bar of 200 μm. B: The organoids were digested by TrypLE for 20 minutes and the number of single cells were counted by Countstar. Number of colonies were calculated in 3 random images and the results were showed with calculated in 3 random images and the results x±s (n=3); ****: P < 0.000 1; ***: P < 0.001; **: P < 0.01; *: P < 0.05; ns: P≥0.05. C: The number of primary clones under different conditions was counted by Image J software.

对于增殖能力,去掉任一因子均会导致原代类器官单细胞总数明显减少,表明O7培养体系中的每个因子对于嗅上皮类器官中细胞的增殖都是必需的(图 5)。

在粒径分布中,如图 6所示,去掉EGF、PVC后原代类器官中直径为60−120 μm的克隆比例和直径大于180 μm的克隆比例明显增加;去掉bFGF后,原代类器官中直径大于100 μm克隆比例明显减少;去掉R-spondin-1后,原代类器官中直径小于20 μm的克隆比例明显增加;去掉CHIR后,原代类器官中直径小于20 μm的克隆比例增加,直径大于40 μm的克隆比例明显减少,克隆直径明显减小;去掉A8301、DMH1后类器官直径分布情况与对照无明显差别。总之,O7培养体系中的每个因子对于嗅上皮类器官的克隆形成和增殖都是需要的。

图 6 各因子对克隆直径的影响 Fig. 6 Effect of small molecules on colony diameters. The diameters of the primary organoids in O7 (A), O7-E (B), O7-F (C), O7-P (D), O7-R (E), O7-A (F), O7-C (G), O7-D (H) respectively were measured on day 9. The proportions of different diameters in each condition were quantified by Image J software. Data was displayed with x±s (n=3).
2.4 类器官培养条件各因子对细胞类型及基因表达的影响

为了探究培养体系中各个因子对嗅上皮类器官细胞类型的影响,分别去掉培养体系中各个因子并进行免疫荧光检测各类细胞相关标志物在蛋白水平的表达情况,结果如图 7所示。

图 7 各因子对类器官中细胞组成的影响 Fig. 7 Effect of individual factors on cell composition in organoids. A: Immunofluorescence staining of 1st generation of cultured olfactory organoids in different conditions. Horizontal basal-like cells were labeled with Ck5 (green), Ck14 (red), and P63 (green). Globose basal-like cells were labeled with c-Kit (red). Sustentacular-like cells were labeled with Ck8 (green). Neuron-like cells were labeled with Tuj1 (red) in olfactory epithelial organoids. B: Proportion of clones under different conditions. The images were taken by Thermo Fisher Scientific EVOS M7000 fluorescent microscopy (10×, 20×) with a scale bar of 275 μm and 150 μm, respectively. The percentage of positive clones in different conditions was quantified by Image J software. Calculate the positive clones under different conditions in 3 random images and the results were showed with x±s (n=3); ****: P < 0.000 1; ***: P < 0.001; **: P < 0.01; *: P < 0.05; ns: P≥0.05.

首先我们检测了HBC相关标志物在蛋白水平的表达情况,去掉EGF、PVC、CHIR-99021导致Ck5阳性克隆的比例明显低于对照;去掉EGF、PVC导致Ck14阳性克隆的比例显著降低;去掉EGF、CHIR-99021导致P63阳性克隆比例明显降低,说明EGF、PVC、CHIR-99021在不同程度上有利于水平基底样细胞的存活与增殖。

接下来检测SC相关标志物在蛋白水平的表达情况,去掉CHIR-99021、A8301后与对照相比Ck8阳性克隆的比例显著减少,说明CHIR-99021有利于水平基底样细胞的存活和增殖,以及有利于水平基底样细胞向支持样细胞分化;A8301有利于支持样细胞的分化。

随后检测了GBC相关标志物在蛋白水平的表达情况,结果显示去掉任一因子均会导致c-Kit阳性的克隆比例明显低于对照,说明O7中任一因子对球形基底样细胞的存活与增殖都是需要的。

最后检测OSN相关标志物在蛋白水平的表达情况,去掉PVC、R-spondin-1、A8301、CHIR-99021、DMH1后,Tuj1阳性克隆的比例明显降低,先前发现培养体系中任意因子对于球形基底样细胞的存活和增殖都是需要的,说明缺少PVC、R-spondin-1、A8301、CHIR-99021、DMH1会抑制球形基底样细胞的增殖,从而可能导致球形基底样细胞向神经样细胞分化效率显著降低。总的来说,O7培养条件中每个因子对于嗅上皮类器官拥有多种细胞类型都是需要的。

为了探究各个因子对嗅上皮类器官基因表达的影响,我们分别去掉培养体系中各个因子后进行qPCR检测各类细胞相关标志物在基因水平的表达情况,结果如图 8所示。

图 8 各因子对细胞基因表达的影响 Fig. 8 Effect of individual factors on gene expression. Quantitative RT-PCR gene expression analysis of HBC markers (krt5/krt14/trp63/icam1), GBC markers (lgr5/c-kit/ascl1), SC markers (krt8/krt18/jag1) and OSN markers (tuj1/omp) in olfactory epithelium organoids. Relative expression of genes were normalized to gapdh. Data were shown with x±s (n=3); ****: P < 0.000 1; ***: P < 0.001; **: P < 0.01; *: P < 0.05; ns: P≥0.05.

首先我们检测HBC相关标志物在基因水平的表达情况,与对照相比去掉EGF、PVC后krt5krt14基因的表达量明显降低;减去EGF后trp63基因的表达量显著减少;由于先前观察到去掉CHIR-99021会导致Ck5阳性克隆的比例和P63阳性克隆的比例显著减少,我们认为CHIR-99021有利于HBC相关标志物的蛋白表达但不影响其基因表达;细胞间黏附分子-1 (intercellular cell adhesion molecule-1, Icam1)也是HBC的特异性标记物,去掉任一因子不影响icam1基因的下调,总的来说EGF、PVC有利于水平基底样细胞的增殖,这与免疫荧光的结果一致。

接下来检测OSN相关标志物在基因水平的表达情况,去掉PVC、R-spondin-1、A8301、CHIR-99021、DMH1后,β-tubulin基因的表达量均明显下降;去掉PVC、R-spondin-1、A8301、CHIR-99021后,omp基因的表达量均明显低于对照;由于先前观察到去掉PVC、R-spondin-1、A8301、CHIR-99021、DMH1后c-Kit阳性克隆和Tuj1阳性克隆的比例均明显下降,说明去掉这些因子可能抑制球形基底样细胞的增殖以及其向不成熟神经样细胞的分化,从而影响不成熟神经元的相关标志物在基因水平上的表达。总的来说PVC、R-spondin-1、A8301、CHIR- 99021和DMH1有利于球形基底样细胞的存活和增殖,从而促进球形基底细胞向神经元样细胞分化,这与免疫荧光的结果一致。

随后检测GBC相关标志物在基因水平的表达情况,富含亮氨酸重复序列G蛋白偶联受体5 (Lgr5)是GBC的标记物[9],Ascl1也是GBC的标记物,去掉bFGF、R-spondin-1、A8301、CHIR-99021、DMH1后c-kitascl1基因的表达量显著降低;去掉R-spondin-1、A8301、CHIR-99021后lgr5基因的表达量显著降低;由于先前观察到去掉EGF、PVC导致c-Kit阳性的克隆比例明显低于对照,我们认为EGF、PVC有利于GBC相关标记物在蛋白水平的表达且不影响其在基因水平的表达。总的来说,bFGF、R-spondin-1、A8301、CHIR- 99021和DMH1在不同水平上有利于球形基底样细胞的增殖,这与免疫荧光的结果一致。

最后检测SC相关标志物在基因水平的表达,角蛋白18 (cytokeratin 18, Ck18)和Notch信号通路配体Protein jagged-1 (Jag1)为SC的标记物,去掉R-spondin-1后krt8krt18的基因表达量明显高于对照,结合前面观察到的去掉R-spondin-1后Ck8阳性克隆的比例明显升高而水平基底样细胞比例无变化,说明R-spondin-1抑制支持样细胞分化;去掉CHIR-99021后krt18jag1的基因表达量显著高于对照,结合前面观察到的去掉CHIR-99021后Ck8阳性克隆的比例明显下降,说明CHIR-99021有利于SC相关标志物蛋白水平的表达但不利于其基因水平的表达;去掉bFGF、A8301、DMH1后jag1的基因表达量明显高于对照,结合前面观察到的去掉A8301后Ck8阳性克隆的比例明显下降,说明A8301有利于SC相关标志物的蛋白水平的表达但不利于其基因水平的表达;先前发现去掉bFGF、DMH1后Ck8阳性克隆的比例明显上升但水平基底样细胞比例无明显变化,说明bFGF、DMH1抑制支持样细胞的分化。

3 讨论与结论

综上所述,本研究通过筛选因子初步构建了嗅上皮类器官模型,利用免疫荧光明确了培养的嗅上皮类器官包含多种嗅上皮细胞类型并通过qPCR验证各类细胞标志物的基因表达情况,同时通过单独减去各个因子验证了培养体系各成分的必要性,并绘制了嗅上皮类器官各细胞命运调控模式图(图 9)。

图 9 嗅上皮类器官各类细胞命运调控模式图 Fig. 9 The pattern of cell fate regulation in olfactory epithelial organoids. GBC: Globose basal cells; HBC: Horizontal basal cells; SC: Sustentacular cells; imOSN: Immature olfactory sensory neuron.

近年来,因新冠肺炎患者通常伴随着嗅觉的丧失[14-15, 27],另外许多神经退行性疾病也通常与嗅觉缺失相关[2, 28-29],嗅觉再生逐渐受到了科研人员的关注,嗅上皮中嗅感觉神经元的修复和再生频频成为研究热点[30-31]。类器官是近年来出现的一种新型研究模型,为解析各类组织干细胞自我更新和分化机制提供了新的工具。类器官可由组织成体干细胞或多能干细胞分化产生。

如前所述,激活Wnt信号通路会促进嗅上皮中球形基底细胞的形成[8],CHIR-99021作为Wnt信号通路激活剂对于嗅上皮类器官中球形基底细胞的形成是需要的。此外我们发现CHIR-99021有利于嗅上皮类器官中Lgr5阳性球形基底样细胞分化为嗅感觉神经元样细胞,这也与Wnt信号通路激活能够促进嗅感觉神经元的产生这一结论相符[9]。目前暂未发现成熟嗅感觉神经元存在于培养的类器官中,下一步可以从CHIR-99021作用时间、浓度和分阶段处理来调整Wnt活性,进而促进球形基底样细胞向成熟神经元样细胞分化。已有研究表明Notch信号通路能够抑制水平基底细胞活化,保持其休眠状态[11],但同时又能够促进水平基底细胞向支持细胞分化、Lgr5阳性球形基底细胞向嗅感觉神经元分化[13, 32]。我们探索培养体系里加入Notch通路激活剂VPA发现嗅感觉神经元样细胞比例增多,但同时基底细胞大量减少,为了构建更好的嗅上皮类器官还需要在之后的研究中进一步调整Notch信号通路激活的时间和程度。

有研究人员通过体外培养Lgr5-EGFP阳性的干细胞建立了体外扩增GBC的方法,并且通过小分子筛选确定了球形基底细胞分化为嗅感觉神经元和支持细胞的培养方法,但每个克隆中Tuj1阳性的细胞仅仅占(8.6±1.4)%,支持细胞仅仅占(8.4±2.1)%,比例不高[5]。另一方面,虽然诱导多能干细胞可通过诱导分化产生多种组织的类器官[33],但存在分化周期长,细胞类型复杂等问题。在体内,因为嗅上皮干细胞的存在,嗅上皮具有较强的自我更新能力;在体外,嗅上皮干细胞也为嗅上皮类器官的构建提供了理想的起始细胞。

本研究实现了体外将嗅上皮干细胞扩增培养并分化为嗅上皮其他类型细胞的过程。这一类器官模型为进一步研究嗅觉障碍的疾病机理以及鉴定嗅上皮损伤再生和治疗嗅觉障碍的药物提供了研究模型。但我们初步建立的嗅上皮类器官目前缺少成熟的嗅感觉神经元,克隆中的细胞组成和结构与体内嗅上皮还存在较大差距。进一步筛选优化嗅上皮类器官的诱导和培养条件,获得在细胞组成、结构和功能与体内嗅上皮组织更为接近的嗅上皮类器官是未来的重要研究方向。

参考文献
[1]
ZAGHLOUL H, PALLAYOVA M, AL-NUAIMI O, HOVIS KR, TAHERI S. Association between diabetes mellitus and olfactory dysfunction: current perspectives and future directions. Diabetic Medicine, 2018, 35(1): 41-52. DOI:10.1111/dme.13542
[2]
DOTY RL. Olfactory dysfunction in parkinson disease. Nature Reviews Neurology, 2012, 8(6): 329-339. DOI:10.1038/nrneurol.2012.80
[3]
FIRESTEIN S. How the olfactory system makes sense of scents. Nature, 2001, 413(6852): 211-218. DOI:10.1038/35093026
[4]
PETERSON J, LIN B, BARRIOS-CAMACHO CM, HERRICK DB, HOLBROOK EH, JANG W, COLEMAN JH, SCHWOB JE. Activating a reserve neural stem cell population in vitro enables engraftment and multipotency after transplantation. Stem Cell Reports, 2019, 12(4): 680-695. DOI:10.1016/j.stemcr.2019.02.014
[5]
REN WW, WANG L, ZHANG XJ, FENG XY, ZHUANG LJ, JIANG N, XU R, LI XW, WANG P, SUN XC, YU HM, YU YQ. Expansion of murine and human olfactory epithelium/mucosa colonies and generation of mature olfactory sensory neurons under chemically defined conditions. Theranostics, 2021, 11(2): 684-699. DOI:10.7150/thno.46750
[6]
SCHNITTKE N, HERRICK DB, LIN B, PETERSON J, COLEMAN JH, PACKARD AI, JANG W, SCHWOB JE. Transcription factor p63 controls the reserve status but not the stemness of horizontal basal cells in the olfactory epithelium. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(36): E5068-E5077.
[7]
SCHWOB JE, JANG W, HOLBROOK EH, LIN B, HERRICK DB, PETERSON JN, HEWITT COLEMAN J. Stem and progenitor cells of the mammalian olfactory epithelium: Taking poietic license. The Journal of Comparative Neurology, 2017, 525(4): 1034-1054. DOI:10.1002/cne.24105
[8]
WANG YZ, YAMAGAMI T, GAN QN, WANG YP, ZHAO TY, HAMAD S, LOTT P, SCHNITTKE N, SCHWOB JE, ZHOU CJ. Canonical Wnt signaling promotes the proliferation and neurogenesis of peripheral olfactory stem cells during postnatal development and adult regeneration. Journal of Cell Science, 2011, 124(Pt 9): 1553-1563.
[9]
CHEN MF, TIAN SH, YANG XL, LANE AP, REED RR, LIU HJ. Wnt-responsive Lgr5⁺ globose basal cells function as multipotent olfactory epithelium progenitor cells. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2014, 34(24): 8268-8276. DOI:10.1523/JNEUROSCI.0240-14.2014
[10]
ARTAVANIS-TSAKONAS S, MUSKAVITCH MAT. Notch: The past, the present, and the future. Current Topics in Developmental Biology, 2010, 92: 1-29.
[11]
LIN B, COLEMAN JH, PETERSON JN, ZUNITCH MJ, JANG W, HERRICK DB, SCHWOB JE. Injury induces endogenous reprogramming and dedifferentiation of neuronal progenitors to multipotency. Cell Stem Cell, 2017, 21(6): 761-774.e5. DOI:10.1016/j.stem.2017.09.008
[12]
FLETCHER RB, DAS D, GADYE L, STREET KN, BAUDHUIN A, WAGNER A, COLE MB, FLORES Q, CHOI YG, YOSEF N, PURDOM E, DUDOIT S, RISSO D, NGAI J. Deconstructing olfactory stem cell trajectories at single-cell resolution. Cell Stem Cell, 2017, 20(6): 817-830.e8. DOI:10.1016/j.stem.2017.04.003
[13]
DAI Q, DUAN C, REN WW, LI FQ, ZHENG Q, WANG L, LI WY, LU XL, NI WL, ZHANG YP, CHEN Y, WEN TQ, YU YQ, YU HM. Notch signaling regulates Lgr5+ olfactory epithelium progenitor/stem cell turnover and mediates recovery of lesioned olfactory epithelium in mouse model. Stem Cells, 2018, 36(8): 1259-1272. DOI:10.1002/stem.2837
[14]
FAVERO R, HAJRULLA S, BORDIN A, MUCIGNAT-CARETTA C, GAUDIOSO P, SCARPA B, FAVERO L, OTTAVIANO G. Olfactory dysfunction in COVID-19 patients who do not report olfactory symptoms: a pilot study with some suggestions for dentists. International Journal of Environmental Research and Public Health, 2022, 19(3): 1036. DOI:10.3390/ijerph19031036
[15]
OTHMAN BA, MAULUD SQ, JALAL PJ, ABDULKAREEM SM, AHMED JQ, DHAWAN M, PRIYANKA, CHOUDHARY OP. Olfactory dysfunction as a post-infectious symptom of SARS-CoV-2 infection. Annals of Medicine and Surgery, 2022, 75: 103352. DOI:10.1016/j.amsu.2022.103352
[16]
NETA FI, FERNANDES ACL, VALE AJM, PINHEIRO FI, COBUCCI RN, de AZEVEDO EP, GUZEN FP. Pathophysiology and possible treatments for olfactory-gustatory disorders in patients affected by COVID-19. Current Research in Pharmacology and Drug Discovery, 2021, 2: 100035. DOI:10.1016/j.crphar.2021.100035
[17]
SEO BS, LEE HJ, MO JH, LEE CH, RHEE CS, KIM JW. Treatment of postviral olfactory loss with glucocorticoids, Ginkgo biloba, and mometasone nasal spray. Archives of Otolaryngology-Head & Neck Surgery, 2009, 135(10): 1000-1004.
[18]
LIU JF, PINHEIRO-NETO CD, ZHAO JH, CHEN ZY, WANG YB. A novel surgical treatment for long lasting unilateral peripheral parosmia: olfactory cleft blocking technique. Auris Nasus Larynx, 2021, 48(6): 1209-1213. DOI:10.1016/j.anl.2020.07.018
[19]
CHEN XY, FANG HS, SCHWOB JE. Multipotency of purified, transplanted globose basal cells in olfactory epithelium. The Journal of Comparative Neurology, 2004, 469(4): 457-474. DOI:10.1002/cne.11031
[20]
GOLDSTEIN BJ, GOSS GM, CHOI R, SAUR D, SEIDLER B, HARE JM, CHAUDHARI N. Contribution of Polycomb group proteins to olfactory basal stem cell self-renewal in a novel c-KIT+ culture model and in vivo. Development: Cambridge, England, 2016, 143(23): 4394-4404.
[21]
KIM J, KOO BK, KNOBLICH JA. Human organoids: Model systems for human biology and medicine. Nature Reviews Molecular Cell Biology, 2020, 21(10): 571-584. DOI:10.1038/s41580-020-0259-3
[22]
SCHWOB JE, SZUMOWSKI KE, STASKY AA. Olfactory sensory neurons are trophically dependent on the olfactory bulb for their prolonged survival. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 1992, 12(10): 3896-3919. DOI:10.1523/JNEUROSCI.12-10-03896.1992
[23]
CHUAH MI, TEAGUE R. Basic fibroblast growth factor in the primary olfactory pathway: mitogenic effect on ensheathing cells. Neuroscience, 1999, 88(4): 1043-1050. DOI:10.1016/S0306-4522(98)00277-2
[24]
BARKER N, van ES JH, KUIPERS J, KUJALA P, van DEN BORN M, COZIJNSEN M, HAEGEBARTH A, KORVING J, BEGTHEL H, PETERS PJ, CLEVERS H. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 2007, 449(7165): 1003-1007. DOI:10.1038/nature06196
[25]
MADISEN L, ZWINGMAN TA, SUNKIN SM, OH SW, ZARIWALA HA, GU H, NG LL, PALMITER RD, HAWRYLYCZ MJ, JONES AR, LEIN ES, ZENG HK. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nature Neuroscience, 2010, 13(1): 133-140. DOI:10.1038/nn.2467
[26]
van-KEYMEULEN A, ROCHA AS, OUSSET M, BECK B, BOUVENCOURT G, ROCK J, SHARMA N, DEKONINCK S, BLANPAIN C. Distinct stem cells contribute to mammary gland development and maintenance. Nature, 2011, 479(7372): 189-193. DOI:10.1038/nature10573
[27]
TANG AT, BUCHHOLZ DW, SZIGETY KM, IMBHIAKA B, GAO SQ, FRANKFURTER M, WANG M, YANG JS, HEWINS P, MERICKO-ISHIZUKA P, LEU NA, STERLING S, MONREAL IA, SAHLER J, AUGUST A, ZHU XM, JURADO KA, XU MG, MORRISEY EE, MILLAR SE, AGUILAR HC, KAHN ML. SARS-CoV-2 infection of olfactory epithelial cells and neurons drives acute lung injury and lethal COVID-19 in mice. BioRxiv: the Preprint Server for Biology, 2021. DOI:10.1101/2021.12.04.471245
[28]
MARIN C, VILAS D, LANGDON C, ALOBID I, LÓPEZ-CHACÓN M, HAEHNER A, HUMMEL T, MULLOL J. Olfactory dysfunction in neurodegenerative diseases. Current Allergy and Asthma Reports, 2018, 18(8): 42.
[29]
HAWKES C. Olfaction in neurodegenerative disorder. Advances in Oto-Rhino-Laryngology, 2006, 63: 133-151. DOI:10.1159/000093759
[30]
COSTANZO RM, YAGI S. Olfactory epithelial transplantation: possible mechanism for restoration of smell. Current Opinion in Otolaryngology & Head and Neck Surgery, 2011, 19(1): 54-57.
[31]
URATA S, MARUYAMA J, KISHIMOTO-URATA M, SATTLER RA, COOK R, LIN NT, YAMASOBA T, MAKISHIMA T, PAESSLER S. Regeneration profiles of olfactory epithelium after SARS-CoV-2 infection in golden Syrian hamsters. ACS Chemical Neuroscience, 2021, 12(4): 589-595.
[32]
PACKARD A, GIEL-MOLONEY M, LEITER A, SCHWOB JE. Progenitor cell capacity of NeuroD1-expressing globose basal cells in the mouse olfactory epithelium. The Journal of Comparative Neurology, 2011, 519(17): 3580-3596.
[33]
JACOB F, PATHER SR, HUANG WK, ZHANG F, WONG SZH, ZHOU HW, CUBITT B, FAN WQ, CHEN CZ, XU M, PRADHAN M, ZHANG DY, ZHENG W, BANG AG, SONG HJ, CARLOS de LA TORRE J, MING GL. Human pluripotent stem cell-derived neural cells and brain organoids reveal SARS-CoV-2 neurotropism predominates in choroid plexus epithelium. Cell Stem Cell, 2020, 27(6): 937-950.e9.