生物工程学报  2023, Vol. 39 Issue (1): 192-203
http://dx.doi.org/10.13345/j.cjb.220288
中国科学院微生物研究所、中国微生物学会主办
0

文章信息

岳威, 张炬庆, 吴晓龙, 杨昕淳, 沈巧艳, 于帅, 祝振硕, 王承宝, 张仕强, 华进联
YUE Wei, ZHANG Juqing, WU Xiaolong, YANG Xinchun, SHEN Qiaoyan, YU Shuai, ZHU Zhenshuo, WANG Chengbao, ZHANG Shiqiang, HUA Jinlian
携带CD163报告载体的猪诱导多能干细胞株的建立
Development of porcine induced pluripotent stem cells with a CD163 reporter system
生物工程学报, 2023, 39(1): 192-203
Chinese Journal of Biotechnology, 2023, 39(1): 192-203
10.13345/j.cjb.220288

文章历史

Received: April 12, 2022
Accepted: July 29, 2022
携带CD163报告载体的猪诱导多能干细胞株的建立
岳威1 , 张炬庆1 , 吴晓龙1 , 杨昕淳1 , 沈巧艳1 , 于帅1 , 祝振硕1 , 王承宝2 , 张仕强1 , 华进联1     
1. 西北农林科技大学动物医学院 陕西省干细胞工程技术研究中心, 陕西 杨凌 712100;
2. 西北农林科技大学动物医学院 预防兽医系, 陕西 杨凌 712100
摘要:猪肺泡巨噬细胞(porcine alveolar macrophage, PAM)是包括猪繁殖与呼吸综合征病毒(porcine reproductive and respiratory syndrome virus, PRRSV)在内的多种高致病病毒的受体细胞,是研究病毒与宿主互作机制的重要模型。然而PAM来源有限,难以满足当前需求。利用猪诱导性多能干细胞(induced pluripotent stem cells, iPSCs)向巨噬细胞定向诱导是解决PAM细胞数量不足的有效方法。CD163是PAM细胞的重要标记,也是PRRSV等病毒的主要受体。建立实时报告CD163激活程度的报告系统对于建立并优化猪iPSCs向PAM的诱导分化体系具有指导意义。本研究利用CRISPR/Cas9介导的基因编辑系统,设计靶向CD163终止密码子的sgRNA并构建相应的打靶载体,将其导入到猪PAM中的检测报告系统。进一步将该报告系统导入猪iPSCs中,通过碱性磷酸酶染色、免疫荧光染色和EDU染色等手段来检测其安全性。将猪内源CD163的报告载体系统转染至原代PAM中,检测到了红色荧光的表达,证明了该载体系统的可靠性;将CD163-reporter系统转染至猪iPSCs中,获得CD163 reporter-iPSCs。结果表明,CD163 reporter-iPSCs可以维持正常的多能性基因的表达,并具有与正常猪iPSCs一致的克隆形态和增殖能力。证实成功构建了CD163的报告载体,并将其转染至猪iPSCs,获得含有CD163报告载体的猪iPSCs系。该报告载体既不影响猪iPSCs的多能性,又能够实时指示CD163的表达,为深入解析猪iPSCs分化为PAM的机制以及解析PRRSV等重大病原与宿主的互作研究奠定了基础。
关键词CD163    猪繁殖与呼吸综合征病毒    诱导多能干细胞    报告载体    CRISPR/Cas9        
Development of porcine induced pluripotent stem cells with a CD163 reporter system
YUE Wei1 , ZHANG Juqing1 , WU Xiaolong1 , YANG Xinchun1 , SHEN Qiaoyan1 , YU Shuai1 , ZHU Zhenshuo1 , WANG Chengbao2 , ZHANG Shiqiang1 , HUA Jinlian1     
1. Shaanxi Stem Cell Engineering and Technology Research Center, College of Veterinary Medicine, Northwest A & F University, Yangling 712100, Shaanxi, China;
2. Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A & F University, Yangling 712100, Shaanxi, China
Abstract: As main recipient cells for porcine reproductive and respiratory syndrome virus (PRRSV), porcine alveolar macrophage (PAM) are involved in the progress of several highly pathogenic virus infections. However, due to the fact that the PAM cells can only be obtained from primary tissues, research on PAM-based virus-host interactions remains challenging. The improvement of induced pluripotent stem cells (iPSCs) technology provides a new strategy to develop IPSCs-derived PAM cells. Since the CD163 is a macrophage-specific marker and a validated receptor essential for PRRSV infection, generation of stable porcine induced pluripotent stem cells lines containing CD163 reporter system play important roles in the investigation of IPSCs-PAM transition and PAM-based virus-host interaction. Based on the CRISPR/Cas9- mediated gene editing system, we designed a sgRNA targeting CD163 locus and constructed the corresponding donor vectors. To test whether this reporter system has the expected function, the reporter system was introduced into primary PAM cells to detect the expression of RFP. To validate the low effect on stem cell pluripotency, we generated porcine iPSC lines containing CD163 reporter and assessed the pluripotency through multiple assays such as alkaline phosphatase staining, immunofluorescent staining, and EdU staining. The red-fluorescent protein (RFP) expression was detected in CD163-edited PAM cells, suggesting that our reporter system indeed has the ability to reflect the expression of gene CD163. Compared with wild-type (WT) iPSCs, the CD163 reporter-iPSCs display similar pluripotency-associated transcription factors expression. Besides, cells with the reporter system showed consistent cell morphology and proliferation ability as compared to WT iPSCs, indicating that the edited-cells have no effect on stem cell pluripotency. In conclusion, we generated porcine iPSCs that contain a CD163 reporter system. Our results demonstrated that this reporter system was functional and safe. This study provides a platform to investigate the iPS-PAM development and virus-host interaction in PAM cells.
Keywords: CD163    porcine reproductive and respiratory syndrome virus (PRRSV)    improvement of induced pluripotent stem cells (iPSCs)    reporter vector    CRISPR/Cas9    porcine    

猪繁殖与呼吸综合征病毒(porcine reproductive and respiratory syndrome virus, PRRSV)主要感染家猪和野猪,自然靶标为巨噬细胞,从而摧毁整个免疫系统,每年对我国养猪业造成巨大损失。已证明原代猪肺泡巨噬细胞(porcine alveolar macrophage, PAM)是PRRSV的主要靶细胞[1],但原代细胞存在分离过程繁琐、批次变异性大、费时费力、成本相对较高、不能连续传代、数量有限等问题[2-3]。利用猪诱导多能干细胞(porcine induced pluripotent stem cells, piPSCs)诱导分化为PAM为解决这一问题提供了新的策略。CD163是PRRSV重要的受体,也是PAM细胞的重要标记基因之一[3-4],但是多能性干细胞本身不表达CD163。而在iPSCs诱导为巨噬细胞的过程中,内源性CD163必须被激活[5],建立能精确指示CD163的iPSCs对整个诱导过程的建立与效率的优化具有重要意义。

由CRISPR/Cas9介导的基因编辑技术自诞生以来,就迅速替代锌指核酸内切酶(zinc finger nuclease, ZFN)和类转录激活因子效应物核酸酶(transcription activator-like effector nucleases, TALEN)技术,成为科学界的热门技术和研究领域。CRISPR系统作为细菌和古细菌的获得性免疫系统,可以在特异性RNA的介导下,精确识别并切割外源遗传物质[6],在提供外源模板的情况下,可以实现基因组的精确改造。利用Cas9技术构建CD163报告载体能够实时指示CD163表达,可以不用终止诱导过程且直观地反映诱导效率,既省时省力,又能节约大量检测试剂,节约诱导成本。

诱导性多能干细胞(induced pluripotent stem cells, iPSCs)是将外源转录因子导入体细胞后,重编程获得的具有胚胎干细胞(embryonic stem cells, ESC)生物学特性的多能干细胞。iPSCs拥有自我更新和无限增殖的能力,还具有体内和体外分化成三胚层的能力,并且能够分化成各种组织细胞[7]。iPSCs作为体细胞来源的一类细胞,其不受限于伦理限制,还可以减少免疫排斥和生物安全问题[8]。通过iPSCs衍生的巨噬细胞为诱导巨噬细胞研究提供了一个可行的替代方法。即使并不是所有细胞都能够以相同的诱导效率获得,但是免疫细胞如巨噬细胞和自然杀伤者(natural killer cell, NK)细胞,可以比较容易地从多能干细胞中产生[9]。诱导多能干细胞向巨噬细胞分化的方法有拟胚体生成法[10-11]、分步诱导法[12-13]和共培养诱导法[13-14]等。原代PAM存在分离过程繁琐、批次间重复性差、费时费力、分离成本高、不能连续传代、数量有限等问题[15],如果能利用piPSCs这一特性将其向巨噬细胞诱导,将为PRRSV与免疫细胞的互作研究提供新希望。本研究通过构建CD163报告载体后,利用载体上带有的抗性标记筛选得到纯化的CD163 reporter-iPSCs,研究该细胞系可否实时指示细胞内源CD163表达的情况,而又不影响猪诱导多能干细胞的多能性,希望为猪诱导多能干细胞诱导为巨噬细胞奠定前期实验基础。

1 材料与方法 1.1 实验材料

T2A-H2B-mCherry序列由生工生物工程(上海)股份有限公司合成,PX459质粒和猪PAM原代细胞由本实验室保存。

1.2 实验试剂

蛋白示踪上样缓冲液,购自西安晶彩生物科技有限公司;RNAiso,购自TaKaRa;SuperReal PreMix Plus (SYBR Green) (FP205),购自天根生化科技(北京)有限公司;DMEM High Glucose,购自HyClone;DMEM、l-谷氨酰胺、非必需氨基酸、胰蛋白酶、Opti-MEM、胎牛血清(FBS) (10270),购自Gibco;NaHCO3,购自Sigma;Cell-Light EdU Apollo567 In Vitro Kit (100T),购自锐博生物科技有限公司;PEI,购自Thermo Scientific;Tryp LE,购自Thermo Scientific;Mitomycin C,购自上海热默尔生物有限公司;CHIR99021 (S2924),购自Selleck;SB431542 (S1067),购自Selleck;rh-Lif (Lif1050)、rh-bFGF (GF003),购自Millipore。

1.3 实验方法 1.3.1 CD163报告载体的构建

在CRISPOR DESIGN网站(http://crispor.tefor.net/)设计sgRNA,将其通过酶切连接到pX459载体上,命名为psgCD163-PX459。将T2A-H2B-mCherry序列和CD163终止密码子两侧的同源臂序列连接到pUC19载体上,命名为Donor-pCD163-mCherry-WPRE。将制备好的质粒进行Sanger测序。

1.3.2 电转染

猪原代肺泡巨噬细胞或猪诱导多能干细胞在转染前2 d解冻,在6 cm培养皿中培养,当细胞密度达到约2×106个/mL时,通过胰蛋白酶消化(1 000 r/min, 4 min)收集细胞,并用Opti-MEM (Invitrogen公司)洗涤细胞2次,向离心管中加入电转染溶液和质粒(20 μg)的混合物,吹打混匀。将上述细胞悬液转移到BTX电击杯中,并静置10 min。用180 V、10 ms脉冲时间电击细胞。让细胞静置10 min,并将细胞悬浮液加入到6 cm的培养皿中。加入预热为37 ℃的4 mL 10%胎牛血清的RPMI1640完全培养基。培养基置于37 ℃ CO2培养箱中,体积分数为5%。2 h后,将细胞贴壁,弃去培养基,代之以37 ℃温育的RPMI1640完全培养基。24 h后,观察荧光情况。所用的统计方法是算术平均法,取3个随机视野的平均值。

1.3.3 免疫荧光染色

在48孔板中的饲养层细胞铺展后,丢弃原始培养基,加入400 µL piPSCs培养基和1.6 µL DOX,并将piPSCs接种在Feeder上以继续培养。每24 h用新的piPSCs培养基更换培养基,并加入1.6 µL DOX。当piPSCs生长到60%时,弃去培养基,用PBS洗涤3次;加入200 µL 4%多聚甲醛固定12 min,弃去上清液,用PBS洗涤3次;加入0.1% Triton-100打孔10 min,弃去上清液,用PBS洗涤3次。在室温下加入10%胎牛血清1 h,然后在4℃孵育抗体过夜。弃去一抗,用PBS洗涤3次;室温避光孵育二抗1 h,用磷酸缓冲盐(phosphate-buffered saline, PBS)洗涤3次;室温避光10 min,用Hoechst 33342染色细胞核,弃去染色液,用PBS洗涤3次;在荧光显微镜下观察并拍照。

1.3.4 实时荧光定量PCR (qRT-PCR)

按照每个样品加入10 µL 2×SuperReal PreMix Plus,0.8 µL cDNA模板(1 µg/µL),0.6 µL正反向引物(10 µmol/L),8 µL ddH2O的反应体系配制混匀后,参照ChamQ SYBR qPCR Master Mix (南京诺唯赞,Q321-02) PCR程序进行实时荧光定量PCR。

1.3.5 饲养层细胞(feeder)的制备和培养

将新分离或冷冻的MEF细胞接种在100 mm培养皿中,每天换液,直到细胞密度超过90%。7.5 µg/mL丝裂霉素C,处理3 h。PBS洗涤2–3次,0.25%胰蛋白酶消化至单细胞,中和,1 200 r/min离心。DMEM培养基重悬,计数以每个12孔接种1×105个细胞,接种在新培养板上。

1.3.6 Dox-piPSCs培养

每个12孔接种2×104个piPSCs接种在铺好饲养层细胞的12孔板中。当piPSCs生长到60%时,Triple消化成单细胞,用DMEM培养基进行中和。1 200 r/min离心5 min,弃上清,重悬以每个12孔接种2×104个细胞接种到铺满饲养层细胞的12孔板中,继续培养。

1.3.7 293T细胞培养

用DMEM培养基(含10% FBS)进行培养至细胞长满到90%左右。用PBS洗涤后,加入1 mL 0.25%胰蛋白酶成单细胞(37 ℃、5 min)消化,加入等体积的DMEM培养基进行中和,并以1 200 r/min离心5 min。弃上清,用1 mL DMEM培养基重悬细胞,在新的60 mm培养皿中接入适量的细胞,并在进行随后的慢病毒包装分析之前,回收复苏后培养3代的HEK293T细胞用于下一步试验。

1.3.8 慢病毒包装和攻毒转染

首先,将HEK293T细胞接种于6孔板上,培养至细胞长满至80%–90%。将1 µg病毒包装载体(pVSV-G和psPAX2)和2 µg慢病毒骨架载体(donor-pCD163-mCherry-polyA-EF1α-PURO- WPRE)在12 µL PEI (1 mg/mL)中稀释混匀后,将质粒混合物加入200 µL optiMEM中,旋涡混匀后室温孵育15 min,将其加入细胞培养基。12 h后更换DMEM培养基,培养细胞48–72 h后4 ℃、12 000 r/min离心15 min,收集上清液(慢病毒颗粒),0.45 µm滤器过滤清除细胞碎屑,得到慢病毒颗粒。然后接种2× 104 piPSCs在铺满feeder的12孔板中培养12 h后,将慢病毒颗粒与piPSCs培养基按1:1 (体积比)混匀,并加入4 µg/mL的聚凝胺。在混合培养基转染piPSCs 8–12 h后,弃去培养基,加入新的piPSCs培养基继续培养。待piPSCs生长至60%后,消化传代并在piPSCs培养基中加入10 µg/mL的嘌呤霉素(puro),筛选出puro阳性的细胞克隆命名为CD163-REP-piPSCs。

2 结果与分析 2.1 CD163报告载体的构建及验证

CD163报告载体的作用模式如图 1所示,利用特异性靶向猪CD163终止密码子附近的sgRNA造成双链断裂,T2A-RFP-PURO的表达框在两侧同源臂的指导下,整合入piPSCs的基因组。供体质粒如图 1所示,载体上带有嘌呤霉素抗性标记,以便于后期细胞筛选。我们首先检测CD163报告载体能否正常工作。结合之前的研究和我们的qRT-PCR检测结果,与piPSCs相比,PAM中CD163高表达(图 2B)。对成年猪肺切片进行免疫荧光染色(图 2C),结果表明,在猪的肺泡中存在高度表达CD163的细胞。对体外分离的原代PAM细胞的免疫荧光染色实验进一步验证,CD163在PAM中是高表达的(图 2D)。

图 1 CD163报告载体的作用模式图 Fig. 1 Action pattern diagram of CD163 report carrier.
图 2 CD163报告载体的构建及验证 Fig. 2 Construction and verification of the CD163 reporter vector. A:CD163报告载体的图谱. B:从mRNA水平定量检测PAM细胞和piPSCs的CD163表达效率. ***: P < 0.001. C:免疫荧光染色检测成猪肺切片中CD163表达情况. Scale bar=400 μm. D:免疫荧光染色检测PAM中CD163和CD203的表达. Scale bar=400 μm A: The map of CD163 reporter vector. B: The expression level of CD163 in PAM cells and piPSCs detected by qRT-PCR. ***: P < 0.001. C: The expression of CD163 in pig lung detected by immunofluorescence staining. D: The expression of CD163 and CD203 in PAM detected by immunofluorescence staining. Scale bar=400 μm.

虽然原代PAM能够表达CD163,但是外源载体很难通过转染进入PAM。因此,我们通过电转染的方式将CD163报告载体转染进PAM原代细胞。为了探索最佳的电转染体系,使用绿色荧光蛋白(green fluorescent protein, GFP)载体来进行体系摸索,结果表明PAM的最佳电转染参数为180 V、10 ms。随后,将CD163报告载体电转染入原代PAM中,观察到有部分表达红色荧光的细胞,对表达红荧光的细胞进行CD163的免疫荧光复染(图 3),结果表明,CD163报告载体能够正常工作。

图 3 报告载体转染入PAM及检测 Fig. 3 CD163-reporter was electrotransfected into PAM and analyzed by CD163 immunofluorescence. A:CD163抗体免疫荧光染色检测PAM细胞. B:CD163报告载体(RFP)电转染至PAM细胞呈红色荧光. C:Hoechst33342显核染色. D:Merge. Scale bar= 400 μm A: CD163 immunofluorescence staining for PAM (green). B: The CD163-reporter electrotransfected PAM (red); C: Hoechst33342 staining of the CD163-reporter electrotransfected PAM (blue). D: Merge of A, B and C. Scale bar=400 μm.
2.2 piPSC-CD163-reporter细胞系的构建

将CD163报告载体通过脂质体转染的方式导入piPSCs中,并利用载体上的嘌呤抗性筛选细胞,收取纯化细胞基因组进行PCR检测,结果表明,我们成功将载体插入序列整合到了piPSCs的基因组中(图 4A),将正确的条带切胶回收并送公司测序且测序结果正确(图 4B)。至此,我们成功筛选到插入CD163报告载体的piPSCs (CD163 reporter-piPSCs)。

图 4 piPSCs-CD163-Reporter细胞系的构建 Fig. 4 Construction of piPS-CD163-reporter cell lines. A:PCR检测CD163报告载体成功转入piPSCs中. B:测序结果及比对 A: CD163 reporter vector successfully transferred into piPSCs by PCR. B: The cDNA with correct molecular weight were recycled and the sequencing results were compared.
2.3 CD163报告载体不影响piPSCs的多能性

我们构建含CD163报告载体的细胞系的目的是能够实时指示piPSCs向PAM细胞的分化情况,因此,该报告载体不能影响piPSCs的多能性,我们需要进一步检测CD163 reporter- piPSCs的多能性和增殖能力是否受到影响。通过碱性磷酸酶染色(alkaline phosphatase) (图 5A)和qRT-PCR检测多能基因(图 5B)以及对多能基因的蛋白进行免疫荧光染色(图 5C)来判断细胞的多能性情况。检测结果表明,CD163 reporter-piPSCs的多能性与对照组相比并无显著变化。然后我们又通过群体倍增时间(图 5D)和EDU染色(图 5E)探究细胞增殖能力,结果证明CD163报告载体对piPSCs的增殖能力并无明显影响。

图 5 CD163报告载体不影响piPSCs的多能性 Fig. 5 CD163 reporting vector does not affect the pluripotency of piPSCs. A:对照组和CD163报告系统组的AP染色情况. Scale bar=400 μm. B:实时荧光定量PCR检测对照组和CD163报告系统组的多能性基因表达量. C:免疫荧光染色检测对照组和CD163报告系统组多能基因表达量. Scale bar=200 μm. D:对照组及CD163报告系统组的piPSCs群体倍增时间. E:对照组和CD163报告系统组的EdU染色结果. Scale bar=400 μm. F:EDU染色结果的量化 A: Control group and CD163 report system group analysed by AP staining. Scale bar=400 μm. B: Real-time fluorescence quantitative PCR detection control group and CD163 report system group of pluripotency gene expression. C: Quantity analysis the pluripotency gene expression in control and CD163 reporter system group by immunofluorescence. Scale bar=200 μm. D: The multiplication time of the control group and the CD163 report system group. E: The EDU dying result of the control group and the CD163 reporter system group. Scale bar=400 μm. F: Quantification of EDU staining results.
3 讨论

猪繁殖障碍与呼吸综合症病毒是危害全世界养猪业的重要病原,特别是在高致病性PRRSV出现之后,我国养猪业面临问题更加突出,给我国养猪业带来了严重打击[16-18]。而PRRSV的病理研究与疫苗生产都依赖于PRRSV易感细胞的大量扩增。在病毒的细胞嗜性方面,PRRSV除了EAV具有相对广泛的细胞嗜性之外,其他病毒只有少数细胞能够支持病毒复制。目前,PRRSV在体内已知的靶细胞仅限于PAM细胞、分化的血液单核细胞(blood monocytes, BMo)[19]、树突状细胞(dendritic cells, DC),以及一些特定的骨髓细胞(bone marrow cells, BM)[20]。虽然体外细胞系MA-104 (来源于非洲绿猴肾细胞)与MARC-145 (MA-104的克隆株)是PRRSV的易感细胞,也被广泛应用于PRRSV的相关研究[21]。但是这些细胞系起源于非洲绿猴细胞,能否真实反映其宿主感染细胞的情况值得商榷。原代PAM是PRRSV感染的主要靶细胞,是作为研究PRRSV的最佳细胞模型。但是原代细胞仍存在明显弊端,包括难于再现性、批次变异、费力且昂贵的细胞提取以及动物福利等问题,在体外无法扩增,只能用于基础研究,无法实现工业化批量生产等。永生化建系的细胞虽然保留了巨噬细胞的部分标记基因的表达,但是其CD163表达丢失,也完全丧失了其成熟巨噬细胞的大多数特性,因此不能被PRRSV感染。通过piPSCs向PAM分化,是研究PAM与PRRSV的一种新方法。然而目前诱导多能干细胞向巨噬细胞分化的效率较低、检测繁琐,而采用报告系统能够实时标记其诱导分化过程具有重要的科学意义。

最近研究显示,来自细菌的Ⅱ型聚类的规则间隔的短回文重复序列和来自细菌的Cas9核酸酶(CRISPR/Cas9)系统被重新用作哺乳动物细胞中基因组编辑的强大工具[22-24]。当与反式激活域融合时,Cas9的一种失活形式即dCas9被设计为可编程合成转录因子,被称为CRISPR激活(CRISPRa)系统[25-28]。因此,我们可以利用这个激活系统对靶基因进行报告和激活。

由于CD163为PAM细胞的标志性基因,在诱导过程中CD163的表达是必不可少的,本研究利用CRISPR/Cas9技术构建了CD163报告载体,能够实时指示CD163的内源激活,从而反映piPSCs的诱导效率,优化诱导体系可达到省时省力的效果。

piPSCs是将经典转录因子OCT4、SOX2、KLF4和C-MYC通过慢病毒转导至猪胎儿成纤维细胞诱导得到的多能干细胞。piPSCs能够自我更新和维持未分化状态,还具有无限增殖的能力[8, 29-30]。近年来,研究表明CD163、CD151、Vimetin、DC-SIGN和CD169是潜在的PRRSV病毒受体,这些受体在PRRSV侵入细胞的过程中发挥重要作用。越来越多的研究显示,CD163为PRRSV最关键的受体,且CD163为肺泡巨噬细胞的重要标记基因[31]。以前有研究表明,将猪CD163受体导入猪肾细胞(PK15),可使猪肾细胞感染PRRSV[32]。基于多能干细胞拥有这些良好的特性,如果能够通过piPSCs诱导得到猪PAM将为疫苗生产、病毒与宿主互作研究等提供绝佳的研究平台。

我们成功构建了CD163报告系统之后,还可以利用这个体系构建其他基因的报告系统,实现不同基因在piPSCs上的内源性报告,这样可以很大程度上提高诱导过程的准确性和效率。为之后的猪多能干细胞向巨噬细胞的高效诱导奠定基础。在piPSCs向PAM诱导过程中,报告载体不能够影响piPSCs的多能性和其无限增殖的能力,否则诱导过程和piPSCs的生物学特性将会受到影响。因此,我们通过AP染色、多能性标记Oct4、Sox2、Sall4表达水平、群体倍增时间检测和EDU染色等检测手段,分析了成功转入CD163报告系统的piPSCs的多能性和增殖能力,发现其多能性和增殖能力均不受影响。这表明该报告系统既能够起到实时指示CD163的作用,又不会影响piPSCs自身的生物学特性。

4 结论

本研究构建了CD163报告载体并确定PAM细胞合适的电转染参数,将CD163报告载体电转染进PAM细胞中后,利用免疫荧光染色对电转染后的原代PAM细胞进行复染,经验证CD163报告系统能够正常工作。此外,我们成功筛选到CD163 reporter-iPSCs;通过AP染色、RT-PCR和免疫荧光染色检测多能基因和检测群体倍增时间及EDU染色,说明CD163报告系统对piPSCs的多能性和增殖无影响。

参考文献
[1]
NAN YC, WU CY, GU GQ, SUN WY, ZHANG YJ, ZHOU EM. Improved vaccine against PRRSV: current progress and future perspective. Frontiers in Microbiology, 2017, 8: 1635. DOI:10.3389/fmicb.2017.01635
[2]
WANG XP, WANG GY, WANG N, LIU J, CCAI YQ, REN MJ, Li ZJ. A simple and efficient method for the generation of a porcine alveolar macrophage cell line for high-efficiency porcine reproductive and respiratory syndrome virus 2 infection. Journal of Virological Methods, 2019, 274: 113727. DOI:10.1016/j.jviromet.2019.113727
[3]
ZHANG J, SUN P, GAN LP, BAI WJ, WANG ZJ, LI D, CAO YM, FU YF, LI PH, BAI XW, MA XQ, BAO HF, CHEN YL, LIU ZX, LU ZJ. Genome-wide analysis of long noncoding RNA profiling in PRRSV-infected PAM cells by RNA sequencing. Scientific Reports, 2017, 7: 4952. DOI:10.1038/s41598-017-05279-z
[4]
CALVERT JG, SLADE DE, SHIELDS SL, JOLIE R, MANNAN RM, ANKENBAUER RG, WELCH SK W. CD163 expression confers susceptibility to porcine reproductive and respiratory syndrome viruses. Journal of Virology, 2007, 81(14): 7371-7379. DOI:10.1128/JVI.00513-07
[5]
GAO JX, PAN Y, XU YF, ZHANG WL, ZHANGL, LI X, TIAN ZJ, CHEN HY, WANG Y. Unveiling the long non-coding RNA profile of porcine reproductive and respiratory syndrome virus-infected porcine alveolar macrophages. BMC Genomics, 2021, 22(1): 177. DOI:10.1186/s12864-021-07482-9
[6]
DONG Y, ZHANG SY, GAO XT, YIN DD, WANG TT, LI ZL, WAN Z, WEI MY, LUO Y, YANG GD, LIU L. HIF1α epigenetically repressed macrophages via CRISPR/Cas9-EZH2 system for enhanced cancer immunotherapy. Bioactive Materials, 2021, 6(9): 2870-2880. DOI:10.1016/j.bioactmat.2021.02.008
[7]
TAKAHASHI K, YAMANAKA S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4): 663-676. DOI:10.1016/j.cell.2006.07.024
[8]
ZHU ZS, PAN Q, ZHAO WX, WU XL, YU S, SHEN QY, ZHANG JQ, YUE W, PENG S, LI N, ZHANG SQ, LEI AM, HUA JL. BCL2 enhances survival of porcine pluripotent stem cells through promoting FGFR2. Cell Proliferation, 2021, 54(1): e12932.
[9]
LI XP, YANG Y, BU L, GUO XG, TANG CC, SONG J, FAN NN, ZHAO BT, OUYANG Z, LIU ZM, ZHAO Y, YI XL, QUAN LQ, LIU SC, YANG ZG, OUYANG HS, CHEN YE, WANG Z, LAI LX. Rosa26-targeted swine models for stable gene over-expression and Cre-mediated lineage tracing. Cell Research, 2014, 24(4): 501-504. DOI:10.1038/cr.2014.15
[10]
van WILGENBURG B, BROWNE C, VOWLES J, COWLEY SA. Efficient, long term production of monocyte-derived macrophages from human pluripotent stem cells under partly-defined and fully-defined conditions. PLoS One, 2013, 8(8): e71098. DOI:10.1371/journal.pone.0071098
[11]
KARLSSON KR, COWLEY S, MARTINEZ FO, SHAW M, MINGER SL, JAMES W. Homogeneous monocytes and macrophages from human embryonic stem cells following coculture-free differentiation in M-CSF and IL-3. Experimental Hematology, 2008, 36(9): 1167-1175. DOI:10.1016/j.exphem.2008.04.009
[12]
CAO X, YAKALA GK, van den HIL FE, COCHRANE A, MUMMERY CL, ORLOVA VV. Differentiation and functional comparison of monocytes and macrophages from hiPSCs with peripheral blood derivatives. Stem Cell Reports, 2019, 12(6): 1282-1297. DOI:10.1016/j.stemcr.2019.05.003
[13]
TAKATA K, KOZAKI T, LEE CZW, THION MS, OTSUKA M, LIM S, UTAMI KH, FIDAN K, PARK DS, MALLERET B, CHAKAROV S, SEE P, LOW D, LOW G, GARCIA-MIRALLES M, ZENG RZ, ZHANG JQ, GOH CC, GUL A, HUBERT S, et al. Induced- pluripotent-stem-cell-derived primitive macrophages provide a platform for modeling tissue-resident macrophage differentiation and function. Immunity, 2017, 47(1): 183-198.e6. DOI:10.1016/j.immuni.2017.06.017
[14]
YU DD, LV J, SUN Z, ZHENG HH, LU JQ, YUAN SS. Reverse genetic manipulation of the overlapping coding regions for structural proteins of the type II porcine reproductive and respiratory syndrome virus. Virology, 2009, 383(1): 22-31. DOI:10.1016/j.virol.2008.09.013
[15]
倪黎纲, 赵旭庭, 王宵燕, 刘鹤鸣, 陈章言. 姜曲海猪肺泡巨噬细胞的分离培养与鉴定. 江苏农业科学, 2017, 45(23): 163-165.
NI LG, ZHAO XT, WANGg XY, LIU HM, CHEN ZY. Isolation, culture and identification of alveolar macrophages from quhai pig. Jiangsu Agricultural Sciences, 2017, 45(23): 163-165 (in Chinese).
[16]
BUTLER JE, LAGER KM, GOLDE W, FAABERG KS, SINKORA M, LOVING C, ZHANG YI. Porcine reproductive and respiratory syndrome (PRRS): an immune dysregulatory pandemic. Immunologic Research, 2014, 59(1): 81-108.
[17]
TORRENTS D, MIRANDA J, GAUGER P, RAMIREZ A, INHARES D. Effect of PRRSV stability on productive parameters in breeding herds of a swine large integrated group in Spain. Porcine Health Management, 2021, 7(1): 21. DOI:10.1186/s40813-021-00203-4
[18]
YIN BS, QI SS, SHA WL, QIN HY, LIU LM, YUN JY, ZHU JH, LI GJ, SUN DB. Molecular characterization of the Nsp2 and ORF5 (ORF5a) genes of PRRSV strains in nine provinces of China during 2016–2018. Frontiers in Veterinary Science, 2021, 8: 605832. DOI:10.3389/fvets.2021.605832
[19]
FANG JY, QIAO SL, WANG KL, LI R, WANGg L, LI HL, Zhang GP. Quantitative proteomic analysis of global protein acetylation in PRRSV-infected pulmonary alveolar macrophages. Proteomics, 2021, 21(2): e2000019. DOI:10.1002/pmic.202000019
[20]
CRISCI E, MOROLDO M, Vu MANH TP, MOHAMMAD A, JOURDREN L, URIEN C, BOUGUYON E, BORDET E, BEVILACQUA C, BOURGE M, PEZANT J, Pléau A, BOULESTEIX O, SCHWARTZ I, BERTHO N, GIUFFRA E. Distinctive cellular and metabolic reprogramming in porcine lung mononuclear phagocytes infected with type 1 PRRSV strains. Frontiers in Immunology, 2020, 11: 588411. DOI:10.3389/fimmu.2020.588411
[21]
Kim HS, Kwang J, Yoon IJ, Joo HS, Frey ML. Enhanced replication of porcine reproductive and respiratory syndrome (PRRS) virus in a homogeneous subpopulation of MA-104 cell line. Archives of Virology, 1993, 133(3): 477-483.
[22]
CONG L, RAN FA, COX D, LIN SL, BARETTO R, HABIB N, HSU PD, WU XB, JIANG WY, MARRAFFINI LA, ZHANG F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819-823. DOI:10.1126/science.1231143
[23]
JINEK M, CHYLINSKI K, FONFARA I, HAUER M, DOUDNA JA, CHARPENTIER E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816-821. DOI:10.1126/science.1225829
[24]
MALI P, ESVELT KM, CHURCH GM. Cas9 as a versatile tool for engineering biology. Nature Methods, 2013, 10(10): 957-963. DOI:10.1038/nmeth.2649
[25]
GIBERT LA, LARSON MH, MORSUT L, LIU ZR, BRAR GA, TORRES SE, STERN-GINOSSAR N, BRANDMAN O, WHITEHEAD EH, DOUDNA JA, LIM WA, WEISSMAN JS, QI LS. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 2013, 154(2): 442-451. DOI:10.1016/j.cell.2013.06.044
[26]
KONERMANN S, BRIGHAM MD, TREVINO AE, JOUNG J, ABUDAYYRH OO, BARCENA C, HSU PD, HABIB N, GOETENBERG JS, NISHIMASU H, NUREKI O, ZHANG F. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature, 2015, 517(7536): 583-588. DOI:10.1038/nature14136
[27]
ZALATAN JG, LEE ME, ALMEIDA R, GILBERT LA, WHITEHEAD EH, La RUSSA M, TSAI JC, WEISSMAN JS, DUBER JE, QI LS, LIM WA. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell, 2015, 160(1/2): 339-350.
[28]
CHAVEZ A, SCHIMAN J, VORA S, PRUITT BW, TUTTLE M, IYER EPR, LI SL, KIANI S, GUZMAN CD, WIEGAND DJ, TER-OVANESYAN D, BRAFF JL, DAVIDSOHN N, HOUSDEN BE, PERRIMON N, WEISS R, AACH J, COLLINS JJ, CHURCH GM. Highly efficient Cas9-mediated transcriptional programming. Nature Methods, 2015, 12(4): 326-328. DOI:10.1038/nmeth.3312
[29]
ZHU ZS, WU XL, LU Q, ZHANG JQ, YU S, SHEN QY, ZHOU Z, PAN Q, YUE W, QIN DZ, ZHANG Y, ZHAO WX, ZHANG R, PENG S, LI N, ZHANG SQ, LEI AM, MIAO YL, LIU ZH, CHEN XQ, WANG HY, LIAO MZ, HUA JL. Histone demethylase complexes KDM3A and KDM3B cooperate with OCT4/SOX2 to define a pluripotency gene regulatory network. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 2021, 35(6): e21664.
[30]
WU XL, ZHU ZS, XIAO X, ZHOU Z, YU S, SHEN QY, ZHANG JQ, YUE W, ZHANG R, HE X, PENG S, ZHANG SQ, LI N, LIAO MZ, HUA JL. LIN28A inhibits DUSP family phosphatases and activates MAPK signaling pathway to maintain pluripotency in porcine induced pluripotent stem cells. Zoological Research, 2021, 42(3): 377-388.
[31]
叶梦雪, 朱建中, 陈南华. 猪繁殖与呼吸综合征病毒受体及其在病毒感染中的作用研究进展. 动物医学进展, 2020, 41(12): 102-107.
YE MX, ZHU JZ, CHEN NH. Progress on porcine reproductive and respiratory syndrome virus receptors and their roles in infections. Progress in Veterinary Medicine, 2020, 41(12): 102-107 (in Chinese).
[32]
XIE JX, CHISTIAENS I, YANG B, TRUS I, DEVRIENDT B, CUI TT, WEI RF, NAUWYNCK HJ. Preferential use of Siglec-1 or Siglec-10 by type 1 and type 2 PRRSV strains to infect PK15S1-CD163 and PK15S10-CD163 cells. Veterinary Research, 2018, 49(1): 67.