生物工程学报  2023, Vol. 39 Issue (1): 132-148
http://dx.doi.org/10.13345/j.cjb.220420
中国科学院微生物研究所、中国微生物学会主办
0

文章信息

黄千慧, 丁一祎, 谭钰雯, 莫雯欣, 李彤昕, 黄颖而, 郝文波
HUANG Qianhui, DING Yiyi, TAN Yuwen, MO Wenxin, LI Tongxin, HUANG Ying'er, HAO Wenbo
溴结构域蛋白4的结构和功能及其抑制剂在肿瘤研究中的应用
Advances of structure and mechanisms of bromodomain-containing protein 4 and its related research in tumors
生物工程学报, 2023, 39(1): 132-148
Chinese Journal of Biotechnology, 2023, 39(1): 132-148
10.13345/j.cjb.220420

文章历史

Received: May 29, 2022
Accepted: October 8, 2022
Published: October 21, 2022
溴结构域蛋白4的结构和功能及其抑制剂在肿瘤研究中的应用
黄千慧1 #, 丁一祎1 #, 谭钰雯1 , 莫雯欣1 , 李彤昕1 , 黄颖而2 , 郝文波1,2     
1. 南方医科大学检验与生物技术学院, 广东 广州 510515;
2. 南方医科大学检验与生物技术学院 抗体工程研究所, 广东 广州 510515
摘要:溴结构域和超末端结构域(bromodomain and extraterminal domain, Bet)家族是表观基因组的调节因子,也是肿瘤细胞生存所依赖的肿瘤相关基因表达的关键驱动因子。溴结构域蛋白4 (bromodomain-containing protein 4, Brd4)是溴域和端外蛋白家族中的一员,通常识别乙酰化组蛋白,并定位于目的基因的启动子或增强子区域,启动并维持肿瘤相关基因的表达。Brd4与多种转录因子调控和染色质修饰密切相关,并参与DNA损伤修复、维持端粒功能,从而维持肿瘤细胞的存活。本文围绕Brd4蛋白的结构、功能及其抑制剂在肿瘤研究中的应用进行综述。
关键词溴结构域和超末端结构域家族    溴结构域蛋白4    转录因子    DNA损伤检测点    端粒调节    
Advances of structure and mechanisms of bromodomain-containing protein 4 and its related research in tumors
HUANG Qianhui1 #, DING Yiyi1 #, TAN Yuwen1 , MO Wenxin1 , LI Tongxin1 , HUANG Ying'er2 , HAO Wenbo1,2     
1. School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, Guangdong, China;
2. Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, Guangdong, China
Abstract: The bromodomain and extraterminal domain (Bet) family are the regulators of the epigenome and also the pivotal driving factors for the expression of tumor related genes that tumor cells depend on for survival and proliferation. Bromodomain-containing protein 4 (Brd4) is a member of the Bet protein family. Generally, Brd4 identifies acetylated histones and binds to the promoter or enhancer region of target genes to initiate and maintain expression of tumor related genes. Brd4 is closely related to the regulation of multiple transcription factors and chromatin modification and is involved in DNA damage repair and maintenance of telomere function, thus maintaining the survival of tumor cells. This review summarizes the structure and function of Brd4 protein and the application of its inhibitors in tumor research.
Keywords: bromodomain and extraterminal domain family    bromodomain-containing protein 4    transcription factors    DNA damage checkpoint    telomere maintenance    

癌症是一个重大的公共卫生问题,已成为我国最常见的死亡原因之一。据最新的研究报道[1],2016年我国约有406.4万例新发癌症病例,241.4万例癌症死亡病例。因此,研究肿瘤治疗靶点和开发其相关抑制剂至关重要。

表观遗传学是研究基因的核苷酸序列不发生改变的情况下,基因表达的可遗传变化的一门遗传学分支学科[2]。表观遗传修饰在DNA复制、转录和修复过程中扮演着十分重要的角色,然而,表观遗传的修饰异常可导致肿瘤相关基因的异常表达,从而诱导肿瘤发生、维持肿瘤发展[3]。染色质结合蛋白溴结构域和超末端结构域(bromodomain and extraterminal domain, Bet)家族是一种表观遗传调节蛋白[4],可调控基因表达并参与肿瘤发病。溴结构域蛋白4 (bromodomain-containing protein 4, Brd4)是Bet家族的重要成员之一,不仅能识别乙酰化组蛋白,促进多个肿瘤相关基因的转录和表达,还具有其他的非转录调控功能[5]。本文综述了Brd4对p53c-myc、核因子κB (nuclear factor kappa-B, NF-κB)和端粒酶逆转录酶(telomerase reverse transcriptase, TERT) 4种肿瘤相关基因的转录调控作用,以及其对肿瘤DNA损伤修复和端粒功能调节的非转录调控作用,为临床的肿瘤靶向治疗提供了新思路。

1 Brd4与肿瘤 1.1 Bet家族与Brd4

Bet蛋白是一类含溴结构域(bromodomain, Brd)蛋白,包含两个N端溴结构域(bromodomain, BD) BD1和BD2、一段额外的末端基团(extra terminal domain, ET)和几组保守的区域(A, B, SEED区域)。每个Brd4含有4个反向平行的α螺旋(αA、αB、αC和αZ)[6],它们被2个不同长度的回路环(ZA环和BC环)互相连接,形成一个疏水的空腔(图 1),可容纳电中性的乙酰化赖氨酸,这使得Bet可通过其N端溴结构域与组蛋白尾部的乙酰化赖氨酸残基结合,改变染色质结构,从而影响细胞的多种生物学过程。

图 1 Brd4的生物学结构[6] Fig. 1 The protein sequence (A) and tertiary structure (B) of Brd4[6].

在哺乳动物细胞中,Bet蛋白质家族包括4个结构相似、功能不同的成员:Brd2、Brd3、Brd4和Brdt,其中Brd2、Brd3、Brd4在正常组织细胞中普遍表达,其结构具有相似性,包括N端的两个串联溴结构域BD1和BD2,以及一个超末端结构域ET)[7],此外,Brd4和BRDT还包含了一段延长的C端结构域(C terminal domain, CTM)。它们由特定的域组成,并具有不同的功能。例如,Brd2的两个溴结构域之间包含一个激酶样结构域,它具有丝裂原活化的核激酶活性并参与信号转导[6]

Brd4作为Bet家族的一员,具有多种结构模式,包括2种短突变型Brd4-S (分别含有722个和796个残基)和1种长突变型Brd4-L[8],其中存在人体中的多为Brd4-L。除了BD1和BD2之外,Brd4-L的分子作用还取决于其保守的末端基团结构域ET、酪蛋白激酶2 (casein kinase 2, CK2)磷酸化区域和独特的C端基序(CTM),后者在Brd2和Brd3中未发现。ET能够与组蛋白精氨酸区甲基酶、染色质DNA解螺旋结合蛋白等多种调节因子相互作用,从而调控相关基因的转录。而CTM可通过募集正性转录延伸因子b (positive transcription elongation factor b, P-tefb),使其与靶基因转录区上的乙酰化组蛋白结合,同时磷酸化RNA聚合酶Ⅱ (polⅡ) C端结构域的Brd4敏感性诱导因子和负性转录延伸因子,将RNA polⅡ从近端启动子区域解离出来,并解除负性延伸因子的转录抑制作用,从而促进RNA polⅡ依赖性的基因转录[6]。在人体内,Brd4通过BD1、BD2、ET、CK2磷酸化区域以及CTM等结构,对转录因子的结合与调控起到重要作用。

1.2 Brd4在肿瘤中的作用

近年研究发现,Brd4可影响细胞周期、增殖和凋亡等生理学过程,在肿瘤细胞的浸润、转移以及肿瘤的恶性发展中具有重要作用。急性髓系白血病(acute myeloid leukemia, AML)、多发性骨髓瘤(multiple myeloma, MM)等血液系统恶性肿瘤,以及乳腺癌(breast cancer, BCa)、胶质母细胞瘤(glioblastoma, GBM)、肾细胞癌(renal cell carcinoma, RCC)等实体肿瘤均与Brd4功能紊乱有关。

血液系统恶性肿瘤是一种高度异质性的侵袭性恶性肿瘤,其特征为异常自我更新和骨髓造血干/祖细胞分化受阻,主要包括白血病、MM等。Brd4可以利用几个相互作用的伴侣蛋白来促进AML细胞中的染色质重塑和转录激活[9],其主要作用机制是,当转录因子招募赖氨酸乙酰转移酶p300到染色质后,乙酰化的转录因子可以直接与Brd4结合,促进Brd4与AML基因组的结合。同时,Brd4可以募集P-tefb,后者磷酸化RNA聚合酶II以及暂停因子DSIF和NELF,从而促进转录伸长。Zhang等[10]在MM细胞中发现了超级增强子(super-enhancers, SEs),Brd4与SEs结合并将后者激活,促进细胞的恶性转化和肿瘤的进展。此外,SEs调控prdm1c-mycxbp1irf4表达,均促进了MM的发生发展。

BCa是女性中最常见的恶性肿瘤,也是全球最常见的癌症之一[11]。Wu等[12]通过染色质免疫沉淀技术(chromatin immunoprecipitation assay, ChIP)等实验发现,Brd4-S和Brd4-L在BCa进展过程中常发挥相反的作用。Brd4-S通过与同源转录因子En1相互作用,激活相关的细胞外基质网络,为肿瘤提供适当的微环境,从而促进肿瘤细胞的生长和转移。然而,Brd4-L则可抑制生长因子诱导的细胞迁移和癌症干细胞的增殖,从而抑制肿瘤的转移和进展。另外,在三阴性乳腺癌(triple negative breast cancer, TNBC)细胞中,蛋白磷酸酶2A活性的降低,将导致Brd4酸性区域磷酸化水平增加,促进肿瘤的进展[13]。Noblejas-López等[14]和Jing等[15]的研究也显示,Bet抑制剂(Bet inhibitor, Beti)可下调Brd4的表达,对TNBC的治疗有重要价值。

GBM是星形细胞肿瘤中恶性程度最高的胶质瘤。与女性相比,男性GBM发病率更高,生存期更短[16]。Kfoury等[17]研究表明,Brd4通过多种途径介导GBM的性别差异,并使男性和女性GBM细胞对Beti具有差异敏感性,其原因可能在于以下几点:一是Brd4结合位点常出现在富含H3K27ac的基因区域附近,而男性GBM细胞中的高活性Brd4增强子区域富集了大量H3K27ac;二是在男性和女性GBM细胞中,Brd4存在两种不同的转录状态。具有男性结合偏向的Brd4,其增强子处的转录因子包括癌基因蛋白和干细胞标志物,如Myc、Klf5和Oct4;而具有女性结合偏向的Brd4,其增强子处的转录因子有肿瘤抑制功能,如p53和Smad4。因此,抑制GBM患者Brd4的功能可以消除转录状态的性别差异以及伴随性别差异的致瘤表型差异。

RCC约占全部原发性肾脏恶性肿瘤的85%[18],目前只能通过手术控制,但容易复发且整体预后较差。Tan等[19]发现,RCC组织和细胞中Brd4的表达水平显著上调,caspase-1和IL-1β等焦磷酸化相关蛋白降低,研究结果表明,降低Brd4的表达可有效抑制RCC细胞增殖和上皮间质转化进展,其机制可能是,当Brd4被抑制时,可通过上游的NF-κB途径增加核苷酸寡聚化结构域(nucleotide oligomerization domain, NOD)样受体热蛋白结构域相关蛋白3 (NOD-like receptor thermal protein domain associated protein 3, NLRP3)的转录启动子活性,诱导NLRP3炎症小体表达增加,而高表达的NLRP3通过切割和激活caspase-1来触发焦磷酸化,使细胞膜上形成孔洞,并释放促炎细胞因子,最后导致细胞程序性死亡。此外,焦磷酸化在Brd4抑制介导的细胞增殖和上皮间质转化中具有至关重要的作用。

以上研究表明,Brd4的表达水平失调或功能紊乱与多种疾病,尤其是与恶性肿瘤的发生发展密切相关,是一个有价值的肿瘤治疗靶点。

2 Brd4在肿瘤中的转录调控作用

Brd4具有特殊的溴结构域,可特异性识别并结合其他蛋白,包括p53、c-myc、Nf-κb、TERT、c-Jun、G9a、C/ebpα、C/ebpβ、Acf1、衔接蛋白-2等,参与多种信号通路的调节,在肿瘤相关基因转录调控和染色质修饰方面扮演着重要角色。Brd4的两个串联的BD对具有乙酰化的多肽更具亲和性,其与乙酰化染色质结合后,使得Brd4在活性基因的调控区域富集,该区域通常富含多种转录因子的启动子和增强子。此外,我们总结并绘制了Brd4对p53、c-myc、Nf-κb、TERT转录调控的示意图(图 2)。

图 2 Brd4的转录调控作用[20-31] Fig. 2 The transcription regulation role of Brd4[20-31]
2.1 p53

p53是体内重要的抑癌基因,p53蛋白作为转录因子,通过稳定和激活各种胞内应激信号途径,如DNA损伤、缺氧和肿瘤相关基因通路的激活,从而导致细胞周期停滞、细胞衰老、凋亡和代谢适应[20]。Brd4结合靶蛋白的乙酰化赖氨酸残基,是重要的转录驱动因子。Stewart等[21]发现,在AML细胞中,Brd4通过募集组蛋白甲基转移酶G9a (histonelysine methyltransferase, Hmt),抑制p53基因的转录,促进白血病的发生,其作用机制是CK2可以磷酸化Brd4,进而将Brd4结合到DNA上,并与募集来的乙酰化p53蛋白结合,从而调控相关基因转录[22]。特别的是,Brd4与乙酰化p53的结合并不是由溴结构域介导,而是由两个保守区域所调节,即磷酸化依赖性相互作用域和碱性残基富集相互作用域[21]

2.2 c-myc

c-myc蛋白是一种核内DNA结合蛋白, 可调节碱性螺旋-环-螺旋转录因子(basic helix-loop-helix, bHLH)的转录,从而调控细胞生长、分化与凋亡,与肿瘤的发生与转归密切相关。因此,c-myc基因一个重要的肿瘤相关基因。细胞内c-myc蛋白水平受Brd4分子直接调控,后者可通过3种途径提高体内c-myc的含量:(1) Brd4通过募集P-tefb至染色质,磷酸化RNA polⅡ,驱动c-myc转录[23];(2) Brd4通过募集到SEs中,促进肿瘤细胞中SEs标记的c-myc转录[24];(3) 除了调节c-myc的转录过程,Brd4还可以通过c-myc蛋白去泛素化以及Thr58位点去磷酸化,直接维持c-myc蛋白的稳定性[25]

Brd4通过上述3种途径维持c-myc的体内高表达。高表达的c-myc即可通过c-myc/G9a/Fth1信号轴促进tfrcsteap3等基因的表达(图 3),增加铁内流,增强细胞对铁的利用,促进肿瘤细胞的生长[26];又可降低铁储存蛋白的表达,减少铁的储存和释放,促进肿瘤细胞生长迁移和上皮间质转化过程。

图 3 Brd4与c-myc在肿瘤中的作用途径[26] Fig. 3 The pathway that Brd4 interacts with c-myc in tumors[26].
2.3 Nf-κb

Nf-κb是细胞内重要的核转录因子,参与机体的炎症反应、免疫应答,调节细胞应激、凋亡,在肿瘤的发生发展中起重要作用。组成型活性的Nf-κb可调节肿瘤细胞的增殖、转移、血管生成以及凋亡等多种过程[27]。当Nf-κb蛋白Lys310的RelA亚基乙酰化,Nf-κb就可以调节靶基因的转录激活,并有助于维持肿瘤中的Nf-κb组成型活性的水平,而Brd4的溴结构域能够与Nf-κb乙酰化的RelA亚基结合[28],维持组成型活性的Nf-kb的胞内高水平,持续发挥促癌功能[29]

2.4 TERT

TERT是端粒酶中具有逆转录酶活性的催化亚基,通过添加端粒重复序列TTAGGG至端粒末端来维持端粒的稳定,从而参与细胞衰老过程。TERT基因启动子突变是人类最常见的促癌突变之一,会导致TERT过表达,进而重新激活端粒酶,维持端粒长度、延长细胞存活时间,促进肿瘤的发生。TERT启动子突变会选择性地招募转录因子鸟苷酸结合蛋白(GA-binding protein, GABP),GABP与TERT启动子绑定并激活TERT,介导染色质相互作用和乙酰化组蛋白聚集[30]。这一过程受到Brd4的调控,后者通过与超乙酰化组蛋白结合,直接积聚在TERT突变的启动子上,使GABP介导的染色质相互作用更加稳定[31]。此外,Brd4也可与GABP基因的启动子结合,直接驱动GABP基因的转录表达,从而间接促进TERT蛋白的表达增加[31]。另一方面,Brd4也对TERT基因进行表观遗传调节,通过识别并不断累积于超乙酰化的染色质位点,如增强子、DNA双链断裂位点、端粒等,直接促使TERT蛋白的表达增加,从而促进肿瘤的发生[31]

总之,在不同细胞中,Brd4调控的靶基因可能不同,因此其在不同肿瘤中发挥不同的作用。但其在肿瘤中的具体调控机制,特别是相关信号转导通路及靶基因蛋白相互作用等方面的研究还需进一步深入探索。

3 Brd4对肿瘤的非转录调控作用

Brd4在肿瘤中的转录调控作用已经得到了广泛认可,然而,Donati等[5]指出,Brd4与肿瘤的相关性超出了在转录调控中的作用,Brd4还会通过调控非转录途径,包括DNA损伤修复、端粒稳态维持等,来维持基因组的稳定性,从而参与肿瘤的发生发展。

3.1 DNA损伤修复

DNA损伤会触发DNA损伤反应。针对不同程度的损伤,细胞产生的DNA损伤反应存在差异,当损伤在可修复范围内,细胞将启动DNA损伤修复(DNA damage repair, DDR)并维持细胞存活;当损伤严重至难以修复时,细胞将进入凋亡或坏死程序。

细胞周期阻滞在DDR中扮演了重要角色,在细胞周期进程被阻断时,DNA修复因子被募集,这为DDR的启动创造了条件[32]。DDR的启动与组蛋白翻译后修饰介导的染色质结构改变有关[33],但当DDR缺陷时会导致基因组不稳定。幸运的是,DDR缺陷的肿瘤细胞对DNA损伤类药物更为敏感,而肿瘤细胞的DNA修复能力增强,则与耐药性的出现有关[34]

Brd4不仅是多个DNA修复相关基因的主要调节因子,参与DNA损伤检查点的激活,还参与DNA双链断裂(double-strand break, DSB)的修复。在肿瘤细胞中,发生DSB后,乙酰化的H4和磷酸化的H2ax可在DSB处累积,引发Brd4的募集[35],后者使DNA修复过程更加稳定。发生DNA损伤时,如果DDR不能正常进行,则可能诱导基因组缺陷的累积、恶性转化的发生、癌症的进展和DNA修复功能的进一步衰减[36]。Lam等[37]发现,当Brd4的功能被干扰时,细胞可不受myc基因转录变化的影响,加速DNA损伤信号传导、DSB形成与细胞凋亡。此外,Brd4抑制剂可与乙酰化残基竞争性结合Brd4的溴结构域,抑制DSB处Brd4的募集,使DNA修复机制不稳定并诱导DNA损伤的积累直至细胞死亡[35]

3.2 端粒调节

端粒可以保持基因组的完整性,最大限度地减少染色体的暴露范围,从而限制DNA损伤反应的发生[38]。端粒的长度随有丝分裂次数的增加而缩短,其长度可反映细胞的衰老程度,当端粒严重缩短时即可触发细胞死亡。因此,端粒的逐渐缩短是防止细胞发生失控性无限增殖的限速程序。肿瘤细胞通过端粒异常伸长、端粒酶表达和/或活性的改变,实现端粒的保护和延长,这与肿瘤的发生发展密切相关[39-40]。端粒的保护和延长存在两种机制:端粒酶的激活和端粒替代延长[39],其中后者不依赖于端粒酶,而是通过同源重组的方式延长端粒[41]

Brd4是新型的端粒长度正向调节剂,所以抑制Brd4会引起端粒缩短,这足以诱导端粒功能障碍和染色体融合,从而导致细胞死亡[5]。部分Beti靶向Brd4的溴结构域,干扰后者与乙酰化赖氨酸的结合,进而阻断Brd4与染色质的结合,阻止端粒延长。其作用机制可能是阻止端粒酶靠近端粒,进而修饰端粒结合蛋白或调节端粒结合蛋白的水平[42]。值得注意的是,这种效应不依赖于端粒酶表达或酶活性,而可能仅是空间上相互作用的结果。目前这种非转录途径的调节机制仍在研究中,尚未得到完全定义。

Brd4在DDR和端粒调节中的非转录调控作用,丰富了其在肿瘤发生发展中的作用,为Brd4在肿瘤中的作用提供了新的研究思路。

4 Brd4相关抑制剂

Brd4通过各种转录或非转录途径,在恶性肿瘤发生发展中起着非常关键的作用,因此开发Beti以抑制Brd4,可能是恶性肿瘤治疗的新方案。我们根据药物研发的两大阶段:临床前研究、临床试验,简要归纳了Brd4抑制剂研发的最新进展(表 1表 2),详细内容已提交国家微生物科学数据中心(编号:NMDCX0000169)。

表 1 Brd4抑制剂的临床前研发进展 Table 1 Preclinical development progress of Brd4 inhibitors
Medicines Major research and development institutions/sponsors Countries Main indications Targets Last updated date
A-1874 Arvinas The US Tumor Brd4 2022/1/14
APL-581 Aptose Biosciences The US Neoplastic hematologic disorder Brd4, JAK 2022/1/14
ARV-825 Arvinas The US Tumor Brd4 2022/1/14
BP-44 The west China clinical medical college China TNBC PARP1, Brd4 2022/4/26
CFT-2718 C4 Therapeutics Inc The US SCL, PAAD Brd4 2022/6/13
CK-103 Jubilant Pharma The US Solid tumor Brd4, Brd2 2022/1/14
CPI-203 Constellation Tumor Brd4 2022/1/14
D-0037 Chengdu Yuandong Biopharmaceutical Co., Ltd China Tumor Brd4 2022/1/5
dBET1 Dana Farber Cancer Research Institute The US AML Brd4 2022/1/14
dBET-6 Dana Farber Cancer Research Institute The US Tumor Brd4 2021/12/8
DCBD-005 Nanchang University China Tumor Brd4 2022/5/18
FL-411 SCU (Sichuan University) China Mammary cancer Brd4 2022/1/5
GNE-0011 Genentech The US Tumor Brd4 2022/1/14
GS-6510 Gilead Sciences Inc The US HR (+) mammary cancer Brd4 2022/6/13
HH-3567 Shanghai Haihe Pharmaceutical Research Co., Ltd China Tumor Brd4 2022/1/5
III-7 China Pharmaceutical University China PAAD PARP1, Brd4 2022/4/26
KB02-JQ1 The Scripps Research Institute The US Tumor Brd4 2022/1/14
N-2817 Shanghai Institute of Materia Medica, Chinese Academy of Sciences China Tumor Brd4 2022/1/5
NEO-1132 Epigenetix; Neomed Institute AL, DLBC, PRAD PCAF, Brd4 2022/1/14
NEO-2734 Epigenetix; Neomed Institute AL, DLBC, PRAD PCAF, Brd4 2022/1/14
PH-894 The US Solid tumor Brd4 2022/2/8
PLX-3618 Plexium Inc The US CRPC Brd4 2022/6/17
RXI-762 Phio Pharmaceuticals Corp The US Tumor TIGIT, Brd4; PD-1 2022/6/13
RXI-894 Phio Pharmaceuticals Corp The US Tumor TIGIT, Brd4, PD-1 2022/6/13
SRX-3177 Signalrx Pharmaceuticals Inc The US Tumor CDK4, CDK6, PI3Kα, Brd4 2021/12/7
SRX-3225 Signalrx Pharmaceuticals The US Tumor ClassI PI3K, BRD4, HDAC6 2022/3/2
SRX-3254 Signalrx Pharmaceuticals The US Tumor Brd4 2022/1/14
SRX-3262 Signalrx Pharmaceuticals The US Lymphoma mantle cell Brd4, BTK 2022/5/18
WWL-0245 SouthWest JiaoTong University China PRAD Brd4 2022/1/10
YLT-LL-11 The Affiliated Hospital of Southwest Medical University China DLBC Brd4 2022/1/10
YM-458 Cancer Prevention and Control Center, Sun Yat-sen University China Tumor EZH2, Brd4 2022/5/24
ZBC-260 Huashan Hospital affiliated to Fudan University China Pituitary tumor Brd4 2022/1/5
ZXH-3-26 Dana Farber Cancer Research Institute The US Tumor Brd4 2022/1/14
CPI-203 Constellation Tumor Brd4 2022/1/14
表 2 Brd4 抑制剂的临床试验进展 Table 2 Advances in clinical trials of Brd4 inhibitors
Medicines Major R&D institutions/sponsors Countries Main indications Targets Highest R&D status Published results Start date Last updated date
ABBV-744 Abbvie Russia; Spain; Korea; PRAD; MF Brd2/3/4 PhaseⅠ 2018/3/16 2022/1/14
Atezolizumab; RG-6146 Hoffmann-La Roche Australia; Canada; Danish OC; TNBC Brd2/3/4; PD-L1 PhaseⅠ Terminated 2017/11/8 2020/11/6
AZD-5153 AstraZeneca The US; Canada LBL; OC; PRAD Brd4 PhaseⅠ positive 2017/6/30 2022/1/14
Birabresib Mitsubishi Tanabe Pharma Corp GBMLGG Brd2/3/4 PhaseⅡ Phase I, positive 2012/12/14 2022/1/14
Birabresib; Azacitidine Oncoethix GmbH AML Brd2/3/4; DNMT1 PhaseⅠ/Ⅱ 2015/1/1 2016/9/1
Daratumumab; RG-6146 Hoffmann-La Roche Australia; The UK; The US MM Brd2/3/4; CD38 PhaseⅠ 2017/6/26 2020/2/7
INCB-54329 Incyte Corp The US Hematological system neoplas ms Brd2/3/4 PhaseⅠ 2015/4/14 2022/1/14
Mive bresib Abbvie South Africa; Korea; The US Hematological system neoplas ms; MF Bet; Brd4 PhaseⅠ 2022/1/14
Mivebresib; Ruxolitinib; Phosphate; Navitoclax AbbVie South Africa; Korea; The US MF BCL2; Brd4; Bet; JAK2/1 PhaseⅠ 2021/3/17 2022/4/12
Mivebresib; Venetoclax AbbVie The US MM; NHL; SCLC; NSCLC; AML; PRAD; BC BCL2; Brd4; Bet; PhaseⅠ positive 2015/4/14 2019/11/29
Olaparib; PLX-2853; AbirateroneAcetate; Deltacortisone Opna-IO LLC The UK; The US PRAD PARP1/2/3; GR; Brd4; CYP17A1 PhaseⅠ/Ⅱ 2020/9/21 2022/4/12
Pelabresib Constellation Netherlands. Poland; Korea MF Brd4 Phase Ⅲ 2013/9/10 2022/1/17
Pelabresib; Ruxolitinib; Phosphate Constellation Pharmac euticals Australia; Austria; Belgium MF Brd4; JAK2/1 Phase Ⅲ 2020/11/19 2022/6/3
Pelabresib; Ruxolitinib; Phosphate Constellation Pharmac euticals Belgium; Canada; The French MM; MF; MDS; AML Brd4; JAK2/1 PhaseⅠ/Ⅱ positive 2014/7/29 2022/5/18
PLX -2853 Opna-IO LLC NHL; OC; SCLC; DLBC; UVM Brd4 PhaseⅠ/Ⅱ positive 2017/9/12 2022/4/14
PLX-2853; Carboplatin Opna-IO LLC Canada; The US OC;The female repr oductive system cancer Brd4 PhaseⅠ/Ⅱ 2020/8/11 2022/4/12
PLX-51107; Azacitidine M.D. Anderson Cancer Center The US MM; MDS; AML MYC; Brd4; DNMT1 PhaseⅠ 2019/9/9 2020/3/23
RG-6146 Hoffmann-La Roche Spain; The UK; The US Solid tumor; AML; MDS Brd4 Terminated 2013/10/16 2022/3/29
Rituximab; Venetoclax; RG-6146 Hoffmann-La Roche Australia; Denmark; Spain DLBC Brd2/3/4; BCL2; Bet; CD20 PhaseⅠ 2017/8/28 2022/1/24
RNK-05047 Ranok Therapeutics (HK) Co., Limited The US LBL; Solid tumor Brd4 PhaseⅠ 2022/1/25
Ruxolitinib; Phosphate; ABBV-744; Navitoclax AbbVie Argentina; Australia; Brazil MF BCL2; Brd2/3/4; JAK2/1 PhaseⅠ 2020/11/11 2022/6/6
4.1 Brd4小分子抑制剂

Brd4抑制剂通过抑制Brd4与SEs结合,加速SEs与靶向启动子的信号转导,抑制肿瘤细胞癌基因的表达,促进肿瘤细胞死亡[5]。Brd4抑制剂一般分为两类:单价抑制剂和二价抑制剂。单价抑制剂能与BD1或BD2结合,二价抑制剂能同时与BD1和BD2结合。

单价Brd4抑制剂的研究十分广泛,根据化学结构的差异主要分为8类:三唑并氮杂卓衍类、异恶唑衍类、吡啶衍类、四氢喹啉衍类、三唑并吡嗪衍类、4-酰基吡咯衍类、2-噻唑烷酮衍类和其他。其中,前3类Brd4抑制剂的研究较深入。三唑并氮杂卓衍类的JQ1是首个被开发的Brd4抑制剂,JQ1在甲基三唑基团和Asn140之间形成氢键,完全占据Brd4乙酰化赖氨酸的结合位点;JQ1是BD1选择性抑制剂,IC50为77 nmol/L[43]。异恶唑衍类的Brd4抑制剂包括I-BET151、PLX51107、CPI-0610等,其中研究最多的是I-BET151,其异恶唑的氧原子与Asn140形成氢键,2-甲基吡啶与Brd4 Trp81、Pro82和Phe83构成的疏水区(WPF)形成范德华力。I-BET151能抑制Brd2/3/4,IC50分别为500、250和790 nmol/L。Ozer等[44]发现,PLX51107在不同浓度时,对BD1或BD2的抑制有不同选择,BD1的Kd分别为1.6、2.1、1.7和5.0 nmol,BD2的Kd分别为5.9、6.2、6.1和120.0 nmol。Albrecht等[45]研发了BD1选择性抑制剂CPI-0610,IC50为39 nmol/L。吡啶酮类的Brd4抑制剂ABBV-075,是一种Brd2/4/T抑制剂,它与Brd4的Asn残基相互作用从而抑制Brd4,进而抑制肿瘤细胞增殖,EC50为13 nmol/L[46]。目前,二价Brd4抑制剂的研究还较少,Rhyasen等[47]发现AZD5153是一种口服有效的Bet/Brd4选择性抑制剂,针对完整Brd4其IC50为5 nmol/L,而对Brd4-BD1其IC50高达1 600 nmol/L。

然而,由于许多Brd4抑制剂为泛BET抑制剂,并非仅仅靶向于Brd4,这会掩盖单个溴结构域的功能,存在脱靶风险。因此,开发特异性靶向Brd4的抑制剂,减少副作用的发生,成为未来研究的方向。

4.2 Brd4抑制剂与转录因子

Brd4抑制剂可通过阻断多种转录因子的激活,下调其表达,从而抑制多种肿瘤的发生发展。在血液系统恶性肿瘤中,Brd4抑制剂可抑制Brd4介导的p53募集,促使细胞周期停滞和凋亡。Brd4抑制剂JQ1、I-BETs可抑制c-myc的表达和激活,促进c-myc降解,显著抑制肿瘤的生长和转移[48-49]。JQ1还通过抑制Brd4-Myc-CD274通路,抑制免疫检查点CD274的表达,从而抑制该通路介导的肿瘤免疫逃逸[50]。CD274编码细胞程序性死亡-配体1 (programmed death-ligand 1, PD-L1),在三阴性乳腺癌中使用JQ1既可降低PD-L1的表达水平,又有助于缓解免疫抑制[15]。JQ1还可以干扰乙酰化RelA和Brd4之间的相互作用,抑制Nf-κb活化和Nf-κb依赖性靶基因的表达,从而对Nf-κb依赖性肿瘤起到靶向治疗的作用,比如血液系统恶性肿瘤[51]

PLX51107在慢性淋巴细胞白血病中,通过靶向Brd4调控的miR21、miR155、IL4R、IL21R和TCL1A表达,进而下调有关肿瘤细胞生存的信号通路[45]。此外,在黑色素瘤中,PLX51107可降低PD-L1的表达水平,同时调节免疫细胞和肿瘤微环境[52]。CPI-0610在骨髓纤维化患者中,通过抑制Brd4降低Nf-κb的表达水平,从而抑制IL-8等促炎细胞因子的产生。AZD5153在甲状腺癌中,可显著下调Brd4调控的c-myc、Bcl-2和cyclin D1,激活肿瘤细胞caspase-3/-9依赖性凋亡[53]

多种Brd4抑制剂已处于临床前研究或临床试验阶段。在大多数临床前研究中,Brd4抑制剂均表现出很强的抗肿瘤作用。但在临床试验中,仍有不少肿瘤患者会出现耐药,这是未来研究需要解决的难题。

4.3 Brd4抑制剂的药物联合

近年来,除了单独应用外,Brd4抑制剂与其他药物联用的抗肿瘤策略逐渐成为研究热点。Guo等[54]发现,联合罗米地辛时,JQ1可解除Nf-κb对生长阻滞和DNA损伤诱导蛋白45g (growth arrest and DNA damage inducible protein 45g, GADD45g)的抑制,两者联用可双重激活GADD45g,在MLL-AF9+和FLT3-ITD+型AML中发挥协同抗肿瘤作用。除了协同抗肿瘤的作用外,Brd4抑制剂与某些药物联合还可以弥补药物的弊端。虽然,端粒酶抑制剂在抑制肿瘤生长和转移中有不错的效果,但其缺乏作用特异性,且常由于毒性高导致临床试验失败[55]。如端粒酶抑制剂卡非佐米单独使用时,肿瘤细胞内核因子E2相关因子2蛋白(NF-E2-related factor 2, Nrf2)表达被激活,从而抑制内质网应激,从而引起肿瘤细胞耐药;而将卡非佐米联合Brd2/3/4抑制剂比拉瑞赛(MK-8628/OTX015)应用则可以有效克服肿瘤耐药。Beti对Brd4的抑制可能提示了端粒酶抑制剂的另一种选择,即选择性抑制,这为临床试验提供了一个新的思路。此外,在肿瘤细胞中,DDR的功能失活会增加基因组的不稳定性和突变负荷,同时也使细胞对标准的基因毒性治疗(DNA损伤治疗)敏感。由于Brd4在介导细胞复制的信号传导中起关键作用,由此推测,可以尝试将Brd4抑制剂与其他DDR靶向药物联合,以治疗DDR依赖性的肿瘤[56]

单独使用Brd4抑制剂,或将其与其他抗肿瘤药物联合应用能够为肿瘤的治疗提供新的策略和方向。

5 问题与展望

Brd4是一种表观遗传调控因子和转录辅因子。越来越多的证据表明,Brd4能够调节和稳定基因的功能,除了调节多个转录因子的表达,还在DNA损伤修复和端粒维持中发挥重要作用。Brd4与多种恶性肿瘤的发生发展密切相关,参与肿瘤细胞增殖调控、染色质的结合与重组、炎症反应、氧化应激等过程,是肿瘤治疗的重要靶标之一。

临床试验中,实体肿瘤患者对部分Brd4抑制剂产生药物抵抗的现象尤为突出[57]。因此,深入研究Brd4在肿瘤中的具体作用机制,不仅对耐药机制的研究至关重要,也为新药物的研发提供新的思路。目前,突破Brd4抑制剂肿瘤耐药性主要有两种研究方向:研发针对肿瘤耐药机制的“抗耐药性药物”,使患者重新对原药物敏感[58];高效的药物联合方案也可以减少耐药的发生,其机制在于联合的药物可通过不同的分子机制对肿瘤细胞发挥多重杀伤作用[59-60]。此外,联合用药方案还可能减少单一药物使用时造成的毒性叠加。

鉴于Brd4抑制剂与其靶蛋白的可逆性结合,同时,部分Brd4抑制剂的使用可导致细胞内积累过多的Brd4蛋白,因此,为了确保药物的治疗效果,通常需要逐步加大Brd4抑制剂的用量。针对这一问题,Zhang等[61]开发了新型的蛋白水解靶向嵌合体,该嵌合体已成功实现了Brd4的功能抑制,并通过泛素化途径实现Brd4的高效降解。此外,对Brd4抑制剂进行优化,达到准确靶向抑制BD1或BD2的作用,将有利于阐明Brd4蛋白各溴结构域行使的具体生物学功能[62]

综上所述,对Brd4蛋白进行更深入研究的同时,持续进行药物的研发、试验和完善将有助于改善肿瘤患者的预后。我们相信,随着研究的不断深入,这些问题终将被解决,Brd4抑制剂将为肿瘤的靶向治疗带来新的曙光。

参考文献
[1]
邱海波, 曹素梅, 徐瑞华. 基于2020年全球流行病学数据分析中国癌症发病率、死亡率和负担的时间趋势及与美国和英国数据的比较. 癌症, 2022, 41(4): 165-177.
QIU HB, CAO SM, XU RH. Analysis of the time trend of cancer incidence, mortality and burden in China based on the global epidemiological data in 2020 and comparison with the data of the United States and Britain. Chinese Journal of Cancer, 2022, 41(4): 165-177 (in Chinese).
[2]
AYGUN D, BJORNSSON HT. Clinical epigenetics: a primer for the practitioner. Developmental Medicine and Child Neurology, 2020, 62(2): 192-200. DOI:10.1111/dmcn.14398
[3]
ILANGO S, PAITAL B, JAYACHANDRAN P, PADMA P, NIRMALADEVI R. Epigenetic alterations in cancer. Frontiers in Bioscience: Landmark Edition, 2020, 25(6): 1058-1109. DOI:10.2741/4847
[4]
STATHIS A, BERTONI F. BET proteins as targets for anticancer treatment. Cancer Discovery, 2018, 8(1): 24-36. DOI:10.1158/2159-8290.CD-17-0605
[5]
DONATI B, LORENZINI E, CIARROCCHI A. BRD4 and cancer: going beyond transcriptional regulation. Molecular Cancer, 2018, 17(1): 164. DOI:10.1186/s12943-018-0915-9
[6]
VOLLMUTH F, BLANKENFELDT W, GEYER M. Structures of the dual bromodomains of the P-TEFb-activating protein Brd4 at atomic resolution. Journal of Biological Chemistry, 2009, 284(52): 36547-36556. DOI:10.1074/jbc.M109.033712
[7]
FERRI E, PETOSA C, MCKENNA CE. Bromodomains: structure, function and pharmacology of inhibition. Biochemical Pharmacology, 2016, 106: 1-18. DOI:10.1016/j.bcp.2015.12.005
[8]
CHIANG CM. Brd4 engagement from chromatin targeting to transcriptional regulation: selective contact with acetylated histone H3 and H4. F1000 Biology Reports, 2009, 1: 98.
[9]
ROE JS, VAKOC CR. The essential transcriptional function of BRD4 in acute myeloid leukemia. Cold Spring Harbor Symposia on Quantitative Biology, 2016, 81: 61-66. DOI:10.1101/sqb.2016.81.031039
[10]
ZHANG XH, LEE HC, SHIRAZI F, BALADANDAYUTHAPANI V, LIN H, KUIATSE I, WANG H, JONES RJ, BERKOVA Z, SINGH RK, LU J, QIAN YM, RAINA K, COLEMAN KG, CREWS CM, LI BZ, WANG HH, HAILEMICHAEL Y, THOMAS SK, WANG ZQ, et al. Protein targeting chimeric molecules specific for bromodomain and extra-terminal motif family proteins are active against pre-clinical models of multiple myeloma. Leukemia, 2018, 32(10): 2224-2239. DOI:10.1038/s41375-018-0044-x
[11]
ALI A, SHAFARIN J, ABU JABAL R, ALJABI N, HAMAD M, SUALEH MUHAMMAD J, UNNIKANNAN H, HAMAD M. Ferritin heavy chain (FTH1) exerts significant antigrowth effects in breast cancer cells by inhibiting the expression of c-MYC. FEBS Open Bio, 2021, 11(11): 3101-3114. DOI:10.1002/2211-5463.13303
[12]
WU SY, LEE CF, LAI HT, YU CT, LEE JE, ZUO H, TSAI SY, TSAI MJ, GE K, WAN YH, CHIANG CM. Opposing functions of BRD4 isoforms in breast cancer. Molecular Cell, 2020, 78(6): 1114-1132. e10. DOI:10.1016/j.molcel.2020.04.034
[13]
SHU SK, LIN CY, HE HH, WITWICKI RM, TABASSUM DP, ROBERTS JM, JANISZEWSKA M, HUH SJ, LIANG Y, RYAN J, DOHERTY E, MOHAMMED H, GUO H, STOVER DG, EKRAM MB, PELUFFO G, BROWN J, DSANTOS C, KROP IE, DILLON D. Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature, 2016, 529(7586): 413-417. DOI:10.1038/nature16508
[14]
NOBLEJAS LÓPEZ MDM, NIETO-JIMÉNEZ C, GALÁN-MOYA EM, BURGOS M, MONTERO JC, GÓMEZ-JUÁREZ M, PANDIELLA A, OCAÑA A. Activity of BET-proteolysis targeting chimeric (PROTAC) compounds in triple negative breast cancer. Annals of Oncology, 2019, 30: v101.
[15]
JING X, SHAO S, ZHANG YJ, LUO AQ, ZHAO L, ZHANG LF, GU SZ, ZHAO XH. BRD4 inhibition suppresses PD-L1 expression in triple-negative breast cancer. Experimental Cell Research, 2020, 392(2): 112034. DOI:10.1016/j.yexcr.2020.112034
[16]
LOPES-RAMOS C, CHEN CY, KUIJJER M, PAULSON J, SONAWANE A, FAGNY M, PLATIG J, GLASS K, QUACKENBUSH J, DEMEO D. Sex differences in gene expression and regulatory networks across 29 human tissues. Cell Reports, 2020, 31(12): 107795. DOI:10.1016/j.celrep.2020.107795
[17]
KFOURY N, QI ZT, PRAGER BC, WILKINSON MN, BROESTL L, BERRETT KC, MOUDGIL A, SANKARARAMAN S, CHEN XH, GERTZ J, RICH JN, MITRA RD, RUBIN JB. Brd4-bound enhancers drive cell-intrinsic sex differences in glioblastoma. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(16): e2017148118. DOI:10.1073/pnas.2017148118
[18]
SIEGEL RL, MILLER KD, JEMAL A. Cancer statistics, 2019. CA: A Cancer Journal for Clinicians, 2019, 69(1): 7-34. DOI:10.3322/caac.21551
[19]
TAN YF, WANG M, CHEN ZY, WANG L, LIU XH. Inhibition of BRD4 prevents proliferation and epithelial-mesenchymal transition in renal cell carcinoma via NLRP3 inflammasome-induced pyroptosis. Cell Death & Disease, 2020, 11: 239.
[20]
KANAPATHIPILLAI M. Treating p53 mutant aggregation-associated cancer. Cancers, 2018, 10(6): E154. DOI:10.3390/cancers10060154
[21]
STEWART HJS, HORNE GA, BASTOW S, CHEVASSUT TJT. BRD4 associates with p53 in DNMT3A-mutated leukemia cells and is implicated in apoptosis by the bromodomain inhibitor JQ1. Cancer Medicine, 2013, 2(6): 826-835. DOI:10.1002/cam4.146
[22]
WU SY, LEE AY, LAI HT, ZHANG H, CHIANG CM. Phospho switch triggers Brd4 chromatin binding and activator recruitment for gene-specific targeting. Molecular Cell, 2013, 49(5): 843-857. DOI:10.1016/j.molcel.2012.12.006
[23]
DONATO E, CROCI O, SABÒ A, MULLER H, MORELLI MJ, PELIZZOLA M, CAMPANER S. Compensatory RNA polymerase 2 loading determines the efficacy and transcriptional selectivity of JQ1 in Myc-driven tumors. Leukemia, 2017, 31(2): 479-490. DOI:10.1038/leu.2016.182
[24]
ABRUZZESE MP, BILOTTA MT, FIONDA C, ZINGONI A, SORIANI A, VULPIS E, BORRELLI C, ZITTI B, PETRUCCI MT, RICCIARDI MR, MOLFETTA R, PAOLINI R, SANTONI A, CIPPITELLI M. Inhibition of bromodomain and extra-terminal (BET) proteins increases NKG2D ligand MICA expression and sensitivity to NK cell-mediated cytotoxicity in multiple myeloma cells: role of cMYC-IRF4-miR-125b interplay. Journal of Hematology & Oncology, 2016, 9(1): 134.
[25]
JAENICKE LA, VON EYSS B, CARSTENSEN A, WOLF E, XU WS, GREIFENBERG AK, GEYER M, EILERS M, POPOV N. Ubiquitin-dependent turnover of MYC antagonizes MYC/PAF1C complex accumulation to drive transcriptional elongation. Molecular Cell, 2016, 61(1): 54-67. DOI:10.1016/j.molcel.2015.11.007
[26]
ALI A, SHAFARIN J, UNNIKANNAN H, AL-JABI N, JABAL RA, BAJBOUJ K, MUHAMMAD JS, HAMAD M. Co-targeting BET bromodomain BRD4 and RAC1 suppresses growth, stemness and tumorigenesis by disrupting the c-MYC-G9a-FTH1axis and downregulating HDAC1 in molecular subtypes of breast cancer. International Journal of Biological Sciences, 2021, 17(15): 4474-4492. DOI:10.7150/ijbs.62236
[27]
YANG GJ, SONG YQ, WANG WH, HAN QB, MA DL, LEUNG CH. An optimized BRD4 inhibitor effectively eliminates NF-κB-driven triple-negative breast cancer cells. Bioorganic Chemistry, 2021, 114: 105158. DOI:10.1016/j.bioorg.2021.105158
[28]
ZOU Z, HUANG B, WU X, ZHANG H, QI J, BRADNER J, NAIR S, CHEN LF. Brd4 maintains constitutively active NF-κB in cancer cells by binding to acetylated RelA. Oncogene, 2014, 33(18): 2395-2404. DOI:10.1038/onc.2013.179
[29]
TIAN B, YANG J, ZHAO YX, IVANCIUC T, SUN H, GAROFALO RP, BRASIER AR. BRD4 couples NF-κB/RelA with airway inflammation and the IRF-RIG-I amplification loop in respiratory syncytial virus infection. Journal of Virology, 2017, 91(6): e00007-e00017.
[30]
YUAN XT, DAI MK, XU DW. TERT promoter mutations and GABP transcription factors in carcinogenesis: more foes than friends. Cancer Letters, 2020, 493: 1-9. DOI:10.1016/j.canlet.2020.07.003
[31]
AKıNCıLAR SC, KHATTAR E, BOON PLS, UNAL B, FULLWOOD MJ, TERGAONKAR V. Long-range chromatin interactions drive mutant TERT promoter activation. Cancer Discovery, 2016, 6(11): 1276-1291. DOI:10.1158/2159-8290.CD-16-0177
[32]
WEEDEN CE, ASSELIN-LABAT ML. Mechanisms of DNA damage repair in adult stem cells and implications for cancer formation. Biochimica et Biophysica Acta: BBA-Molecular Basis of Disease, 2018, 1864(1): 89-101. DOI:10.1016/j.bbadis.2017.10.015
[33]
YOSHIDA K, FUJITA M. DNA damage responses that enhance resilience to replication stress. Cellular and Molecular Life Sciences, 2021, 78(21/22): 6763-6773.
[34]
WILSON DM 3RD, DEACON AM, DUNCTON MAJ, PELLICENA P, GEORGIADIS MM, YEH AP, ARVAI AS, MOIANI D, TAINER JA, DAS D. Fragment- and structure-based drug discovery for developing therapeutic agents targeting the DNA damage response. Progress in Biophysics and Molecular Biology, 2021, 163: 130-142. DOI:10.1016/j.pbiomolbio.2020.10.005
[35]
WANG J, WANG Y, MEI H, YIN ZY, GENG YY, ZHANG T, WU G, LIN ZY. The BET bromodomain inhibitor JQ1 radiosensitizes non-small cell lung cancer cells by upregulating p21. Cancer Letters, 2017, 391: 141-151. DOI:10.1016/j.canlet.2017.01.031
[36]
PERKHOFER L, GOUT J, ROGER E, KUDE DE ALMEIDA F, BAPTISTA SIMÕES C, WIESMÜLLER L, SEUFFERLEIN T, KLEGER A. DNA damage repair as a target in pancreatic cancer: state-of-the-art and future perspectives. Gut, 2021, 70(3): 606-617. DOI:10.1136/gutjnl-2019-319984
[37]
LAM FC, KONG YW, HUANG QY, HAN TLV, MAFFA AD, KASPER EM, YAFFE MB. BRD4 prevents the accumulation of R-loops and protects against transcription-replication collision events and DNA damage. Nature Communications, 2020, 11: 4083. DOI:10.1038/s41467-020-17503-y
[38]
BEREI J, ECKBURG A, MILIAVSKI E, ANDERSON AD, MILLER RJ, DEIN J, GIUFFRE AM, TANG DA, DEB S, RACHERLA KS, PATEL M, VELA MS, PURI N. Potential telomere-related pharmacological targets. Current Topics in Medicinal Chemistry, 2020, 20(6): 458-484. DOI:10.2174/1568026620666200109114339
[39]
SHAY JW, WRIGHT WE. Telomeres and telomerase: three decades of progress. Nature Reviews Genetics, 2019, 20(5): 299-309. DOI:10.1038/s41576-019-0099-1
[40]
LANSDORP PM. Telomeres, aging, and cancer: the big picture. Blood, 2022, 139(6): 813-821. DOI:10.1182/blood.2021014299
[41]
VERTECCHI E, RIZZO A, SALVATI E. Telomere targeting approaches in cancer: beyond length maintenance. International Journal of Molecular Sciences, 2022, 23(7): 3784. DOI:10.3390/ijms23073784
[42]
WANG S, PIKE AM, LEE SS, STRONG MA, CONNELLY CJ, GREIDER CW. BRD4 inhibitors block telomere elongation. Nucleic Acids Research, 2017, 45(14): 8403-8410. DOI:10.1093/nar/gkx561
[43]
DUAN YC, GUAN YY, QIN WP, ZHAI XY, YU B, LIU HM. Targeting Brd4 for cancer therapy: inhibitors and degraders. Medchemcomm, 2018, 9(11): 1779-1802. DOI:10.1039/C8MD00198G
[44]
OZER HG, EL-GAMAL D, POWELL B, HING ZA, BLACHLY JS, HARRINGTON B, MITCHELL S, GRIESELHUBER NR, WILLIAMS K, LAI TH, ALINARI L, BAIOCCHI RA, BRINTON L, BASKIN E, CANNON M, BEAVER L, GOETTL VM, LUCAS DM, WOYACH JA, SAMPATH D, et al. BRD4 profiling identifies critical chronic lymphocytic leukemia oncogenic circuits and reveals sensitivity to PLX51107, a novel structurally distinct BET inhibitor. Cancer Discovery, 2018, 8(4): 458-477. DOI:10.1158/2159-8290.CD-17-0902
[45]
ALBRECHT BK, GEHLING VS, HEWITT MC, VASWANI RG, CÔTÉ A, LEBLANC Y, NASVESCHUK CG, BELLON S, BERGERON L, CAMPBELL R, CANTONE N, COOPER MR, CUMMINGS RT, JAYARAM H, JOSHI S, MERTZ JA, NEISS A, NORMANT E, O'MEARA M, PARDO E, et al. Identification of a benzoisoxazoloazepine inhibitor (CPI-0610) of the bromodomain and extra-terminal (BET) family as a candidate for human clinical trials. Journal of Medicinal Chemistry, 2016, 59(4): 1330-1339. DOI:10.1021/acs.jmedchem.5b01882
[46]
ALBERT DH, GOODWIN NC, DAVIES AM, JENNY R, GEROLD F, MICHAEL B, DORRITIE KA, MARIA M, REGINA G, JONAS BA, GAUTAM B, IBRAHIM A, RIZZIERI DA, OLATOYOSI O, THOMAS P, SANJANA S, RELJA P, SHEN YU, MCDANIEL KF, KATI WM, et al. Co-clinical modeling of the activity of the BET inhibitor mivebresib (ABBV-075) in AML. In Vivo: Athens, Greece, 2022, 36(4): 1615-1627.
[47]
RHYASEN GW, HATTERSLEY MM, YAO Y, DULAK A, WANG WX, PETTERUTI P, DALE IL, BOIKO S, CHEUNG T, ZHANG JW, WEN SH, CASTRIOTTA L, LAWSON D, COLLINS M, BAO L, AHDESMAKI MJ, WALKER G, OʼCONNOR G, YEH TC, RABOW AA, et al. AZD5153: a novel bivalent BET bromodomain inhibitor highly active against hematologic malignancies. Molecular Cancer Therapeutics, 2016, 15(11): 2563-2574. DOI:10.1158/1535-7163.MCT-16-0141
[48]
DELMORE JE, ISSA GC, LEMIEUX ME, RAHL PB, SHI JW, JACOBS HM, KASTRITIS E, GILPATRICK T, PARANAL RM, QI J, CHESI M, SCHINZEL AC, MCKEOWN MR, HEFFERNAN TP, VAKOC CR, BERGSAGEL PL, GHOBRIAL IM, RICHARDSON PG, YOUNG RA, HAHN WC, et al. BET bromodomain inhibition as a therapeutic strategy to target c-myc. Cell, 2011, 146(6): 904-917. DOI:10.1016/j.cell.2011.08.017
[49]
RAHL PB, LIN CY, SEILA AC, FLYNN RA, MCCUINE S, BURGE CB, SHARP PA, YOUNG RA. C-myc regulates transcriptional pause release. Cell, 2010, 141(3): 432-445. DOI:10.1016/j.cell.2010.03.030
[50]
TIAN Y, WANG XF, ZHAO S, LIAO X, YOUNIS MR, WANG SJ, ZHANG CN, LU GM. JQ1-loaded polydopamine nanoplatform inhibits c-MYC/programmed cell death ligand 1 to enhance photothermal therapy for triple-negative breast cancer. ACS Applied Materials & Interfaces, 2019, 11(50): 46626-46636.
[51]
HAJMIRZA A, EMADALI A, GAUTHIER A, CASASNOVAS O, GRESSIN R, CALLANAN MB. BET family protein BRD4: an emerging actor in NFκB signaling in inflammation and cancer. Biomedicines, 2018, 6(1): E16. DOI:10.3390/biomedicines6010016
[52]
ERKES DA, FIELD CO, CAPPARELLI C, TIAGO M, PURWIN TJ, CHERVONEVA I, BERGER AC, HARTSOUGH EJ, VILLANUEVA J, APLIN AE. The next-generation BET inhibitor, PLX51107, delays melanoma growth in a CD8-mediated manner. Pigment Cell & Melanoma Research, 2019, 32(5): 687-696.
[53]
XU K, CHEN DX, QIAN D, ZHANG SH, ZHANG Y, GUO S, MA ZQ, WANG S. AZD5153, a novel BRD4 inhibitor, suppresses human thyroid carcinoma cell growth in vitro and in vivo. Biochemical and Biophysical Research Communications, 2018, 499(3): 531-537. DOI:10.1016/j.bbrc.2018.03.184
[54]
GUO D, ZHAO YY, WANG N, YOU N, ZHU WQ, ZHANG PW, REN Q, YIN J, CHENG T, MA XT. GADD45g acts as a novel tumor suppressor, and its activation suggests new combination regimens for the treatment of AML. Blood, 2021, 138(6): 464-479. DOI:10.1182/blood.2020008229
[55]
CHIAPPORI AA, KOLEVSKA T, SPIGEL DR, HAGER S, RARICK M, GADGEEL S, BLAIS N, VON PAWEL J, HART L, RECK M, BASSETT E, BURINGTON B, SCHILLER JH. A randomized phase II study of the telomerase inhibitor imetelstat as maintenance therapy for advanced non-small-cell lung cancer. Annals of Oncology, 2015, 26(2): 354-362. DOI:10.1093/annonc/mdu550
[56]
GATZKA MV. Targeted tumor therapy remixed-an update on the use of small-molecule drugs in combination therapies. Cancers: Basel, 2018, 10(6): E155. DOI:10.3390/cancers10060155
[57]
WANG WY, TANG YN, XIAO Q, LEE WC, CHENG B, NIU ZT, OGUZ G, FENG M, LEE PL, LI BJ, YANG ZH, CHEN YF, LAN P, WU XJ, YU Q. Stromal induction of BRD4 phosphorylation results in chromatin remodeling and BET inhibitor resistance in colorectal cancer. Nature Communications, 2021, 12: 4441. DOI:10.1038/s41467-021-24687-4
[58]
LIU C, GEN Y, TANIMOTO K, MURAMATSU T, INOUE J, INAZAWA J. Concurrent targeting of MAP3K3 and BRD4 by miR-3140-3p overcomes acquired resistance to BET inhibitors in neuroblastoma cells. Molecular Therapy-Nucleic Acids, 2021, 25: 83-92. DOI:10.1016/j.omtn.2021.05.001
[59]
ZHANG W, GE H, JIANG Y, HUANG R, WU YP, WANG DM, GUO SS, LI S, WANG YL, JIANG HB, CHENG J. Combinational therapeutic targeting of BRD4 and CDK7 synergistically induces anticancer effects in head and neck squamous cell carcinoma. Cancer Letters, 2020, 469: 510-523. DOI:10.1016/j.canlet.2019.11.027
[60]
ZHANG P, LI RD, XIAO H, LIU WZ, ZENG XY, XIE GC, YANG WC, SHI L, YIN YP, TAO KX. BRD4 inhibitor AZD5153 suppresses the proliferation of colorectal cancer cells and sensitizes the anticancer effect of PARP inhibitor. International Journal of Biological Sciences, 2019, 15(9): 1942-1954. DOI:10.7150/ijbs.34162
[61]
ZHANG FQ, WU ZW, CHEN P, ZHANG J, WANG T, ZHOU JP, ZHANG HB. Discovery of a new class of PROTAC BRD4 degraders based on a dihydroquinazolinone derivative and lenalidomide/pomalidomide. Bioorganic & Medicinal Chemistry, 2020, 28(1): 115228.
[62]
WANG AR, LI LL, LI MY, WANG SJ, WANG C. Case report: 7-ethyl-10-hydroxycamptothecin, a DNA topoisomerase I inhibitor, performs BRD4 inhibitory activity and inhibits human leukemic cell growth. Frontiers in Pharmacology, 2021, 12: 664176. DOI:10.3389/fphar.2021.664176