生物工程学报  2022, Vol. 38 Issue (9): 3329-3343
http://dx.doi.org/10.13345/j.cjb.210925
中国科学院微生物研究所、中国微生物学会主办
0

文章信息

刘玲, 焦鹏涛, 王萌, 李晶, 孙蕾, 范文辉, 刘文军
LIU Ling, JIAO Pengtao, WANG Meng, LI Jing, SUN Lei, FAN Wenhui, LIU Wenjun
鸡干扰素γ与白介素2对外周血中Th1细胞分化相关细胞因子的影响
Effects of chicken interferon-γ and interleukin-2 on cytokines related to Th1 cell differentiation in peripheral blood
生物工程学报, 2022, 38(9): 3329-3343
Chinese Journal of Biotechnology, 2022, 38(9): 3329-3343
10.13345/j.cjb.210925

文章历史

Received: December 15, 2021
Accepted: March 7, 2022
鸡干扰素γ与白介素2对外周血中Th1细胞分化相关细胞因子的影响
刘玲1,2 , 焦鹏涛2 , 王萌2,3 , 李晶2,3 , 孙蕾2,3 , 范文辉2 , 刘文军2,3     
1. 安徽大学 物质科学与信息技术研究院, 安徽 合肥 230601;
2. 中国科学院微生物研究所 病原微生物与免疫学重点实验室, 北京 100101;
3. 中国科学院大学, 北京 100049
摘要:为了探讨鸡干扰素γ (chicken interferon-γ, ChIFN-γ) 与白介素2 (chicken interleukin-2, ChIL-2) 对1型辅助性T细胞(type 1 helper T lymphocytes, Th1) 分化的影响,本研究原核表达、纯化了ChIFN-γ与ChIL-2,并以不同浓度刺激刀豆球蛋白A (concanavalin A, Con A) 活化的鸡外周血淋巴细胞,检测其对Th1细胞分化相关细胞因子表达的影响。结果表明,不同浓度的ChIFN-γ与ChIL-2均可上调Th1细胞分化相关细胞因子的转录水平,最佳刺激浓度分别为12.5 μg/mL和25.0 μg/mL。然后将ChIFN-γ和ChIL-2分别与H9N2灭活疫苗联用,以口服或肌肉注射方式免疫无特定病原体(specific pathogen free, SPF) 鸡,检测其对Th1细胞分化相关细胞因子表达的影响。结果表明,与单独使用H9N2疫苗相比,ChIFN-γ和ChIL-2均能显著上调H9N2疫苗诱导的Th1细胞分化相关细胞因子的转录水平,且肌肉注射的效果优于口服。本研究通过对Th1细胞分化相关细胞因子进行检测,从体外和体内水平证实了ChIFN-γ与ChIL-2能够增强ConA或H9N2灭活疫苗诱导的Th1细胞分化,为其作为疫苗佐剂使用提供了理论依据。
关键词鸡干扰素γ    鸡白介素2    Th1细胞分化    细胞因子    疫苗佐剂    
Effects of chicken interferon-γ and interleukin-2 on cytokines related to Th1 cell differentiation in peripheral blood
LIU Ling1,2 , JIAO Pengtao2 , WANG Meng2,3 , LI Jing2,3 , SUN Lei2,3 , FAN Wenhui2 , LIU Wenjun2,3     
1. Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China;
2. Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: This paper aims to explore the effects of chicken interferon-γ (ChIFN-γ) and interleukin-2 (ChIL-2) on type 1 helper (Th1) T lymphocyte differentiation. To be specific, ChIFN-γ and ChIL-2 were first expressed in Escherichia coli competent cells and then purified by Ni-NTA affinity chromatography. Different concentration of ChIFN-γ and ChIL-2 were employed to stimulate the lymphocytes in chicken peripheral blood which had been activated by concanavalin A (Con A), and the mRNA levels of cytokines related to Th1 cell differentiation were detected by real-time quantitative PCR (RT-qPCR). The results showed that both ChIFN-γ and ChIL-2 can significantly up-regulate mRNA levels of cytokines related to Th1 cell differentiation and the optimal concentration was 12.5 μg/mL and 25.0 μg/mL, respectively. In addition, specific-pathogen-free (SPF) chickens were immunized with ChIL-2 or ChIFN-γ together with H9N2 vaccine, or H9N2 vaccine alone by oral administration or intramuscular injection, respectively. The mRNA levels of cytokines related to Th1 cell differentiation were detected after immunization. The results showed that ChIFN-γ and ChIL-2 significantly up-regulated the mRNA levels of cytokines related to Th1 cell differentiation induced by H9N2 vaccine compared with H9N2 vaccine alone, and that the intramuscular injection was better than oral administration. In this study, we verified that ChIFN-γ and ChIL-2 can significantly enhance mRNA levels of cytokines related to Th1 cell differentiation induced by ConA or H9N2 vaccine in vitro and in vivo. The results of this study can lay a theoretical basis for using ChIFN-γ and ChIL-2 as vaccine adjuvants.
Keywords: chicken interferon-γ    chicken interleukin-2    Th1 cell differentiation    cytokines    vaccine adjuvant    

禽类疫病增多及疫苗免疫失败,给养禽业造成了严重的经济损失[1]。随着抗生素和抗病毒化学药品的广泛禁用,绿色高效、无副作用的生物制品已经成为疾病预防以及治疗的新型替代品[2]。细胞因子不仅可有效增强疫苗的免疫效果,还可决定免疫应答的类型及程度,并影响其他因子的表达与分泌,因此,其作为药物和免疫佐剂的应用也成为研究热点。

干扰素(interferon, IFN) 是细胞在特定刺激物如双链RNA (double-stranded RNA, dsRNA) 的刺激下分泌的一类具有抗病毒活性的分子量约为20 kDa的糖蛋白,由Isaacs和Lindenmann于1957年首次发现,具有抗病毒、抗肿瘤和免疫调节作用[3]。其中干扰素γ (interferon-gamma, IFN-γ) 是唯一的Ⅱ型干扰素,与Ⅰ型干扰素相比,虽然它的抗病毒作用较弱,但免疫调节作用较强,可协调多种抗病原微生物功能,在细胞免疫中发挥的作用不亚于Ⅰ型干扰素[4]。IFN-γ主要来源于活化的Th1细胞[5]、CD8+ T细胞[6]、自然杀伤细胞(natural killer cell, NK)[7]和抗原递呈细胞(antigen-presenting cell, APC)[8],它能激活巨噬细胞,使其上调主要组织相容性复合体Ⅱ (major histocompatibility complex Ⅱ, MHC Ⅱ) 的表达进而促进抗原处理与提呈[9],增加活性氧和一氧化氮合酶的产生,诱导Th0细胞向Th1细胞分化,在细胞免疫中发挥重要作用,具有潜在的疫苗佐剂优势[10]。白介素2 (interleukin-2, IL-2) 是一种Th1型细胞因子,主要由CD4+ T细胞和NK细胞产生[11],IL-2主要是对效应T淋巴细胞和调节性T淋巴细胞具有免疫调节作用[12]。IL-2的种属特异性较强,ChIL-2与哺乳动物IL-2的氨基酸序列同源性极低,但其体外诱导T细胞增殖的生物学活性与哺乳动物IL-2相似[13]。Th1细胞为炎性T细胞,主要分泌IFN-γ、肿瘤坏死因子α (tumor necrosis factor α, TNF-α)、IL-2等促炎因子,可以介导局部炎症有关的细胞免疫应答及迟发型超敏反应,主要在防御细胞内对病原体如病毒和细菌中发挥重要功能[14]

ChIFN-γ和ChIL-2是禽类天然的免疫调节因子,已有研究表明,ChIFN-γ和ChIL-2与疫苗联用,能显著增强疫苗的免疫效果,促进机体细胞免疫和体液免疫应答[15-17],但具体机制有待进一步明确。

活化的Th1细胞可分泌IFN-γ和IL-2等细胞因子,激活免疫细胞(如巨噬细胞、B细胞和CD8+细胞毒性T淋巴细胞),在细胞免疫中发挥着重要的作用。为了探究ChIFN-γ和ChIL-2作为疫苗佐剂对细胞免疫的促进作用是否通过对Th1细胞调节来实现的,本研究利用实时荧光定量聚合酶链式反应(real-time fluorescence quantification polymerase chain reaction, RT-qPCR) 方法,对ChIFN-γ和ChIL-2作为佐剂与H9N2灭活疫苗联合使用诱导的Th1细胞分化相关细胞因子转录水平进行检测,以期阐明其调节细胞免疫应答的机制,为其作为疫苗免疫佐剂在临床上的应用提供理论依据。

1 材料与方法 1.1 质粒、毒株和细胞等实验材料

pET32a-ChIFN-γ与pET32a-ChIL-2质粒、大肠杆菌BL21、水疱性口炎病毒(vesicular stomatitis virus, VSV)、鸡成纤维细胞系(DF-1) 由本实验室保存;4周龄的SPF鸡购于北京勃林格殷格翰维通生物技术有限公司;H9N2禽流感病毒灭活疫苗由北京信得威特科技有限公司提供。

1.2 主要试剂和仪器

Trizol试剂购自赛默飞世尔科技公司;逆转录酶M-MLV、RNA酶抑制剂、异丙基-β-d-硫代半乳糖苷(isopropyl-beta-d-thiogalactopyranoside, IPTG) 购自Promega公司;脱氧核苷酸混合物(dNTPs)、寡聚胸腺嘧啶(oligo dT) 和TB Green Premix Ex Taq Ⅱ购自大连宝生物工程有限公司;预染蛋白Marker购自北京宝林科生物科技有限公司;RPMI 1640细胞培养基、胎牛血清(fetal bovine serum, FBS) 购自Gibco公司;Cell Counting Kit-8检测试剂盒购自上海碧云天生物技术有限公司;刀豆球蛋白A (Con A)、氨苄青霉素钠和鸡外周血淋巴细胞分离试剂盒购自北京索莱宝科技有限公司;RNAprep Pure血液总RNA提取试剂盒购自北京天根生化科技有限公司;本实验所有引物由生工生物工程(上海) 股份有限公司合成。Scientz-ⅡD超声波细胞破碎仪和HS-3垂直混合器购自宁波新芝生物科技股份有限公司;NanoDrop 1 000超微量分光光度计和酶标仪购自Thermo Fisher公司产品;凝胶成像系统购于BioRad公司;7 500 Real-time PCR仪购于ABI公司。

1.3 ChIFN-γ和ChIL-2的表达纯化及生物活性测定

将pET32a-ChIFN-γ与pET32a-ChIL-2重组质粒转化至大肠杆菌BL21感受态细胞,涂布氨苄青霉素钠抗性LB固体平板并置于37 ℃下培养12 h至单菌落出现。挑取单菌落至氨苄青霉素钠抗性LB液体培养基中培养制备种子,将种子液按照体积比(1︰100) 接种到2 L的氨苄青霉素钠抗性的LB液体培养基中,置于摇床中(37 ℃、200 r/min) 培养至菌液OD600为0.8−1.0,加入终浓度为0.5 mmol/L的IPTG诱导表达8 h,收集菌体进行超声破碎并离心获得包涵体,采用6 mol/L盐酸胍将包涵体变性,利用Ni-NTA柱-AKTA FPLC系统纯化蛋白,SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE) 检测目的蛋白的表达情况。将纯化后的ChIFN-γ和ChIL-2复性后4 ℃保存,分别利用细胞病变抑制法和Cell Counting Kit-8检测试剂盒测定重组ChIFN-γ和ChIL-2的生物学活性。

1.4 ChIFN-γ和ChIL-2在体外水平上对鸡外周血中Th1细胞分化相关细胞因子的影响

翅静脉采集SPF鸡外周血(含抗凝剂),利用鸡外周血淋巴细胞分离试剂盒分离外周血淋巴细胞,调整细胞浓度至5×106个/mL,然后加入终浓度10 μg/mL Con A刺激48 h (37 ℃、5% CO2条件下)。离心收集刺激后的细胞,调整浓度至5×106个/mL并加到6孔细胞培养板中培养(37 ℃、5% CO2条件下) 8−10 h。将纯化后无内毒素的ChIFN-γ和ChIL-2分别以0、0.1、0.5、2.5、12.5、25.0和50.0 μg/mL的浓度加入到6孔细胞培养板中,孵育24 h后离心收集细胞。Trizol法提取细胞总RNA并反转录为cDNA,RT-qPCR法检测Th1细胞分化相关细胞因子的mRNA转录水平,筛选最佳刺激浓度。选取最佳浓度的ChIFN-γ或ChIL-2刺激淋巴细胞,并检测刺激6、12、24、36和48 h后Th1细胞分化相关细胞因子的mRNA转录水平,确定最佳刺激时间。

1.5 RT-PCR法检测细胞因子的转录

将提取的总RNA反转录为cDNA,采用RT-qPCR法检测Th1细胞分化相关细胞因子的mRNA转录水平,以β肌动蛋白(β-actin) 基因作为内参。RT-qPCR反应程序为95 ℃ 30 s,95 ℃ 5 s,60 ℃ 34 s,40个循环;60 ℃收集荧光。采用2−ΔΔCt法计算实验组和对照组mRNA转录差异倍数。其中β-actinIFN-γTNF-α、信号转导与转录激活因子1 (signal transducerand activator of transcription 1, STAT1)、IL-2、白介素12 (interleukin 12, IL-12)、白介素18 (interleukin 18, IL-18) 和T-bet的RT-qPCR引物序列见表 1

表 1 RT-qPCR所用引物序列表 Table 1 Primers for RT-qPCR
Gene name Forward primers (5′→3′) Reverse primers (5′→3′)
β-actin CACAGATCATGTTTGAGACCTT CATCACAATACCAGTGGTACG
IFN-γ ACTGACAAGTCAAAGCCGCACA TCGTTCATCGGGAGCTTGGC
TNF-α GGGAATGAACCCTCCGCAGT CCACCACACGACAGCCAAGT
STAT1 CTGCAGCGCTACTTTGCTGC GAACTGCGCGCAACCAGATG
IL-2 AACTGGGACACTGCCATGAT TCCTGGGTCTCAGTTGGTGT
IL-12 ACGTCACCAACAGTCAGAGC GGTCTTCGTAGATCCCCTGC
IL-18 AGAGCTGGAATGCGATGCCT CTGAAGGCGCGGTGGTTTTG
T-bet CAAGGGCGCATCCAACAACG AAGGCGAAGGTGTGGGTGTG
1.6 ChIFN-γ和ChIL-2在体内水平上对鸡外周血中Th1细胞分化相关细胞因子的影响

将4周龄的SPF鸡随机分为6组,5羽/组,实验分组以及免疫方案如表 2所示。将ChIL-2 (25 μg/羽) 或ChIFN-γ (25 μg/羽) 分别与H9N2灭活疫苗联用,以口服、肌肉注射的方式免疫SPF鸡,同时设立单独H9N2灭活疫苗组及PBS组作对照。于免疫12、24、48、72、96和120 h后每组随机挑选3羽,翅静脉采集外周血,提取其总RNA,反转录为cDNA后利用RT-qPCR法检测Th1细胞分化相关细胞因子的mRNA转录水平。

表 2 SPF鸡分组及免疫方案 Table 2 Grouping and immunization of SPF chickens
Groups Dose of the immune Immunization methods
PBS 0.2 mL /pcs Intramuscular injection
Inactivated H9N2 0.2 mL/pcs Intramuscular injection
H9N2+IL-2 (oral) H9N2 (0.2 mL/pcs)+IL-2 (25 μg/pcs) H9N2 intramuscular injection+IL-2 oral
H9N2+IL-2 (i.m) H9N2 (0.2 mL/pcs)+IL-2 (25 μg/pcs) Intramuscular injection
H9N2+IFN-γ (oral) H9N2 (0.2 mL/pcs)+IFN-γ (25 μg/pcs) H9N2 intramuscular injection+IFN-γ oral
H9N2+IFN-γ (i.m) H9N2 (0.2 mL/pcs)+IFN-γ (25 μg/pcs) Intramuscular injection
1.7 数据处理及统计学分析

采用2−ΔΔCt法对RT-qPCR的结果进行数据分析,计算实验组和对照组间mRNA转录差异倍数。使用GraphPad Prism 9软件进行作图,并用Microsoft Excel进行统计分析,所有数据均以至少3个独立实验的x±s表示。两组之间的比较采用双尾学生t-test检验(unpaired, two-tailed Student’s t-test) 分析差异显著性。*:P < 0.05, **:P < 0.01, ***:P < 0.001。用字母法表示差异显著性时,组间有相同大写字母表示差异不显著(P > 0.05);组间有相同小写字母表示差异不显著(P > 0.05);组间有相同字母而大小写不同表示差异显著(P < 0.05),组间无相同字母(大写或小写) 表示差异极显著(P < 0.01)。

2 结果与分析 2.1 ChIFN-γ和ChIL-2的表达纯化及活性测定

采用IPTG对重组pET32a-ChIFN-γ/大肠杆菌BL21与pET32a-ChIL-2/大肠杆菌BL21进行诱导并对目的蛋白进行SDS-PAGE分析,结果如图 1所示。从图 1中可以看出,目的蛋白ChIFN-γ和ChIL-2高效表达,均占诱导后菌体总蛋白的40%以上,分子量均在30 kDa左右,符合预期大小。Ni-NTA亲和层析纯化后的ChIFN-γ和ChIL-2条带单一,纯度高达96%以上。利用细胞病变抑制法测定ChIFN-γ在DF-1细胞上抗水泡性口炎病毒(VSV) 的活性,结果显示ChIFN-γ在DF-1上抗VSV活性为2.5×105 U/mL。利用Cell Counting Kit-8检测试剂盒测定ChIL-2促进鸡淋巴细胞增殖的活性,结果如表 3所示,与RPMI 1640对照组相比,ChIL-2促进鸡淋巴细胞增殖的活性高达109 U/mL。

图 1 ChIFN-γ与ChIL-2蛋白的表达纯化 Fig. 1 Expression and purification of ChIFN-γ (A) and ChIL-2 (B) proteins. (A) M: protein marker; lane 1: ChIFN-γ samples before IPTG induction; lane 2: ChIFN-γ samples after IPTG induction; lane 3: purified ChIFN-γ after Ni-NTA affinity chromatography. (B) M: protein marker; lane 1: ChIL-2 samples before IPTG induction; lane 2: ChIL-2 samples after IPTG induction; lane 3: purified ChIL-2 after Ni-NTA affinity chromatography.
表 3 ChIL-2的生物学活性(促进外周血淋巴细胞增殖) 检测结果 Table 3 The result of biological activity of ChIL-2 (promoting the proliferation of lymphocytes in peripheral blood)
Item Dilution ratio NC
10‒10 10‒9 10‒8 10‒7 10‒6 RPMI1640
A450 0.602±0.016 0.616±0.035 0.791±0.035** 0.838±0.039** 0.908±0.080** 0.641±0.115
**: P < 0.01.
2.2 ChIFN-γ和ChIL-2在体外水平上对鸡外周血中Th1细胞分化相关细胞因子的影响 2.2.1 ChIFN-γ在体外水平上对鸡外周血中Th1细胞分化相关细胞因子的影响

采用不同浓度的ChIFN-γ体外刺激鸡外周血淋巴细胞24 h后,对Th1细胞分化相关细胞因子的mRNA转录水平进行RT-qPCR检测,结果如图 2所示。不同浓度ChIFN-γ刺激均可上调IFN-γTNF-αIL-2IL-12IL-18STAT1T-bet等Th1细胞分化相关细胞因子的mRNA转录水平,其中12.5 μg/mL浓度的刺激效果最佳,各细胞因子的mRNA转录水平上调倍数最高,与PBS对照组差异最显著(P < 0.001且P值最小)。当ChIFN-γ以12.5 μg/mL的最佳浓度刺激鸡外周血淋巴细胞24 h后,TNF-αSTAT1IL-2IL-18的mRNA转录水平分别是PBS对照组的65、20、15和11倍之多。

图 2 不同浓度ChIFN-γ刺激外周血淋巴细胞后Th1细胞分化相关细胞因子的mRNA的转录 Fig. 2 mRNA transcription of cytokines related to Th1 cell differentiation induced by different concentration of ChIFN-γ in vitro. Peripheral blood lymphocytes were stimulated with ChIFN-γ at concentrations of 0, 0.1, 0.5, 2.5, 12.5, 25.0 and 50.0 μg/mL, then cells were harvested after 24 hours and total RNA were extracted for RT-qPCR assays. (A)−(G): the mRNA transcription levels of IFN-γ, TNF-α, IL-2, IL-12, IL-18, STAT1 and T-bet induced by ChIFN-γ, respectively. The data are presented as x±s (n=3). (unpaired, two-tailed Student's t-test) *: P < 0.05; **: P < 0.01; ***: P < 0.001.

筛选到ChIFN-γ的最佳刺激浓度后,我们又探索了不同刺激时间对Th1细胞分化相关细胞因子的mRNA的转录水平的影响,结果如图 3所示。与PBS对照组相比,12.5 μg/mL的ChIFN-γ刺激6、12、24、36和48 h后均可上调IFN-γTNF-αIL-2IL-12IL-18STAT1T-bet等Th1细胞分化相关细胞因子的mRNA转录水平,但没有固定的最佳刺激时间。其中,STAT1TNF-αT-betIL-18的mRNA转录水平分别于刺激6、12、24和48 h后达峰值;而IFN-γIL-2IL-12的mRNA转录水平均于刺激36 h后达峰值。

图 3 ChIFN-γ刺激外周血淋巴细胞不同时间后Th1细胞分化相关细胞因子的mRNA的转录 Fig. 3 mRNA transcription of cytokines related to Th1 cell differentiation induced by ChIFN-γ for different time in vitro. Peripheral blood lymphocytes were stimulated with ChIFN-γ for 6, 12, 24, 36 and 48 h at concentration of 12.5 μg/mL, then cells were harvested at indicated time points and total RNA were extracted for RT-qPCR assays. (A)−(G): the mRNA transcription levels of IFN-γ, TNF-α, IL-2, IL-12, IL-18, STAT1 and T-bet induced by ChIFN-γ, respectively. The data are presented as x±s (n=3). (unpaired, two-tailed Student's t-test) *: P < 0.05; **: P < 0.01; ***: P < 0.001.
2.2.2 ChIL-2在体外水平上对鸡外周血中Th1细胞分化相关细胞因子的影响

采用不同浓度的ChIL-2刺激鸡外周血淋巴细胞24 h后,对Th1细胞分化相关细胞因子的mRNA转录水平进行RT-qPCR检测,结果如图 4所示。不同浓度ChIL-2刺激均可上调IFN-γTNF-αIL-2IL-12IL-18STAT1T-bet等Th1细胞分化相关细胞因子的mRNA转录水平,其中25 μg/mL浓度的刺激效果最佳,各细胞因子的mRNA转录水平上调倍数最高,与PBS对照组差异最显著(P < 0.001且P值最小)。当ChIL-2以25 μg/mL的最佳浓度刺激鸡外周血淋巴细胞24 h后,TNF-αIL-2的mRNA转录水平上调倍数分别是PBS对照组的19倍和17倍左右。

图 4 不同浓度ChIL-2体外刺激外周血淋巴细胞后Th1细胞分化相关细胞因子的mRNA的转录情况 Fig. 4 mRNA transcription of cytokines related to Th1 cell differentiation induced by different concentration of ChIL-2 in vitro. Peripheral blood lymphocytes were stimulated with ChIL-2 at concentrations of 0, 0.1, 0.5, 2.5, 12.5, 25.0 and 50.0 μg/mL, then cells were harvested after 24 hours and total RNA were extracted for RT-qPCR assays. (A)−(G): the mRNA transcription levels of IFN-γ, TNF-α, IL-2, IL-12, IL-18, STAT1 and T-bet induced by ChIL-2, respectively. The data are presented as x±s (n=3). (unpaired, two-tailed Student's t-test). *: P < 0.05; **: P < 0.01; ***: P < 0.001.

筛选到ChIL-2的最佳刺激浓度后,我们又探索了不同刺激时间对Th1细胞分化相关细胞因子的mRNA转录水平的影响,结果如图 5所示。与对照组相比,25 μg/mL的ChIL-2刺激6、12、24、36和48 h后均可上调IFN-γTNF-αIL-2IL-12IL-18STAT1T-bet等Th1细胞分化相关细胞因子的mRNA转录水平,其中,刺激24 h效果较好。STAT1IFN-γ的mRNA转录水平分别于刺激6 h和36 h后达峰值;而TNF-αIL-2IL-12IL-18T-bet的mRNA转录水平均于刺激24 h后达到峰值。总体而言,以25 μg/mL浓度的ChIL-2刺激鸡外周血淋巴细胞时,Th1细胞分化相关细胞因子的mRNA转录水平随着刺激时间的延长有逐渐上升的趋势,且在24−36 h时达到高峰,然后逐渐下降。

图 5 ChIL-2刺激外周血淋巴细胞不同时间后Th1细胞分化相关细胞因子的mRNA的转录情况 Fig. 5 mRNA transcription of cytokines related to Th1 cell differentiation induced by ChIL-2 for different time in vitro. Peripheral blood lymphocytes were stimulated with ChIL-2 for 6, 12, 24, 36 and 48 h at concentration of 25 μg/mL, then cells were harvested at indicated time points and total RNA were extracted for RT-qPCR assays. (A)−(G): the mRNA transcription levels of IFN-γ, TNF-α, IL-2, IL-12, IL-18, STAT1 and T-bet induced by ChIL-2, respectively. The data are presented as x±s (n=3). (unpaired, two-tailed Student's t-test) *: P < 0.05; **: P < 0.01; ***: P < 0.001.
2.3 ChIFN-γ和ChIL-2在体内水平上对鸡外周血中Th1细胞分化相关细胞因子的影响 2.3.1 ChIFN-γ在体内水平上对鸡外周血中Th1细胞分化相关细胞因子的影响

为了验证ChIFN-γ在体内水平上对外周血中Th1细胞分化相关细胞因子的影响,将ChIFN-γ与H9N2灭活疫苗联用免疫SPF鸡,评价ChIFN-γ在体内水平上对H9N2疫苗诱导外周血中Th1细胞分化相关细胞因子的影响,结果如图 6所示。与单独使用H9N2疫苗组相比,ChIFN-γ/H9N2联合使用可促进鸡外周血中IFN-γTNF-αIL-2IL-12IL-18STAT1T-bet等Th1细胞分化相关细胞因子的mRNA转录水平,且ChIFN-γ (肌肉注射)/H9N2优于ChIFN-γ (口服)/H9N2的使用方式。在ChIFN-γ (肌肉注射)/H9N2联合免疫条件下,不同细胞因子的mRNA水平达到峰值的时间不同,其中TNF-αIFN-γ的mRNA转录水平分别在免疫12 h和96 h后达到峰值,IL-2IL-12STAT1的mRNA转录水平均在免疫24 h后达到峰值,而IL-18T-bet的mRNA转录水平则均在免疫48 h后达到峰值。ChIFN-γ (肌肉注射)/H9N2组中mRNA上调倍数较高的有IL-12IL-2TNF-α,分别是PBS对照组的257、241和179倍之多。

图 6 ChIFN-γ在体内水平上对外周血中Th1细胞分化相关细胞因子的转录水平的影响 Fig. 6 Effects of ChIFN-γ on mRNA levels of cytokines related to Th1 cell differentiation in peripheral blood in vivo. SPF chickens were immunized with ChIFN-γ (oral)/H9N2, ChIFN-γ (intramuscular injection)/H9N2 and H9N2 vaccine alone, respectively. Peripheral blood was harvested at different time after immunization and total mRNA were extracted from lymphocytes for RT-qPCR assay. (A)−(G): the mRNA transcription levels of IFN-γ, TNF-α, IL-2, IL-12, IL-18, STAT1 and T-bet induced by ChIFN-γ, respectively. The same capital letters between groups indicate no significant difference (P > 0.05); the same lowercase letters between groups indicate no significant difference (P > 0.05); groups with the same letter and different case indicated significant difference (P < 0.05); no same letter (upper or lower case) between groups indicated extremely significant difference (P < 0.01).
2.3.2 ChIL-2在体内水平上对鸡外周血中Th1细胞分化相关细胞因子的影响

为了验证ChIL-2在体内水平上对外周血中Th1细胞分化相关细胞因子的影响,将ChIL-2与H9N2灭活疫苗联用免疫SPF鸡,评价ChIL-2在体内水平上对H9N2疫苗诱导外周血中Th1细胞分化相关细胞因子的影响,结果如图 7所示。与单独使用H9N2疫苗相比,ChIL-2/H9N2联合使用可促进鸡外周血中IFN-γTNF-αIL-2IL-12IL-18STAT1T-bet等Th1细胞分化相关细胞因子的mRNA转录水平,且ChIL-2 (肌肉注射)/H9N2优于ChIL-2 (口服)/H9N2的使用方式。在ChIL-2 (肌肉注射)/H9N2联合免疫条件下,不同细胞因子的mRNA转录水平达到峰值的时间不同。ChIL-2 (肌肉注射)/H9N2组中TNF-α和T-bet的mRNA转录水平均在免疫12 h后即达到峰值,IL-18和IL-2分别在免疫48和72 h后达到峰值,而IFN-γIL-12STAT1则在免疫96 h后达到峰值。ChIL-2 (肌肉注射)/H9N2组中mRNA上调倍数较高的有IL-12IL-2TNF-α,分别是PBS对照组的340、290和137倍之多。

图 7 ChIL-2在体内水平上对外周血中Th1细胞分化相关细胞因子的转录水平的影响 Fig. 7 Effects of ChIL-2 on mRNA levels of cytokines related to Th1 cell differentiation in peripheral blood in vivo. SPF chickens were immunized with ChIL-2 (oral)/H9N2, ChIL-2 (intramuscular injection)/H9N2 and H9N2 vaccine alone, respectively. Peripheral blood was harvested at different time after immunization and total mRNA were extracted from lymphocytes for RT-qPCR assay. (A)−(G): the mRNA transcription levels of IFN-γ, TNF-α, IL-2, IL-12, IL-18, STAT1 and T-bet induced by ChIL-2, respectively. The same capital letters between groups indicate no significant difference (P > 0.05); the same lowercase letters between groups indicate no significant difference (P > 0.05); groups with the same letter and different case indicated significant difference (P < 0.05); no same letter (upper or lower case) between groups indicated extremely significant difference (P < 0.01).
3 讨论

Th细胞在细胞和体液免疫中发挥了重要的辅助和调节作用。在细胞免疫中参与辅助作用的是Th1细胞,分化的Th1细胞主要通过分泌IL-2IFN-γ激活巨噬细胞、NK细胞和B淋巴细胞发挥调节作用,清除胞内感染的病毒或细菌等。Th1细胞的分化主要由IL-12等相关细胞因子驱动,然而关于IL-2和IFN-γ对Th1细胞的分化是否有正反馈调节作用以及该调节作用是否通过影响分化相关细胞因子的表达来实现的,目前尚不清楚。

IL-12是Th1细胞分化的关键因子,大多由树突状细胞(dendritic cell, DC) 细胞分泌,主要通过其受体白介素12受体β1/2 (IL-12Rβ1/2) 发挥作用,通过激活信号转导与转录激活因子4 (signal transducerand activator of transcription 4, STAT4) 促进T-bet的表达,从而增强IFN-γ的分泌[18]。本试验结果表明,ChIFN-γ或ChIL-2与H9N2灭活疫苗联合使用能明显增强H9N2灭活疫苗诱导的SPF鸡外周血中IL-12的mRNA转录水平,说明ChIFN-γ或ChIL-2可能是通过上调IL-12的表达来促进Th1细胞的分化,从而促进细胞免疫。IFN-γ与细胞表面受体结合后,激活JAK-STAT信号通路中的STAT1,活化的STAT1进一步促进T-bet和白介素12受体(IL-12R) 基因表达,IL-12R可通过STAT4进一步驱动T-bet高表达[19]。T-bet是Th1细胞分化的特异性转录因子,在Th1细胞分化过程中起着决定作用,通过促进IFN-γ和白介素12受体β2 (IL-12Rβ2) 的表达来增强Th1细胞分化[20]IL-2除了上调白介素2受体α (IL-2Rα) 和IL-2Rβ外,还可以上调IL-12Rβ2[21],通过IL-2和IL-12协同作用促进Th1细胞的分化。除了可调节受体外,IL-2还可以诱导T-bet等关键转录因子的表达促进Th1细胞的分化。与单独使用H9N2灭活疫苗相比,ChIFN-γ或ChIL-2与H9N2灭活疫苗联合使用能显著促进IFN-γTNF-αIL-2的mRNA转录水平,这与李婷等[22]用羊IL-2和OrfV-F1L基因疫苗联合免疫小鼠后对Th1型(IL-2, IFN-γ和TNF-α) 细胞因子的检测结果一致,也与申燕[23]利用鸡IL-2与新城疫病毒(Newcastle disease virus, NDV) 疫苗联合免疫后对IL-2, IFN-γ的检测结果一致。IL-18被称为IFN-γ诱导因子,主要通过上调白介素12受体β (IL-12Rβ) 与IL-12共同协作促进naive CD4+ T细胞向Th1细胞分化,同时诱导Th1型细胞因子产生,启动细胞免疫,激活NK细胞以及增强细胞毒性T淋巴细胞(cytotoxic T lymphocyte, CTL) 杀伤活性[24]。STAT1与IFN-γ的产生密切相关,可以直接介导IFN-γ的表达,还可以通过诱导T-bet的表达间接促进IFN-γ的产生,促进Th1细胞的稳定性。本研究结果显示,与单独使用H9N2灭活疫苗相比,ChIFN-γ或ChIL-2与H9N2灭活疫苗联合使用能上调T-betIL-18STAT1的mRNA转录水平,提示ChIFN-γ和ChIL-2可通过上调T-betIL-18STAT1影响Th1细胞的分化。

本文分别从体外和体内水平研究了ChIFN-γ和ChIL-2对Th1细胞分化的影响,ChIFN-γ和ChIL-2在细胞水平上能诱导Th1细胞分化相关细胞因子的mRNA转录,且最佳浓度分别为12.5 μg/mL和25 μg/mL;ChIFN-γ和ChIL-2还能在体内水平上显著上调H9N2疫苗诱导的鸡外周血中Th1细胞分化相关细胞因子的mRNA转录水平,且肌肉注射的诱导效果优于口服使用,该结果与郝飞飞[25]发现鸡重组IL-2基因佐剂肌肉注射途径对疫苗增效作用显著优于口服途径相一致。以上结果提示ChIFN-γ和ChIL-2可通过上调相关细胞因子的表达从而影响Th1细胞分化和免疫调节。ChIFN-γ和ChIL-2会启动适应性免疫的活化,IFN-γIL-2和IL-12会促进Th0细胞分化为Th1细胞,活化的Th1细胞又可以分泌IFN-γ和IL-2,以正反馈的形式进一步促进Th1细胞分化,因此大部分Th1细胞分化相关细胞因子的转录水平会呈现起伏的趋势。ChIL-2和ChIFN-γ可驱动Th1型免疫反应,从而可以在主要引起细胞免疫的疫病,如鸡球虫病[26]、马立克氏病[27]和传染性支气管炎[28]等中发挥重要功能。本研究通过对Th1细胞分化相关细胞因子进行检测,从体外(细胞) 和体内(动物) 水平上证实了ChIFN-γ与ChIL-2能显著增强H9N2灭活疫苗诱导的Th1细胞分化,为其作为疫苗佐剂使用提供了理论支撑。后续还会进一步在体内水平上研究ChIL-2和ChIFN-γ作为佐剂与其他疫苗联用后对抗体水平、细胞免疫、体液免疫和疫苗保护率等的影响,为其作为佐剂调节免疫应答提供科学依据。

参考文献
[1]
El Zowalaty ME, Bustin SA, Husseiny MI, et al. Avian influenza: virology, diagnosis and surveillance. Future Microbiol, 2013, 8(9): 1209-1227. DOI:10.2217/fmb.13.81
[2]
Hilton LS, Bean AGD, Lowenthal JW. The emerging role of avian cytokines as immunotherapeutics and vaccine adjuvants. Vet Immunol Immunopathol, 2002, 85(3/4): 119-128.
[3]
Pestka S, Langer JA, Zoon KC, et al. Interferons and their actions. Annu Rev Biochem, 1987, 56: 727-777. DOI:10.1146/annurev.bi.56.070187.003455
[4]
Kak G, Raza M, Tiwari BK. Interferon-gamma (IFN-γ): exploring its implications in infectious diseases. Biomol Concepts, 2018, 9(1): 64-79. DOI:10.1515/bmc-2018-0007
[5]
Xu G, Zhang P, Dang RJ, et al. Dynamic changes of Th1 cytokines and the clinical significance of the IFN-γ/TNF-α ratio in acute brucellosis. Mediators Inflamm, 2019, 2019, 5869257.
[6]
Sad S, Marcotte R, Mosmann TR. Cytokine-induced differentiation of precursor mouse CD8+ T cells into cytotoxic CD8+ T cells secreting Th1 or Th2 cytokines. Immunity, 1995, 2(3): 271-279. DOI:10.1016/1074-7613(95)90051-9
[7]
Kim CK, Choi YM, Bae E, et al. Reduced NK cell IFN-γ secretion and psychological stress are independently associated with Herpes zoster. PLoS One, 2018, 13(2): e0193299. DOI:10.1371/journal.pone.0193299
[8]
Frucht DM, Fukao T, Bogdan C, et al. IFN-gamma production by antigen-presenting cells: mechanisms emerge. Trends Immunol, 2001, 22(10): 556-560. DOI:10.1016/S1471-4906(01)02005-1
[9]
Schroder K, Hertzog PJ, Ravasi T, et al. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol, 2004, 75(2): 163-189. DOI:10.1189/jlb.0603252
[10]
Rahman MM, Eo SK. Prospects and challenges of using chicken cytokines in disease prevention. Vaccine, 2012, 30(50): 7165-7173. DOI:10.1016/j.vaccine.2012.10.011
[11]
Spolski R, Li P, Leonard WJ. Biology and regulation of IL-2: from molecular mechanisms to human therapy. Nat Rev Immunol, 2018, 18(10): 648-659. DOI:10.1038/s41577-018-0046-y
[12]
Pol JG, Caudana P, Paillet J, et al. Effects of interleukin-2 in immunostimulation and immunosuppression. J Exp Med, 2020, 217(1): e20191247. DOI:10.1084/jem.20191247
[13]
Hilton LS, Bean AGD, Kimpton WG, et al. Interleukin-2 directly induces activation and proliferation of chicken T cells in vivo. J Interferon Cytokine Res, 2002, 22(7): 755-763. DOI:10.1089/107999002320271341
[14]
Wu TN, Lin KH, Chang YJ, et al. Avidity of CD1d-ligand-receptor ternary complex contributes to T-helper 1 (Th1) polarization and anticancer efficacy. PNAS, 2011, 108(42): 17275-17280. DOI:10.1073/pnas.1114255108
[15]
Guo PJ, Thomas JD, Bruce MP, et al. The chicken TH1 response: potential therapeutic applications of ChIFN-Γ. Dev Comp Immunol, 2013, 41(3): 389-396. DOI:10.1016/j.dci.2013.05.009
[16]
Song XK, Huang XM, Yan RF, et al. Efficacy of chimeric DNA vaccines encoding Eimeria tenella 5401 and chicken IFN-γ or IL-2 against coccidiosis in chickens. Exp Parasitol, 2015, 156: 19-25. DOI:10.1016/j.exppara.2015.05.003
[17]
Cardenas-Garcia S, Dunwoody RP, Marcano V, et al. Effects of chicken interferon gamma on Newcastle disease virus vaccine immunogenicity. PLoS One, 2016, 11(7): e0159153. DOI:10.1371/journal.pone.0159153
[18]
Yu SF, Jia L, Zhang YN, et al. IL-12 induced the generation of IL-21- and IFN-γ-co-expressing poly-functional CD4+ T cells from human naive CD4+ T cells. Cell Cycle, 2015, 14(21): 3362-3372. DOI:10.1080/15384101.2015.1093703
[19]
Oestreich KJ, Weinmann AS. Transcriptional mechanisms that regulate T helper 1 cell differentiation. Curr Opin Immunol, 2012, 24(2): 191-195. DOI:10.1016/j.coi.2011.12.004
[20]
Mullen AC, High FA, Hutchins AS, et al. Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science, 2001, 292(5523): 1907-1910. DOI:10.1126/science.1059835
[21]
Liao W, Lin JX, Wang L, et al. Modulation of cytokine receptors by IL-2 broadly regulates differentiation into helper T cell lineages. Nat Immunol, 2011, 12(6): 551-559. DOI:10.1038/ni.2030
[22]
李婷, 包细明, 鲜思美, 等. 羊IL-2和OrfV-F1L基因疫苗联合免疫小鼠的免疫应答研究. 中国兽医科学, 2019, 49(7): 924-931.
Li T, Bao XM, Xian SM, et al. Study on immune response in mice inoculated jointly with IL-2 gene vaccine and OrfV-F1L gene vaccine. Chin Vet Sci, 2019, 49(7): 924-931 (in Chinese).
[23]
申燕. 利用鸡IL-2增强NDV-F抗原表位及其作为疫苗的免疫效果的研究[D]. 哈尔滨: 黑龙江大学, 2015.
Shen Y. Study on using chicken IL-2 to enhance NDV-F epitope and its immune effect as a vaccine[D]. Harbin: Heilongjiang University, 2015 (in Chinese).
[24]
Yasuda K, Nakanishi K, Tsutsui H. Interleukin-18 in health and disease. Int J Mol Sci, 2019, 20(3): 649. DOI:10.3390/ijms20030649
[25]
郝飞飞. 鸡球虫病活疫苗基因佐剂IL-2、IL-4实验室效力和安全性研究[D]. 太谷: 山西农业大学, 2019.
Hao FF. Research on the laboratory efficacy and safety of gene adjuvant IL-2 and IL-4 of chicken coccidiosis live vaccine[D]. Taigu: Shanxi Agricultural University, 2019 (in Chinese).
[26]
Kim WH, Chaudhari AA, Lillehoj HS. Involvement of T cell immunity in avian coccidiosis. Front Immunol, 2019, 10: 2732. DOI:10.3389/fimmu.2019.02732
[27]
Yang Y, Dong M, Hao X, et al. Revisiting cellular immune response to oncogenic Marek's disease virus: the rising of avian T-cell immunity. Cell Mol Life Sci. 2020 Aug; 77(16): 3103-3116.
[28]
Qin Y, Tu K, Teng Q, et al. Identification of novel T-cell epitopes on infectious bronchitis virus N protein and development of a multi-epitope vaccine. J Virol, 2021, 95(17): e0066721. DOI:10.1128/JVI.00667-21