生物工程学报  2022, Vol. 38 Issue (2): 737-748
http://dx.doi.org/10.13345/j.cjb.210297
中国科学院微生物研究所、中国微生物学会主办
0

文章信息

郭未蔚, 艾丽梅, 胡栋, 陈亚军, 耿梦馨, 郑玲辉, 白利平
GUO Weiwei, AI Limei, HU Dong, CHEN Yajun, GENG Mengxin, ZHENG Linghui, BAI Liping
URA3基因影响青蒿酸酿酒酵母工程菌中试发酵产量
URA3 affects artemisinic acid production by an engineered Saccharomyces cerevisiae in pilot-scale fermentation
生物工程学报, 2022, 38(2): 737-748
Chinese Journal of Biotechnology, 2022, 38(2): 737-748
10.13345/j.cjb.210297

文章历史

Received: April 16, 2021
Accepted: June 11, 2021
Published: June 23, 2021
URA3基因影响青蒿酸酿酒酵母工程菌中试发酵产量
郭未蔚1 , 艾丽梅1 , 胡栋2 , 陈亚军2 , 耿梦馨1 , 郑玲辉2 , 白利平1     
1. 中国医学科学院北京协和医学院医药生物技术研究所 卫健委抗生素生物工程重点实验室/中国医学科学院药物合成生物学重点实验室, 北京 100050;
2. 浙江海正药业股份有限公司 浙江抗菌药物重点实验室, 浙江 台州 318000
摘要:CRISPR/Cas9基因编辑技术已经被广泛应用于工程酿酒酵母的基因插入、基因替换和基因敲除,通过使用选择标记进行基因编辑具有简单高效的特点。前期利用CRISPR/Cas9系统敲除青蒿酸生产菌株酿酒酵母(Saccharomyces cerevisiae)1211半乳糖代谢负调控基因GAL80,获得菌株S.cerevisiae 1211-2,在不添加半乳糖诱导的情况下,青蒿酸摇瓶发酵产量达到了740 mg/L。但在50 L中试发酵实验中,S.cerevisiae 1211-2很难利用对青蒿酸积累起到决定性作用的碳源-乙醇,青蒿酸的产量仅为亲本菌株S.cerevisiae 1211的20%–25%。我们推测因遗传操作所需的筛选标记URA3突变,影响了其生长及青蒿酸产量。随后我们使用重组质粒pML104-KanMx4-u连同90 bp供体DNA成功恢复了URA3基因,获得了工程菌株S.cerevisiae 1211-3。S.cerevisiae 1211-3能够在葡萄糖和乙醇分批补料的发酵罐中正常生长,其青蒿酸产量超过20 g/L,与亲本菌株产量相当。研究不但获得了不加半乳糖诱导的青蒿酸生产菌株,同时首次发现了营养缺陷型标记URA3基因显著影响乙醇补料的中试发酵中青蒿酸的产生,也为酵母作为底盘来进行其他天然产物的生产提供了借鉴。
关键词工程酿酒酵母    青蒿酸    CRISPR/Cas9    URA3    
URA3 affects artemisinic acid production by an engineered Saccharomyces cerevisiae in pilot-scale fermentation
GUO Weiwei1 , AI Limei1 , HU Dong2 , CHEN Yajun2 , GENG Mengxin1 , ZHENG Linghui2 , BAI Liping1     
1. NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China;
2. Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co. Ltd., Taizhou 318000, Zhejiang, China
Abstract: CRISPR/Cas9 has been widely used in engineering Saccharomyces cerevisiae for gene insertion, replacement and deletion due to its simplicity and high efficiency. The selectable markers of CRISPR/Cas9 systems are particularly useful for genome editing and Cas9-plasmids removing in yeast. In our previous research, GAL80 gene has been deleted by the plasmid pML104-mediated CRISPR/Cas9 system in an engineered yeast, in order to eliminate the requirement of galactose supplementation for induction. The maximum artemisinic acid production by engineered S. cerevisiae 1211-2 (740 mg/L) was comparable to that of the parental strain 1211 without galactose induction. Unfortunately, S. cerevisiae 1211-2 was inefficient in the utilization of the carbon source ethanol in the subsequent 50 L pilot fermentation experiment. The artemisinic acid yield in the engineered S. cerevisiae 1211-2 was only 20%-25% compared with that of S. cerevisiae 1211. The mutation of the selection marker URA3 was supposed to affect the growth and artemisinic acid production. A ura3 mutant was successfully restored by a recombinant plasmid pML104-KanMx4-u along with a 90 bp donor DNA, resulting in S. cerevisiae 1211-3. This mutant could grow normally in a fed-batch fermentor with mixed glucose and ethanol feeding, and the final artemisinic acid yield (> 20 g/L) was comparable to that of the parental strain S. cerevisiae 1211. In this study, an engineered yeast strain producing artemisinic acid without galactose induction was obtained. More importantly, it was the first report showing that the auxotrophic marker URA3 significantly affected artemisinic acid production in a pilot-scale fermentation with ethanol feeding, which provides a reference for the production of other natural products in yeast chassis.
Keywords: engineered Saccharomyces cerevisiae    artemisinic acid    CRISPR/Cas9    URA3    

青蒿素是由屠呦呦教授及其团队最早从菊科植物黄花蒿(Artemisia annua L.) 叶中提取分离的一类传统中药成分,在全球范围内被广泛应用于疟疾的治疗[1-2]。2002年,世界卫生组织就推荐青蒿素联合甲氟喹(mefloquine) 等药物作为抗疟疾一线药物[3-4]。目前,青蒿素的生产方法主要有3种,第一种方法是直接从中药黄花蒿中提取分离得到,然而这一传统方法受气候条件影响较大,青蒿素产量不稳定;第二种方法是通过化学全合成,然而该方法工艺复杂且成本较高,无法用于工业大规模生产[5];第三种方法是通过微生物发酵获得青蒿素的直接前体青蒿酸,进一步通过化学合成青蒿素,该方法绿色环保且产量稳定,有望替代传统的植物提取方法[6-7]。我们前期通过质粒pML104介导的CRISPR/Cas9系统成功敲除酿酒酵母工程菌(Saccharomyces cerevisiae 1211) 中GAL80基因,以消除半乳糖诱导,得到改造菌株S. cerevisiae 1211-2。在不加半乳糖诱导的摇瓶培养下,其最大青蒿酸产量可达740 mg/L,与亲本菌株S. cerevisiae 1211产量相当。然而在50 L中试发酵实验中,S. cerevisiae 1211-2无法有效利用补充碳源乙醇,其青蒿酸产量仅为S. cerevisiae 1211的20%–25%。

CRISPR/Cas9质粒pML104携带乳清苷-5′-磷酸脱羧酶基因URA3,可用作选择性标记,前期我们已经通过突变URA3和敲除GAL80基因分别获得工程菌S. cerevisiae 1211-1和1211-2[8]URA3基因位于酵母的V染色体上,该酶催化酵母RNA嘧啶核苷酸合成中的关键反应。在失活URA3后,如果培养基中不添加尿苷或尿嘧啶酵母则无法生长[9]。相反,酵母细胞中Ura3蛋白可将5-氟乳清酸(5-fluoroorotic acid, 5-FOA) 转化为5-氟尿嘧啶,后者是毒性物质会引起细胞死亡可作为反选择标记。综上,URA3可同时被用作选择标记和反选择标记,因此已成为酵母基因工程中最重要的遗传标记之一[10-12]。然而URA3是否影响酵母发酵和次级代谢仍未可知。据报道URA3可能是酵母最大乙醇积累能力的特殊诱导基因[13],我们继而推测URA3突变菌株S. cerevisiae 1211-2的青蒿酸产量会受到影响。在前期研究基础上本研究通过CRISPR/ Cas9技术成功回补URA3从而获得一种改良的工程菌S. cerevisiae 1211-3,并从摇瓶发酵和50 L中试发酵2个水平对S. cerevisiae 1211和S. cerevisiae 1211-3进行发酵,分析不同工程菌株发酵液中青蒿酸的产量。

1 材料与方法 1.1 材料 1.1.1 菌株和质粒

酿酒酵母(Saccharomyces cerevisiae) 1211由浙江海正药业有限公司提供。S. cerevisiae 1211-2 (∆gal80,∆ura3) 是本课题组前期构建的尿嘧啶缺陷型菌株[8]。大肠杆菌(Escherichia coli) Trans5α和Trans110购自北京全式金生物技术有限公司(北京,中国),pML104-KanMx4质粒购自Addgene公司(美国)。

1.1.2 主要试剂和培养基

卡那霉素(Kan) 购自生工生物工程(上海) 股份有限公司,限制性内切酶SwaⅠ和BclⅠ购自New England Biolabs公司(美国),YPAD、SD-URA培养基购自北京酷来搏科技有限公司。

无机盐溶液:52 g/L MgSO4·7H2O,24.5 g/L K2SO4,2.9 g/L Na2SO4,40 g/L KH2PO4,0.25 g/L CuSO4·5H2O。

维生素溶液:0.05 g/L生物素,1 g/L泛酸钙,1 g/L烟酸,25 g/L肌醇,1 g/L硫胺,1 g/L吡哆醛,0.2 g/L对氨基苯甲酸。

微量元素溶液:5.75 g/L ZnSO4·7H2O,0.325 g/L MnCl2·4H2O,0.475 g/L CoCl2·6H2O,0.475 g/L Na2MoO4·2H2O,3 g/L CaCl2·2H2O,2.75 g/L FeSO4·7H2O,11.75 g/L EDTA。

种子培养基Ⅰ:22 g/L葡萄糖,6.7 g/L酵母氮碱,5 g/L (NH4)2SO4,22.4 g/L KH2PO4,4.2 g/L Na2HPO4·12H2O,20 mg/L尿嘧啶(用于S. cerevisiae 1211-2发酵)。

种子培养基Ⅱ:15 g/L (NH4)2SO4、8 g/L KH2PO4、6.2 g/L MgSO4、19.5 g/L葡萄糖,5.9 g/L琥珀酸,添加12 mL/L维生素溶液,10 mL/L微量金属溶液,0.004 g/L Cu2SO4·5H2O,10.0 g/L酵母提取物粉末,20 mg/L尿嘧啶(用于S. cerevisiae 1211-2发酵)。

摇瓶发酵培养基(pH 5.0):75 g/L蔗糖,10 g/L蛋白胨,2 g/L谷氨酸钠,15 g/L (NH4)2SO4,8 g/L KH2PO4,0.72 g/L ZnSO4·7H2O,6.2 g/L MgSO4·7H2O,11 g/L琥珀酸钠,10 g/L肉豆蔻酸异丙酯(isopropyl myristate, IPM),0.02 g/L尿嘧啶,0.15 g/L蛋氨酸,12 mL/L维生素溶液,10 mL/L微量元素溶液,10 mL/L液体石蜡,5 mL/L甘油。

10 L发酵培养基(pH 5.0):40 g/L葡萄糖,15 g/L (NH4)2SO4,8 g/L KH2PO4,6.2 g/L MgSO4·7H2O,12 mL/L维生素溶液,10 mL/L微量金属溶液,4 mg/L CuSO4·5H2O,5.9 g/L琥珀酸,10 g/L蛋氨酸,200 mg/L叶酸钠,4 g/L酵母提取粉。

50 L发酵培养基:25 g/L葡萄糖,3 g/L (NH4)2SO4,3.5 g/L KH2PO4,6.15 g/L MgSO4·7H2O,7.5 mg/L CuSO4·5H2O,50 g/L IPM,0.5 g/L消泡剂,10 g/L半乳糖(用于S. cerevisiae 1211发酵)。

1.2 摇瓶发酵

挑取单克隆至种子培养基Ⅰ中,30 ℃振荡孵育16–24 h。取5 mL转移至50 mL摇瓶发酵培养基中,30 ℃振荡孵育84 h,其中需分别向S. cerevisiae 1211和S. cerevisiae 1211-2的培养基中添加半乳糖和尿嘧啶。HPLC-DAD测定不同菌株发酵液中青蒿酸的含量。

1.3 50 L中试发酵

将1 mL甘油储备液接种到2瓶50 mL种子培养基中于30 ℃孵育24 h。将获得的100 mL发酵液添加到已蒸汽灭菌的10 L发酵培养基中于30 ℃孵育,至发酵液OD600达到约10.0。将得到的发酵液以5%接种量转移到50 L无菌发酵培养基中,30 ℃连续培养84 h。期间将灭菌的盐溶液2 L、200 mL维生素溶液和200 mL微量金属溶液混合,在发酵16 h时添加0.4 L,40 h时添加0.75 L,64 h时补充剩余0.75 L;在发酵过程中,需要连续监测发酵液中乙醇和葡萄糖的浓度,以将其浓度控制在2 g/L以下,在发酵第12–15 h后,开始流加60%葡萄糖溶液(50 mL/h),发酵24 h后,将流速提高至100 mL/h,发酵至44–48 h后,葡萄糖流速降至50 mL/h;在发酵18 h后,开始以30 mL/h的速度流加无水乙醇,之后根据发酵液中乙醇的浓度范围,每3 h流速增加10 mL/h,直到乙醇进料速度增加至120 mL/h,至发酵结束[7]。发酵过程中每12 h取50 mL发酵液样品,以检测葡萄糖、乙醇和青蒿酸的浓度以及发酵液的OD600

1.4 引物合成

根据S. cerevisiae 1211中URA3的cDNA序列设计识别其PAM位点的sgRNA oligo (表 1)。序列片段和引物由生工生物工程(上海) 股份有限公司合成(表 2)。

表 1 URA3基因中sgRNA的靶点 Table 1 The target site for sgRNA in URA3
sgRNA and oligonucleotides (5′→3′) URA3 sequences
sgRNA matches URA3 at position 192 within ORF > URA3_position_192
ATGTCGAAAGCTACATATAAGGAACGTGCTGCTACTCATCCTAGTCCTGTTGCTGCCAAGCTATTTAATATCATGCACGAAAAGCAAACAAACTTGTGTGCTT
> chrV_116358 CATTGGATGTTCGTACCACCAAGGAATTACTGGAGTTAGTTGAAGCATTAGGTCCCAAAATTTGTTTACTAAAAACACATGTGGATATCTTGACTGATTTTTC
gRNA sequence: CTTGACTGATTTTTCCATGGAGG CATGGAGGGCACAGTTAAGCCGCTAAAGGCATTATCCGCCAAGTACAATTTTTTACTCTTCGAAGACAGAAAATTTGCTGACATTGGTAATACAGTCAAATTGCAGTACTCTGCGGGTGTATACAGAATAGCAGAATGGGCAGACATTACGAATGCACACGGTGTGGTGGGCCCAGGTATTGTTAGCGGTTTGAAGCAGGCGGC
Oligo u-1a: GATCCTTGACTGATTTTTCCATGGGTTTTAGAGCTAG GGAAGAAGTAACAAAGGAACCTAGAGGCCTTTTGATGTTAGCAGAATTGTCATGCAAGGGCTCCCTAGCTACTGGAGAATATACTAAGGGTACTGTTGACATTGCGAAGAGCGACAAAGATTTTGTTATCGGCTTTATTGCTCAAAGAGACATGGGTGGAAGAGATGAAGGTTACGATTGGTTGATTATGACACCCGGTGTGGG
Oligo u-1b: CTAGCTCTAAAACCCATGGAAAAATCAGTCAAG TTTAGATGACAAGGGAGACGCATTGGGTCAACAGTATAGAACCGTGGATGATGTGGTCTCTACAGGATCTGACATTATTATTGTTGGAAGAGGACTATTTGCAAAGGGAAGGGATGCTAAGGTAGAGGGTGAACGTTACAGAAAAGCAGGCTGGGAAGCATATTTGAGAAGATGCGGCCAGCAAAACTAA
PAM sequence is indicated as bold text and sgRNA sequence is shown as the underlined text.
表 2 PCR引物序列 Table 2 Primers used in this study
Names Oligonucleotides (5′→3′) Purposes
Oligo u-1a GATCCTTGACTGATTTTTCCATGGGTTTTAGAGCTAG For the construction of sgRNA plasmid for the disruption of URA3
Oligo u-1b CTAGCTCTAAAACCCATGGAAAAATCAGTCAAG
Fc TCAAGTTGATAACGGACTAGCC For confirmation of URA3 sgRNA sequences insertion into pML104-KanMx4
Rc TCAAACGCTGTAGAAGTGAAAG
U3-F GTCGACATGTCGAAAGCTACATATAAGGA For the sequencing of URA3
U3-R TCTAGATTAGTTTTGCTGGCCGCATC
1.5 S. cerevisiae 1211-3工程菌的构建 1.5.1 pML104-KanMx4-u质粒的构建

质粒的提取、酶切、连接、转化、凝胶电泳、基因的诱导表达等实验操作均按照《分子克隆实验指南》[14]进行。DNA胶回收按照胶回收试剂盒(北京全式金生物技术有限公司) 说明书进行。将包含预测sgRNA的两条引物Oligo u-1a和Oligo u-1b直接退火连接到SwaⅠ和BclⅠ酶切后的pML104-KanMx4质粒的大片段上,构建带有URA3-sgRNA的重组质粒pML104-KanMx4-u。将重组质粒转化到大肠杆菌Trans5α中,提取质粒并使用Fc和Rc引物进行PCR验证和测序确证。90 bp的单链核苷酸修复供体片段由华大基因科技服务有限公司合成。

1.5.2 转化和筛选

使用EX-酵母转化试剂盒(北京庄盟国际生物基因科技有限公司),通过标准醋酸锂法[15-16]将构建的质粒pML104-KanMx4-u和90 bp的供体DNA共同转化到100 μL S. cerevisiae 1211-2中,在SD-URA培养基上进行筛选,通过PCR和测序进一步验证。使用酵母基因组DNA提取试剂盒(北京庄盟国际生物基因科技有限公司)提取阳性克隆的基因组,用U3-F/R引物进行PCR检测并测序。

1.6 HPLC定量方法

将1 mL发酵液加入4 mL含0.1%甲酸的甲醇中,连续振荡超声20 min后,涡旋混匀,10 000×g离心5 min,取上清液用0.45 μm滤膜过滤,10 μL滤液上样进行HPLC检测。HPLC分析条件:LC-20A HPLC仪(Shimadzu公司);色谱柱:Agilent SB-C18色谱柱(4.6 mm×250 mm,5 μm);流动相:95% (V/V) 乙腈/水(B) 和0.03%磷酸的水/乙腈(1︰2, V/V) (A);梯度洗脱:0–6 min 35% B,6–7 min 35%–95% B,7–9 min 95% B;流速1.5 mL/min,柱温25 ℃,检测波长212 nm。使用SHIMADZU LCsolution修订版1.24 SP1软件处理数据。

2 结果与分析 2.1 亲本S. cerevisiae 1211和工程菌S. cerevisiae 1211-2的中试发酵

我们前期对S. cerevisiae 1211和S. cerevisiae 1211-2 (∆gal80ura3) 进行摇瓶发酵[8],其中S. cerevisiae 1211需要在培养基中添加半乳糖诱导,结果两者的青蒿酸产量无显著差异。在此基础上,我们试着将2株菌进行50 L工业中试发酵,以进一步验证S. cerevisiae 1211-2的青蒿酸产量。结果出人意料,S. cerevisiae 1211-2生长缓慢,96 h青蒿酸产量仅为S. cerevisiae 1211的20%–25% (图 1)。在发酵过程中发现,亲本菌株S. cerevisiae 1211能够有效利用发酵罐中分批补料的乙醇,S. cerevisiae 1211-2则未然,推测URA3基因突变导致该菌株乙醇利用减弱。

图 1 S. cerevisiae 1211和S. cerevisiae 1211-2的50 L中试发酵结果 Fig. 1 50 L pilot-scale fermentation of S. cerevisiae 1211 and S. cerevisiae 1211-2. The fermentation broth was collected every 12 hours for testing. (A) Growth curve. (B) Production of artemisinic acid.

由于URA3基因是酵母基因工程中最常见的选择标记,最初在敲除S. cerevisiae 1211 GAL80的过程中,需要首先失活URA3。而发酵罐发酵和摇瓶发酵相比最大的区别在于发酵过程中需要分批补料,乙醇作为青蒿酸积累中的碳源其补料尤其重要。Pais等[13]报道URA3基因与菌株的乙醇耐受性有关,URA3营养缺陷型菌株的最大乙醇积累减少,进一步提示S. cerevisiae 1211-2发酵过程中的乙醇利用受限和青蒿酸产量降低可能与URA3失活相关。

2.2 URA3基因回补

前期我们用5-FOA筛选出URA3基因突变菌株,进而构建GAL80敲除菌株S. cerevisiae 1211-2。为了确定S. cerevisiae 1211-2基因组中URA3基因的特异性变异,使用U3-F/U3-R为引物扩增URA3基因片段并进行测序,结果如图 2所示,在URA3的CDS区插入了2个鸟嘌呤碱基。为恢复S. cerevisiae 1211-2的URA3基因功能,首先构建插入靶向URA3的sgRNA的CRISPR/Cas9质粒pML104-KanMx4-u,转化后获得10个阳性克隆,通过菌落PCR使用Fc和Rc引物确认sgRNA是否成功插入。如图 3所示,阳性克隆的扩增子为150 bp,阴性克隆为132 bp,测序结果也显示阳性率为100%。

图 2 S. cerevisiae 1211和S. cerevisiae 1211-2中URA3基因序列的比对结果 Fig. 2 Sequence alignment of URA3 gene of S. cerevisiae 1211 and S. cerevisiae 1211-2. The different bases between two strains are indicated with a red circle.
图 3 通过CRISPR/Cas9基因编辑回复URA3基因 Fig. 3 Recovery of the URA3 gene by CRISPR/Cas9 gene editing. 1: pML104-KanMx4 was digested by Swa Ⅰ and Bcl Ⅰ. 2: two oligos (Oligo u-1a and Oligo u-1b) including the designed sgRNA spacer sequences were annealed and directly ligated into the linearized pML104-KanMx4 vector. 3: pML104-KanMx4-u was transformed into S. cerevisiae 1211-2. The genomic DNA (gDNA) region targeted by the sgRNA is indicated, along with the location of the Cas9 cutting site. A portion of the 90mer oligonucleotide template with the targeted URA3 mutation is shown. Recombination between the gDNA and template eliminates the PAM sequence adjacent to the Cas9 cutting site and introduces an early frame shift in the URA3 gene. 4: transformation mixtures were directly spread on SD-URA plates. 5: genomic DNAs were extracted from positive clones and tested by PCR.

将重组质粒pML104-KanMx4-u和90 bp供体DNA一起转化到尿嘧啶营养缺陷型S. cerevisiae 1211-2中,如图 3所示,使用SD-URA平板筛选获得5个阳性克隆,提取基因组DNA,采用U3-F/R引物扩增了URA3基因并测序。结果表明URA3被成功修复,将该工程菌株命名为S. cerevisiae 1211-3。

2.3 尿嘧啶回复菌株的摇瓶发酵

使用摇瓶发酵培养基对亲本菌株S. cerevisiae 1211、尿嘧啶营养缺陷型菌株S. cerevisiae 1211-2和URA3恢复菌株S. cerevisiae 1211-3进行摇瓶发酵。与我们前期研究结果一致,青蒿酸于该液相条件下约在5.8 min出峰(图 4A-a),可见S. cerevisiae 1211在未添加半乳糖的发酵培养基中不产青蒿酸(图 4A-b),而在半乳糖诱导下可正常产生(图 4A-c);S. cerevisiae 1211-2虽然不需半乳糖诱导,但在未添加尿嘧啶的培养基中无法正常生长且无青蒿酸积累(图 4A-d),向培养基中添加尿嘧啶后能恢复青蒿酸的产生,且青蒿酸产量与前期研究结果一致(图 4A-e);而尿嘧啶恢复菌株S. cerevisiae 1211-3能够在未添加尿嘧啶和半乳糖的培养基中产青蒿酸(图 4A-f),在最佳发酵条件下的青蒿酸产量可达1 200 mg/L左右(图 4B),与半乳糖诱导的亲本菌株S. cerevisiae 1211的青蒿酸产量相当,且明显高于S. cerevisiae 1211-2。

图 4 不同菌株摇瓶发酵青蒿酸产量的测定 Fig. 4 Quantification of artemisinic acid in the parent and engineered strains in shake flask fermentation. All the strains were cultured in fermentation medium with (+) or without (–) the addition of galactose and/or uracil. (A) HPLC analysis of artemisinic acid production in the parent strain S. cerevisiae 1211, the GAL80 mutant strain S. cerevisiae 1211-2 and the URA3 recovered strain S. cerevisiae 1211-3. a: artemisinic acid standard; b: S. cerevisiae 1211-galactose (–)-uracil (–); c: S. cerevisiae 1211-galactose (+)-uracil (–); d: S. cerevisiae 1211-2-galactose (–) -uracil (–); e: S. cerevisiae 1211-2-galactose (–)-uracil (+); f: S. cerevisiae 1211-3-galactose (–)-uracil (–). (B) Histogram of artemisinic acid production in the parent strain S. cerevisiae 1211, the GAL80 mutant strain S. cerevisiae 1211-2 and the URA3 recovered strain S. cerevisiae 1211-3.
2.4 尿嘧啶回复菌株的50 L中试发酵

对亲本菌株S. cerevisiae 1211和URA3恢复菌株S. cerevisiae 1211-3进行50 L发酵罐发酵,期间每12 h收集一次发酵液,用以制作显微样本、测定菌株生长情况以及测定青蒿酸产量。显微样本结果显示S. cerevisiae 1211-3在60 h后生长明显快于S. cerevisiae 1211,84 h时出现大部分菌体破裂(图 5A)。S. cerevisiae 1211-3在分批添加葡萄糖和乙醇的发酵罐发酵中正常生长,其菌株生长浓度几乎平行于S. cerevisiae 1211 (图 5B)。HPLC分析发酵液中青蒿酸的含量,在未添加半乳糖和尿嘧啶的发酵条件下,S. cerevisiae 1211-3的青蒿酸产量超过20 g/L,与半乳糖诱导的S. cerevisiae 1211相当(图 5C)。由于S. cerevisiae 1211-3发酵不需要半乳糖诱导,能够降低10%–15%的青蒿酸发酵成本,此外S. cerevisiae 1211-3产青蒿酸达最高积累量的时间较S. cerevisiae 1211提前了近12 h,提前结束发酵可进一步降低发酵成本,具有更高的工业应用价值。

图 5 S. cerevisiae 1211和S. cerevisiae 1211-3菌株50 L中试发酵青蒿酸产量的测定 Fig. 5 50 L pilot-scale fermentation of S. cerevisiae 1211 and 1211-3. Fermentation broth was collected every 12 hours for testing. (A) Morphology analysis of S. cerevisiae 1211 and S. cerevisiae 1211-3 at the time of 12, 36, 60 and 84 h, respectively. (B) Growth curve. (C) Production of artemisinic acid.
3 讨论

随着合成生物学的飞速发展,许多非酵母合成的化合物完全突破了生物制造的界限,实现了体外设计和跨物种体内合成[7, 17-20]。酿酒酵母作为转化和生物合成的重要细胞工厂,已经实现了其他物种所产化合物(生物能、精细化学品、天然产物等) 的生物合成途径的重建[7, 21-24]。近年来,如何有效地将目标化合物的外源合成途径整合到酵母中已成为建立细胞工厂的关键问题[25]。受有限的选择标记和邻近基因作用的影响,传统的基因整合技术在酿酒酵母中的应用仍然受到限制[26],然而,CRISPR/Cas9基因编辑技术可以有效地解决以上问题[27-30]。CRISPR干扰技术(CRISPRi) 能够影响酵母细胞中参与功能代谢途径关键基因,CRISPR激活技术(CRISPRa) 可促进靶基因转录,通过抑制基因表达以减少副产物的形成,因而被用于酵母的基因编辑[31-32]

用于酵母的CRISPR/Cas9系统通常会结合几种抗生素选择标记(kanMXnatMXhphMX等) 和营养缺陷型标记(ura3his3trp1leu2等)[33-34]。特别是对于具有多种抗生素选择标记的工程酵母而言,营养缺陷型标记更适用于其基因组编辑。例如,具有URA3选择标记的CRISPR/Cas9系统在成功进行基因组编辑后,可使用5-FOA反筛从而轻松移除Cas9系统[35]。但是,鲜有关于营养缺陷型标记与酵母发酵和次生代谢相关的报道。

我们前期利用带有URA3营养缺陷型标记的CRISPR/Cas9质粒pML104成功敲除S. cerevisiae 1211的GAL80基因,再通过5-FOA反筛去除重组质粒pML104-1,从而获得工程菌S. cerevisiae 1211-2 (∆gal80,∆ura3)。摇瓶发酵结果显示,S. cerevisiae 1211-2在无半乳糖诱导时青蒿酸产量可达740 mg/L,与S. cerevisiae 1211相当。但在发酵罐发酵条件下S. cerevisiae 1211-2青蒿酸产量显著降低,结合文献[13]和[36]分析,我们合理推测URA3的缺失可能影响青蒿酸的产生,为证明这一假设,我们进一步使用pML104-KanMx4介导的CRISPR/Cas9回复了S. cerevisiae 1211-2的URA3,获得的改造菌株S. cerevisiae 1211-3,在未添加半乳糖的发酵罐中,青蒿酸产量超过20 g/L,与S. cerevisiae 1211相当,并且其菌体生长提前达到平稳期,使得产物合成能提前达到最大值。尽管该产量尚未达到已报道的25 g/L最大产量[22, 37-38],但通过经典诱变和优化发酵条件将可以实现S. cerevisiae 1211-3更高的青蒿酸产量,是具有更高工业应用价值的菌株。此外,本研究首次报道了在乙醇补料的发酵中营养缺陷型标记基因URA3显著影响青蒿酸的产生,可为酵母基因编辑和天然产物相关研究提供了借鉴。

参考文献
[1]
Tu Y. Artemisinin-a gift from traditional Chinese medicine to the world (Nobel lecture). Angew Chem Int Ed Engl, 2016, 55(35): 10210-10226. DOI:10.1002/anie.201601967
[2]
Tu YY. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat Med, 2011, 17(10): 1217-1220. DOI:10.1038/nm.2471
[3]
Khan MA, Smego RA, Razi ST, et al. Emerging drug-resistance and guidelines for treatment of malaria. J Coll Physicians Surg Pak, 2004, 14(5): 319-324.
[4]
Kumari A, Karnatak M, Singh D, et al. Current scenario of artemisinin and its analogues for antimalarial activity. Eur J Med Chem, 2019, 163: 804-829. DOI:10.1016/j.ejmech.2018.12.007
[5]
Schmid G, Hofheinz W. Total synthesis of qinghaosu. J Am Chem Soc, 1983, 105(3): 624-625. DOI:10.1021/ja00341a054
[6]
Lévesque F, Seeberger PH. Continuous-flow synthesis of the anti-malaria drug artemisinin. Angew Chem Int Ed Engl, 2012, 51(7): 1706-1709. DOI:10.1002/anie.201107446
[7]
艾丽梅. 基于CRISPR/Cas9基因编辑技术的青蒿酸及制霉素工程菌合成生物学改造[D]. 北京: 北京协和医学院, 中国医学科学院医药生物技术研究所, 2020.
Ai LM. CRISPR/Cas9 based biosynthetic engineering of an artemisinic acid producing strain and a nystatin producing strain[D]. Beijing: Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 2020(in Chinese).
[8]
Ai LM, Guo WW, Chen W, et al. The gal80 deletion by CRISPR-Cas9 in engineered Saccharomyces cerevisiae produces artemisinic acid without galactose induction. Curr Microbiol, 2019, 76(11): 1313-1319. DOI:10.1007/s00284-019-01752-2
[9]
Wang Q, Cobine PA, Coleman JJ. Efficient genome editing in Fusarium oxysporum based on CRISPR/Cas9 ribonucleoprotein complexes. Fungal Genet Biol, 2018, 117: 21-29. DOI:10.1016/j.fgb.2018.05.003
[10]
Kumar A. Multipurpose transposon-insertion libraries in yeast. Cold Spring Harb Protoc, 2016, 2016(6): 499-502.
[11]
Peck RF, DasSarma S, Krebs MP. Homologous gene knockout in the archaeon Halobacterium salinarum with ura3 as a counterselectable marker. Mol Microbiol, 2000, 35(3): 667-676.
[12]
Staab JF, Sundstrom P. URA3 as a selectable marker for disruption and virulence assessment of Candida albicans genes. Trends Microbiol, 2003, 11(2): 69-73. DOI:10.1016/S0966-842X(02)00029-X
[13]
Pais TM, Foulquié-Moreno MR, Hubmann G, et al. Comparative polygenic analysis of maximal ethanol accumulation capacity and tolerance to high ethanol levels of cell proliferation in yeast. PLoS Genet, 2013, 9(6): e1003548. DOI:10.1371/journal.pgen.1003548
[14]
Sambrook J, William D, Russell. Molecular Cloning: A Laboratory Manual. 3rd ed. New York: Cold Spring Harbor Laboratory Press, 2001: 99-125.
[15]
Gietz RD, Schiestl RH. Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc, 2007, 2(1): 35-37. DOI:10.1038/nprot.2007.14
[16]
Paradise EM, Kirby J, Chan R, et al. Redirection of flux through the FPP branch-point in Saccharomyces cerevisiae by down-regulating squalene synthase. Biotechnol Bioeng, 2008, 100(2): 371-378. DOI:10.1002/bit.21766
[17]
Ansarypour Z, Shahpiri A. Heterologous expression of a rice metallothionein isoform (OsMTI-1b) in Saccharomyces cerevisiae enhances cadmium, hydrogen peroxide and ethanol tolerance. Braz J Microbiol, 2017, 48(3): 537-543. DOI:10.1016/j.bjm.2016.10.024
[18]
Bertheleme N, Singh S, Dowell S, et al. Heterologous expression of G-protein-coupled receptors in yeast. Methods Enzymol, 2015, 556: 141-164.
[19]
Nielsen KH. Protein expression-yeast. Methods Enzymol, 2014, 536: 133-147.
[20]
Robertson A, Schaltz K, Neimanis K, et al. Heterologous expression of the Crassostrea gigas (Pacific oyster) alternative oxidase in the yeast Saccharomyces cerevisiae. J Bioenerg Biomembr, 2016, 48(5): 509-520. DOI:10.1007/s10863-016-9685-5
[21]
Eid R, Zhou DR, Arab NTT, et al. Heterologous expression of anti-apoptotic human 14-3-3β/α enhances iron-mediated programmed cell death in yeast. PLoS One, 2017, 12(8): e0184151. DOI:10.1371/journal.pone.0184151
[22]
Ro DK, Paradise EM, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 2006, 440(7086): 940-943. DOI:10.1038/nature04640
[23]
Shi S, Liang Y, Zhang MM, et al. A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae. Metab Eng, 2016, 33: 19-27. DOI:10.1016/j.ymben.2015.10.011
[24]
Tindall SM, Vallières C, Lakhani DH, et al. Heterologous expression of a novel drug transporter from the malaria parasite alters resistance to quinoline antimalarials. Sci Rep, 2018, 8(1): 2464. DOI:10.1038/s41598-018-20816-0
[25]
Kavšček M, Stražar M, Curk T, et al. Yeast as a cell factory: current state and perspectives. Microb Cell Fact, 2015, 14: 94. DOI:10.1186/s12934-015-0281-x
[26]
Soreanu I, Hendler A, Dahan D, et al. Marker-free genetic manipulations in yeast using CRISPR/Cas9 system. Curr Genet, 2018, 64(5): 1129-1139. DOI:10.1007/s00294-018-0831-y
[27]
DiCarlo JE, Norville JE, Mali P, et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res, 2013, 41(7): 4336-4343. DOI:10.1093/nar/gkt135
[28]
Horwitz AA, Walter JM, Schubert MG, et al. Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas. Cell Syst, 2015, 1(1): 88-96. DOI:10.1016/j.cels.2015.02.001
[29]
Jacobs JZ, Ciccaglione KM, Tournier V, et al. Implementation of the CRISPR-Cas9 system in fission yeast. Nat Commun, 2014, 5: 5344. DOI:10.1038/ncomms6344
[30]
Schwartz CM, Hussain MS, Blenner M, et al. Synthetic RNA polymerase Ⅲ promoters facilitate high-efficiency CRISPR-Cas9-mediated genome editing in Yarrowia lipolytica. ACS Synth Biol, 2016, 5(4): 356-359. DOI:10.1021/acssynbio.5b00162
[31]
Lee SW, Lee BY, Oh MK. Combination of three methods to reduce glucose metabolic rate for improving N-acetylglucosamine production in Saccharomyces cerevisiae. J Agric Food Chem, 2018, 66(50): 13191-13198. DOI:10.1021/acs.jafc.8b04291
[32]
Ni J, Zhang G, Qin L, et al. Simultaneously down-regulation of multiplex branch pathways using CRISPRi and fermentation optimization for enhancing β-amyrin production in Saccharomyces cerevisiae. Synth Syst Biotechnol, 2019, 4(2): 79-85. DOI:10.1016/j.synbio.2019.02.002
[33]
Kaneko S, Tanaka T, Noda H, et al. Marker-disruptive gene integration and URA3 recycling for multiple gene manipulation in Saccharomyces cerevisiae. Appl Microbiol Biotechnol, 2009, 83(4): 783-789. DOI:10.1007/s00253-009-2038-0
[34]
Stovicek V, Holkenbrink C, Borodina I. CRISPR/Cas system for yeast genome engineering: advances and applications. FEMS Yeast Res, 2017, 17(5): fox030.
[35]
Laughery MF, Hunter T, Brown A, et al. New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae. Yeast, 2015, 32(12): 711-720. DOI:10.1002/yea.3098
[36]
Breunig JS, Hackett SR, Rabinowitz JD, et al. Genetic basis of metabolome variation in yeast. PLoS Genet, 2014, 10(3): e1004142. DOI:10.1371/journal.pgen.1004142
[37]
Paddon CJ, Westfall PJ, Pitera DJ, et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature, 2013, 496(7446): 528-532. DOI:10.1038/nature12051
[38]
Westfall PJ, Pitera DJ, Lenihan JR, et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. PNAS, 2012, 109(3): E111-E118. DOI:10.1073/pnas.1110740109