生物工程学报  2022, Vol. 38 Issue (2): 691-704
http://dx.doi.org/10.13345/j.cjb.210103
中国科学院微生物研究所、中国微生物学会主办
0

文章信息

李明佳, 周景文, 李江华
LI Mingjia, ZHOU Jingwen, LI Jianghua
关键酶泛素化位点对柚皮素生物合成的影响
Effect of key enzymes ubiquitination sites on the biosynthesis of naringenin
生物工程学报, 2022, 38(2): 691-704
Chinese Journal of Biotechnology, 2022, 38(2): 691-704
10.13345/j.cjb.210103

文章历史

Received: January 31, 2021
Accepted: April 21, 2021
Published: November 23, 2021
关键酶泛素化位点对柚皮素生物合成的影响
李明佳1,2,3 , 周景文1,2,3 , 李江华1,2     
1. 江南大学 未来食品科学中心, 江苏 无锡 214122;
2. 江南大学 生物工程学院, 江苏 无锡 214122;
3. 江南大学 粮食发酵与食品生物制造国家工程研究中心, 江苏 无锡 214122
摘要:黄酮类化合物具有多种生物活性,在食品、药品、化妆品等领域都有重要应用。柚皮素是多种重要黄酮类化合物生物合成的平台化合物。泛素化是蛋白质翻译后修饰的重要一环,参与调控细胞的生命活动。泛素化的蛋白质通过泛素-蛋白酶体系统降解,对维持细胞正常生理活动具有重要意义,对外源蛋白的表达和积累也可能具有显著影响。文中利用荧光双分子互补法在酿酒酵母Saccharomyces cerevisiae中建立了泛素化修饰的实时原位检测体系,以荧光强度表征蛋白的泛素化修饰程度。应用该方法获得了柚皮素合成途径中5个关键酶的潜在泛素化位点。将相关泛素化位点的赖氨酸突变为精氨酸,用于降低关键酶的泛素化修饰程度。其中,酪氨酸解氨酶FjTAL、查尔酮合成酶SjCHS、SmCHS突变体表现为荧光下降,表明其泛素化水平有所降低。发酵结果表明,表达酪氨酸解氨酶FjTAL突变体FjTAL-K487R的酿酒酵母在发酵72 h后获得了74.2 mg/L的对香豆酸产量,相较于原始FjTAL提高了32.3%,而表达查尔酮合成酶突变体的酿酒酵母产量没有明显变化。结果表明,对柚皮素生物合成途径相关蛋白的潜在泛素化位点进行突变,能够提高对香豆酸产量,对柚皮素生物合成有积极影响。
关键词酿酒酵母    黄酮    对香豆酸    柚皮素    泛素化    蛋白质工程    
Effect of key enzymes ubiquitination sites on the biosynthesis of naringenin
LI Mingjia1,2,3 , ZHOU Jingwen1,2,3 , LI Jianghua1,2     
1. Science Center for Future Foods, Jiangnan University, Wuxi 214122, Jiangsu, China;
2. School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China;
3. National Engineering Research Center for Cereal Fermantation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, Jiangsu, China
Abstract: Flavonoids have a variety of biological activities and have important applications in food, medicine, cosmetics, and many other fields. Naringenin is a platform chemical for the biosynthesis of many important flavonoids. Ubiquitination plays a pivotal role in the post-translational modification of proteins and participates in the regulation of cellular activities. Ubiquitinated proteins can be degraded by the ubiquitin-protease system, which is important for maintaining the physiological activities of cells, and may also exert a significant impact on the expression of exogenous proteins. In this study, a real-time in-situ detection system for ubiquitination modification has been established in Saccharomyces cerevisiae by using a fluorescence bimolecular complementation approach. The ubiquitination level of protein was characterized by fluorescence intensity. By using the approach, the potential ubiquitination sites of proteins involved in the naringenin biosynthesis pathway have been obtained. The lysine residues of the relevant ubiquitination sites were mutated to arginine to reduce the ubiquitination level. The mutants of tyrosine ammonia-lyase (FjTAL) and chalcone synthase (SjCHS, SmCHS) showed decreased fluorescence, suggested that a decreased ubiquitination level. After fermentation verification, the S. cerevisiae expressing tyrosine ammonia-lyase FjTAL mutant FjTAL-K487R accumulated 74.2 mg/L p-coumaric acid at 72 h, which was 32.3% higher than that of the original FjTAL. The strains expressing chalcone synthase mutants showed no significant change in the titer of naringenin. The results showed that mutation of the potential ubiquitination sites of proteins involved in the naringenin biosynthesis pathway could increase the titer of p-coumaric acid and have positive effect on naringenin biosynthesis.
Keywords: Saccharomyces cerevisiae    flavonoids    p-coumaric acid    naringenin    ubiquitination    protein engineering    

黄酮类化合物是植物在长期自然选择过程中产生的一类次生代谢产物,具有多种生物活性,与人类健康息息相关。研究发现其具有抗氧化[1]、抗炎[2]、抗癌[3]、抗菌[4]、抗病毒[5]、抗凝血[6]等生理功能。柚皮素是黄酮类化合物生物合成途径的关键平台化合物,可以进一步转化为多种重要的黄酮类化合物[7]。目前,柚皮素已经在酵母中实现异源合成。Lyu等通过在酿酒酵母中上调乙酰辅酶A供应、下调脂肪酸合成,增强了丙二酰辅酶A供给,结合对酪氨酸合成途径反馈抑制的解除,柚皮素产量达到90 mg/L[8]。Li等在酿酒酵母中通过多拷贝整合,使柚皮素产量提高至149.8 mg/L[9]。Palmer等通过在解脂耶氏酵母强化β氧化途径,得到了898 mg/L柚皮素[10]。Gao等通过高通量方法筛选不同强度的启动子组合,优化柚皮素合成途径,在5 L发酵罐上得到了1.21 g/L柚皮素[11]。此前大量的研究主要针对代谢途径进行改造,而很少关注对于外源酶本身的研究。

蛋白质翻译后修饰对蛋白质折叠、细胞内定位、稳定性及正确行使功能等方面都发挥着重要作用[12-13]。蛋白质的翻译后修饰种类繁多,主要包括磷酸化、甲基化、乙酰化、糖基化和泛素化等形式[14]。其中,通过泛素介导的非正常蛋白质的识别和选择性降解是生命活动中的重要环节,对维持蛋白质在细胞内的动态平衡具有重要作用。泛素(ubiquitin, Ub) 是一种普遍存在于真核细胞中的由76个氨基酸残基组成的多肽,几乎在所有真核细胞的翻译后修饰中发挥重要作用[12, 15]。泛素能够被共价连接到某些类泛素分子或其他蛋白质底物上形成泛素化修饰,经过泛素化修饰的底物会被26S蛋白酶体降解[16]。这是细胞内短寿命蛋白和一些异常蛋白降解的普遍途径。蛋白质泛素化是一种影响整个细胞生命活动的多功能翻译后修饰[17],同时也可能会对外源蛋白的表达和积累具有显著影响。

双分子荧光互补(bimolecular fluorescent complementary, BiFC) 是一种基于荧光蛋白片段重组的蛋白质-蛋白质相互作用的监测方法[14]。相比于蛋白质印记法和免疫共沉淀法,BiFC法能在尽可能不干扰正常细胞状态的情况下,即时反映活细胞中蛋白之间的相互作用[18-19]。当荧光蛋白被分成2个肽段时,2个肽段本身没有荧光信号,而当2个肽段分别连接到2个存在相互作用的蛋白质分子上时,就能促使荧光蛋白片段重新组装形成可检测到荧光信号的荧光复合体[20-21]。BiFC法已成功用于验证已知的相互作用蛋白,如酿酒酵母中Pho2和Pho4[22],哺乳动物细胞中PKB和hFt1[23],人类细胞中端粒信号调节因子等[24]

根据泛素化修饰中Ub与目的蛋白赖氨酸残基连接修饰的特点,利用BiFC法探究柚皮素生物合成途径关键酶是否存在泛素化修饰,寻找到这些酶关键泛素化修饰位点,对这些位点进行突变,能够阻碍Ub与目的蛋白连接,从而能够减弱目的蛋白泛素化修饰程度。减弱目的蛋白的泛素化修饰程度,能减少26S蛋白酶体对目的蛋白的降解。因此,对外源蛋白的潜在泛素化位点进行突变,有可能强化外源蛋白的表达从而提高目标化合物的产量。

1 材料与方法 1.1 菌株与质粒

酿酒酵母Saccharomyces cerevisiae CEN.PK2-1D-ΔUBI4 (ΔUBI4、MATα、ura3-52、trp1-286、leu2-3、112、his3Δ1) 用于构建泛素化修饰检测系统和发酵产生对香豆酸。SC061 (ΔUBI4、HO: : Pc4CL SmCHI MATα、ura3-52、trp1-286、leu2-3、112、his3Δ1) 用于发酵产生柚皮素。CEN.PK2-1D (MATα、ura3-52、trp1-286、leu2-3、112、his3Δ1) 基因组DNA用于基因扩增。pY26-TEF-GPD[25]和pRS424[26]载体用于表达载体的构建。EGFP、约氏黄杆菌来源的酪氨酸解氨酶FjTAL (tyrosine ammonia-lyase from Flavobacterium johnsoniae)、欧芹来源的Pc4CL (4-coumarate:CoA ligase from Petroselinum crispum)、矮牵牛来源的PhCHS (chalcone synthase from PetuniaX hybrida)、水飞蓟来源的SmCHS (chalcone synthase from Silybum marianum)、槐树来源的SjCHS (chalcone synthase from Sophora japonica)、水飞蓟来源的SmCHI (chalcone isomerase from Silybum marianum) 基因为实验室保藏[11, 27]。本文所用菌株如表 1所示。

表 1 本研究使用的菌株 Table 1 Strains used in this study
Strains Genotype Sources
CEN.PK2-1D MATα, ura3–52, trp1–286, leu2–3, 112, his3Δ1 Lab storage
CEN.PK2-1D-ΔUBI4 ΔUBI4, MATα, ura3–52, trp1–286, leu2–3, 112, his3Δ1 Lab storage
SC061 CEN.PK2-1D-ΔUBI4 HO: : Pc4CL SmCHI This study
SC018 CEN.PK2-1D-ΔUBI4 harboring pRS424-UBI4-GN pY26-Gene-GC This study
SC021 CEN.PK2-1D-ΔUBI4 harboring pRS424-UBI4-GN pY26-PhCHS-GC This study
SC022 CEN.PK2-1D-ΔUBI4 harboring pRS424-UBI4-GN pY26-PhCHS-K49R-GC This study
SC023 CEN.PK2-1D-ΔUBI4 harboring pRS424-UBI4-GN pY26-PhCHS-K320R-GC This study
SC024 CEN.PK2-1D-ΔUBI4 harboring pRS424-UBI4-GN pY26-PhCHS-K351R-GC This study
SC025 CEN.PK2-1D-ΔUBI4 harboring pRS424-UBI4-GN pY26-PhCHS-K355R-GC This study
SC026 CEN.PK2-1D-ΔUBI4 harboring pRS424-UBI4-GN pY26-SjCHS-GC This study
SC027 CEN.PK2-1D-ΔUBI4 harboring pRS424-UBI4-GN pY26-SjCHS-K320R-GC This study
SC028 CEN.PK2-1D-ΔUBI4 harboring pRS424-UBI4-GN pY26-SmCHS-GC This study
SC029 CEN.PK2-1D-ΔUBI4 harboring pRS424-UBI4-GN pY26-SmCHS-K51R-GC This study
SC030 CEN.PK2-1D-ΔUBI4 harboring pRS424-UBI4-GN pY26-SmCHS-K326R-GC This study
SC031 CEN.PK2-1D-ΔUBI4 harboring pRS424-UBI4-GN pY26-SmCHI-GC This study
SC032 CEN.PK2-1D-ΔUBI4 harboring pRS424-UBI4-GN pY26-SmCHI-K173R-GC This study
SC033 CEN.PK2-1D-ΔUBI4 harboring pRS424-UBI4-GN pY26- Pc4CL-GC This study
SC034 CEN.PK2-1D-ΔUBI4 harboring pRS424-UBI4-GN pY26- Pc4CL -K137R-GC This study
SC035 CEN.PK2-1D-ΔUBI4 harboring pRS424-UBI4-GN pY26-FjTAL-GC This study
SC036 CEN.PK2-1D-ΔUBI4 harboring pRS424-UBI4-GN pY26-FjTA -K265R-GC This study
SC037 CEN.PK2-1D-ΔUBI4 harboring pRS424-UBI4-GN pY26-FjTAL-K487R-GC This study
SC050 SC061 harboring pRS424-UBI4-GN pY26-SjCHS-GC This study
SC051 SC061 harboring pRS424-UBI4-GN pY26-SjCHS-K320R-GC This study
SC052 SC061 harboring pRS424-UBI4-GN pY26-SmCHS-GC This study
SC053 SC061 harboring pRS424-UBI4-GN pY26-SmCHS-K51R-GC This study
SC054 SC061 harboring pRS424-UBI4-GN pY26-SmCHS-K326R-GC This study
1.2 培养基

LB培养基:蛋白胨10 g/L,酵母提取物5 g/L,氯化钠10 g/L,加入1‰ 100 mg/mL氨苄青霉素。

YPD培养基:20 g/L葡萄糖,20 g/L蛋白胨,10 g/L酵母粉。

YNB基础培养基:1.74 g/L无氨基酵母氮源,20 g/L葡萄糖,5 g/L硫酸铵。

YNB完全培养基:YNB培养基中添加50 mg/L组氨酸、50 mg/L色氨酸、50 mg/L亮氨酸、50 mg/L尿嘧啶。

YNB-UraTrp培养基:YNB基础培养基中添加50 mg/L组氨酸、50 mg/L亮氨酸。

固体培养基中额外添加15 g/L的琼脂粉。

1.3 泛素化修饰检测系统构建及表征 1.3.1 泛素化检测系统构建

构建pRS424-UBI4-GN和pY26-gene-GC的引物见表 2,以酿酒酵母CEN.PK2-1D的基因组为模板扩增UBI4。将EGFP在158/159两个氨基酸之间断开成GN、GC 2个片段,由引物GN-F/GN-R和GC-F/GC-R分别扩增。pRS424质粒用于表达泛素蛋白UBI4,末端与EGFP氨基端GN片段之间由一段linker连接,通过Gibson组装的方法得到质粒pRS424-UBI4-GN。pY26-TEF-GPD质粒表达EGFP羧基端GC片段,GC片段前有linker序列,通过Gibson组装的方法得到pY26-gene-GC质粒。去除终止密码子,扩增目的蛋白质编码基因,通过Gibson组装连接到pY26-gene-GC质粒上的linker之前与GC片段融合表达。Linker序列为:5′-ATGATTCATAACTTTTTGTTTCAAATCATTTGGAATTTTACAAGCTGGTCT-3′[21]

表 2 本研究使用的引物 Table 2 Primers used in this study
Primer names Sequences (5′→3′)
UBI4-F GATAAGCTTGATATCGAATCAGTTACCACCCCTCAAC
UBI4-R GTAAAATTCCAAATGATTTGAAACAAAAAGTTATGAATCATATGCAGATTTTCGTCAAGACTTTG
GN-F GTTTCAAATCATTTGGAATTTTACAAGCTGGTCTCTTTTGTTTGTCTGCCATGATG
GN-R CTGCAGGAAATGGGTAAGGGAGAAGAACTTTTC
pRS424-1-F CTCCCTTACCCATTTCCTGCAGCCCGGG
pRS424-1-R GTGGTAACTGATTCGATATCAAGCTTATCGATACCG
GC-F GTTAACTGATCAGCGGCCTTATTTGTATAGTTCATCCATGCCATGTG
GC-R GTAAAATTCCAAATGATTTGAAACAAAAAGTTATGAATCATAATGGAATCAAAGTTAACTTCAAAATTAGACAC
pY26-1-F GTTTCAAATCATTTGGAATTTTACAAGCTGGTCTGCGCTAGTTCTAGAAAACTT
pY26-1-R GAACTATACAAATAAGGCCGCTGATCAGTTAACTC
Pc4CL-F CAAGCTGGTCTCTTCGGCAGGTCGCCG
Pc4CL-R CTAGAACTAGCGCCCACCGATGGGTGACTGCGTTGC
pY26-2-F CAGTCACCCATCGGTGGGCGCTAGTTCTAGAAAACTTAGATTAGATTG
pY26-2-R CGGCGACCTGCCGAAGAGACCAGCTTGTAAAATTCCAAATGATTTG
SmCHI-F CAAGCTGGTCTGTTACCGATTTTAAAGGCACCTTCATTC
SmCHI-R GCGCCCACCGATGGCAGCAAGCATTACGGC
pY26-3-F GCCGTAATGCTTGCTGCCATCGGTGGGCGCTAGTTCTAGAAAAC
pY26-3-R CCTTTAAAATCGGTAACAGACCAGCTTGTAAAATTCCAAATGATTTG
PhCHS-F ACAAGCTGGTCTGGTAGCCACACTATGCAGAACC
PhCHS-R CTAGAACTAGCGCCCACCGATGGTTACGGTGGAAGAATACCG
pY26-4-F GTAACCATCGGTGGGCGCTAGTTCTAGAAAACTTAGATTAGATTGC
pY26-4-R CTGCATAGTGTGGCTACCAGACCAGCTTGTAAAATTCCAAATGATTTG
FjTAL-F CAAGCTGGTCTATTGTTAATCAAATGATCCTTAACCTTTTGTACG
FjTAL-R CTAGCGCCCACCGATGAACACCATTAATGAATACTTGAGTTTAGAAG
pY26-5-F CATTAATGGTGTTCATTGTTTTTAGTTCTAGAAAACTTAGATTAGATTGCTATGC
pY26-5-R GGTTAAGGATCATTTGATTAACAATAGACCAGCTTGTAAAATTCCAAATG
SjCHS-F CAAGCTGGTCTCCCCTGTAGGGGAACTGAATG
SjCHS-R CTAGAACTAGCGCCCACCGATGGTCACCGTTGAAGAAATTAGGAATG
pY26-6-F CGGTGACCATCGGTGGGCGCTAGTTCTAGAAAACTTAGATTAGATTGC
pY26-6-R TCAGTTCCCCTACAGGGGAGACCAGCTTGTAAAATTCCAAATGATTTG
SmCHS-F CAAGCTGGTCTAACAGAAATGGTGGTCGGAAGTC
SmCHS-R CTAGAACTAGCGCCCACCGATGGCCTCTACCCCCG
pY26-7-F GAGGCCATCGGTGGGCGCTAGTTCTAGAAAACTTAGATTAGATTGC
pY26-7-R CCGACCACCATTTCTGTTAGACCAGCTTGTAAAATTCCAAATGATTTG
Pc4CL-K137R-1-F GCGTAGTCCTTAACTCTGTCAACATAGCATGCCTGGG
Pc4CL-K137R-1-R GATTACTAGCGAAGCTGCGGG
Pc4CL-K137R-2-F CCCGCAGCTTCGCTAGTAATC
Pc4CL-K137R-2-R CATGCTATGTTGACAGAGTTAAGGACTACGCAGCGGAG
SmCHI-K173R-1-F CAATCAGAGCTGCTTCTCTTTCCGGGATGCTGGTGTC
SmCHI-K173R-1-R CAATCAGAGCTGCTTCTCTTTCCGGGATGCTGGTGTC
SmCHI-K173R-2-F CCCGCAGCTTCGCTAGTAATC
SmCHI-K173R-2-R CCCGGAAAGAGAAGCAGCTCTGATTGAAAATAAAGCTG
PhCHS-K49R-1-F CAGATCCGTTCTATGTTCAGAGTTGGTGATACGAAAGTAATAG
PhCHS-K49R-2-R CCAACTCTGAACATAGAACGGATCTGAAAGAAAAATTCAAACGTATG
PhCHS-K320R-1-F CCGGTCTCAGACCCAGTTTAATTTCGACCTGG
PhCHS-K320R-2-R CGAAATTAAACTGGGTCTGAGACCGGAAAAACTGAAAGCGACC
PhCHS-K351R-1-F GCCGATGCTCTGCGCATTTCATCCAGAATAAACAGG
PhCHS-K351R-2-R CTGGATGAAATGCGCAGAGCATCGGCTAAAGAAGGTCTGGG
PhCHS-K355R-1-F CCCAGACCTTCTCTAGCCGATGCTTTGCGC
PhCHS-K355R-2-R GCATCGGCTAGAGAAGGTCTGGGCACCACG
PhCHS-KR-F CCCGCAGCTTCGCTAGTAATC
PhCHS-KR-R GATTACTAGCGAAGCTGCGGG
SjCHS-K51R-1-F GAGATCGACCATATGTTCACTTCTGGTGATGCGAAAATAGTAGTCAGG
SjCHS-K51R-2-R GCATCACCAGAAGTGAACATATGGTCGATCTCAAAGAG
SjCHS-K326R-1-F CATCTTCTCTTCTCTCAATCCAAGCTTCAATTCCACCTG
SjCHS-K326R-2-R GGAATTGAAGCTTGGATTGAGAGAAGAGAAGATGAAAGCTACAAGAAGTGTG
SjCHS-KR-F CCCGCAGCTTCGCTAGTAATC
SjCHS-KR-R GATTACTAGCGAAGCTGCGGG
FjTAL-K265R-1-F AGTGGTCTTCTCTTCTTCTGATCAATGTAC
FjTAL-K265R-2-R GATCAGAAGAAGAGAAGACCACTTATACTCAGG
FjTAL-K487R-1-F CATAACTTGGTCTTCTCTAAAGGTTGGG
FjTAL-K487R-2-R GAAACATAATCCCAACCTTTAGAGAAGACC
FjTAL-KR-F CGCATACACTATTCTCAGAATGACTTGGTTG
FjTAL-KR-R CAACCAAGTCATTCTGAGAATAGTGTATG
CRISPR-1-F GATCCTTACATGTTTGGCACGTAGGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGC
CRISPR-1-R GCTTTTCTGTAACGTTCACCCTCTACC
CRISPR-2-F GGGATGCTAAGGTAGAGGGTGAACG
CRISPR-2-R CCTACGTGCCAAACATGTAAGGATCATTTATCTTTCACTGCGGAGAAGTTTC
HO-up-F CTTTAATTTGCGGCCGGGATCTTGATGGAGAGAAGCAAATCC
HO-up-R CGAATTGGGTACCGGCCTTCTATCGTAAGCCCATATACAG
HO-down-F CGCCAAGCGCGCGGTGAACCTGGTAGGTTAGATCCC
HO-down-R GCTCCAGCTTTTGTTCCCTAACCACAGACCAAGCATCC
4CL-F CCAACGATTTGACCCTTACTTCGGCAGGTCGCC
4CL-R GCGCGGCCGCTGATGGGTGACTGCGTTGCC
CHI-F GAACTAGTGGATCATGGCAGCAAGCATTACGGCAATC
CHI-R GACGGTATCGTCAGTTACCGATTTTAAAGGCACCTTCATTC
HOig-1-F CGCAGTCACCCATCAGCGGCCGCGCTAG
HOig-1-R GTAATGCTTGCTGCCATGATCCACTAGTTCTAGAATCCGTCG
HOig-2-F CCTTTAAAATCGGTAACTGACGATACCGTCGACCTCGAGTC
HOig-2-R CTCCATCAAGATCCCGGCCGCAAATTAAAGCCTTCGAG
HOig-3-F CGATAGAAGGCCGGTACCCAATTCGCCCTATAGTGAG
HOig-3-R CCTACCAGGTTCACCGCGCGCTTGGCGTAATCATG
HOig-4-F GGTCTGTGGTTAGGGAACAAAAGCTGGAGCTCGCTATTACG
HOig-4-R GACCTGCCGAAGTAAGGGTCAAATCGTTGGTAGATACGTTG
1.3.2 泛素化位点预测及突变

通过泛素化位点预测网站UbPred (http://www.ubpred.org/) 预测柚皮素生物合成途径中相关酶酪氨酸解氨酶(FjTAL)、4-香豆酸:CoA连接酶(Pc4CL)、查尔酮合成酶(PcCHS、SmCHS、SjCHS) 和查尔酮异构酶(MsCHI) 的泛素化位点,结果如表 3所示。将预测目的蛋白泛素化位点由赖氨酸突变为精氨酸,突变引物见表 2。使用Gibson组装方法将扩增片段连接到泛素检测载体上,产物转化大肠杆菌感受态,通过菌落PCR验证阳性转化子,测序正确后获取正确的突变质粒。

表 3 泛素化位点预测 Table 3 Prediction of ubiquitination sites
Enzymes Position Peptide Score Threshold
PhCHS 49 SEHKTDL* 2.838 Medium
320 LGLKPEK 1.403 High
355 ASAKEGL 0.720 Medium
351 EMRKASA 0.620 Low
SjCHS 320 LGLKEEK 1.673 High
SmCHS 326 LGLKEEK 1.673 High
SmCHI 51 RITKSEH 3.191 Medium
173 IPEKEAA 0.660 Low
Pc4CL 122 KQLKASQ 2.971 Medium
FjTAL 265 LIRKRED 0.740 Medium
487 PTFKEDQ 3.147 Medium
*: underlined letters are potential ubiquitination sites.
1.3.3 荧光强度检测

将获得的pY26-gene-GC重组质粒及相应的突变质粒与pRS424-UBI4-GN,通过醋酸锂转化法转化酿酒酵母CEN.PK2-1D-ΔUBI4,涂布YNB-UraTrp平板,30 ℃培养3–4 d后,挑取单菌落进行菌落PCR验证。将阳性转化子接种至装有3 mL YNB-UraTrp液体培养基的24孔板中,30 ℃、220 r/min过夜培养,分别取样对数后期和稳定期的菌液,8 000 r/min离心5 min去上清。用PBS溶液清洗细胞2次,再用PBS溶液重悬细胞,使用酶标仪测定样品在600 nm处的吸光度OD600,并取200 μL于96孔全黑酶标板,检测在发射光/激发光=488/520 nm条件下的荧光强度F。再取200 μL PBS溶液至6孔全黑酶标板,测定荧光强度Fc用于消除本底荧光影响,以连接了初始待检测蛋白序列的重组质粒pY26-gene-GC和pRS424-UBI4-GN的转化子作为阳性对照,以空白质粒pY26-gene-GC和pRS424-UBI4-GN的转化子作为阴性对照。以相对荧光强度(relative fluorescence intensity, RF) 表征泛素化修饰程度。RF=(F–Fc)/OD600

1.4 发酵条件

产对香豆酸菌株发酵条件:将构建好的重组菌株SC035、SC036、SC037在YNB-UraTrp平板上活化,挑取单菌落至10 mL YNB-UraTrp液体培养基中,30 ℃、220 r/min培养至对数期,按1%比例转接至25 mL YPD培养基中,YPD培养基中添加了2 g/L的酪氨酸作为发酵底物,30 ℃、220 r/min培养72 h,每隔24 h取样分析。

产柚皮素菌株发酵条件:将构建好的重组菌株SC050、SC051、SC052、SC053、SC054在YNB-UraTrp平板上活化,挑取单菌落至10 mL YNB-UraTrp液体培养基中,30 ℃、220 r/min培养至对数期,按1%比例转接至25 mL YPD培养基中,YPD培养基中添加了500 mg/L的对香豆酸作为发酵底物,30 ℃、220 r/min培养72 h,每隔24 h取样分析。

1.5 HPLC检测方法

对香豆酸检测方法:菌株SC035、SC036、SC037发酵液与甲醇1︰1混合振荡2–3 min,12 000 r/min离心2 min,取上清过尼龙滤膜(0.22 μm),用于高效液相色谱检测。样品使用岛津高效液相色谱进行分析,C18色谱柱(4.6 mm×250 mm,直径5 mm,Thermo),柱温40 ℃,流动相A相为水相,B相为乙腈,A、B相中分别添加1‰的三氟乙酸。进样量为10 μL,流速为1 mL/min,检测波长为290 nm,梯度洗脱程序为:0–0.1 min B相为10%,0.1–9.0 min B相从10%线性增加至40%,9.0–15.0 min B相从40%线性增加至60%,15–18 min B相从60%线性减少至10%,18.0–20.0 min B相稳定在10%。

柚皮素检测方法与对香豆酸检测方法相同,检测波长为320 nm[9]

2 结果与分析 2.1 基于荧光双分子互补法的泛素化修饰检测系统的构建

经典的泛素修饰系统利用ATP及Mg2+作为辅因子,通过3种酶:泛素活化酶(ubiquitin- activating enzyme, E1)、泛素结合酶(ubiquitin- conjugating enzyme, E2) 和泛素连接酶(ubiquitin- ligase enzyme, E3) 级联反应最终将Ub的C末端共价连接至底物蛋白的赖氨酸上[28-30] (图 1A)。

图 1 荧光双分子互补法检测泛素化修饰 Fig. 1 Ubiquitination modification detected by fluorescence bimolecular complementation approach. (A) Ubiquitin-proteasome system. ubiquitin-activating enzyme: E1; ubiquitin-conjugating enzyme: E2; ubiquitin-ligase enzyme: E3; ubiquitin: Ub. (B) Plasmid pRS424-UBI4-GN fuses to express the N-terminal fragments of EGFP and UBI4. Gene of interest was cloned into the test protein integration site of plasmid pY26-gene-GC. (C) Co-transforming plasmids pRS424-UBI4-GN and pY26-gene-GC into CEN.PK2-1DΔUBI4. If ubiquitin is attached to the target protein the recombinant fluorescence signal can be detected.

根据泛素化修饰的特点,选择以pRS424质粒为框架融合表达酿酒酵母编码泛素蛋白UBI4基因与EGFP的氨基端片段,以pY26质粒为框架构建目的蛋白与EGFP的羧基端片段,当需要检测目的蛋白的泛素化修饰程度时,只需将扩增得到的目的蛋白序列通过Gibson组装方法连接至质粒pY26-gene-GC上(图 1B)。共转化两个质粒于酿酒酵母细胞内,如果目的蛋白存在泛素化修饰则能检测到重组的荧光信号(图 1C)。当泛素化程度降低时,连接到目的蛋白上的Ub减少,表现为荧光强度减弱。为了减弱酿酒酵母本身表达的Ub与融合表达EGFP氨基端片段的Ub与靶蛋白的竞争性结合,研究选用CEN.PK2-1D-ΔUBI4菌株作为检测泛素化修饰程度的底盘菌株,增强检测泛素化修饰程度的荧光效果[31]

2.2 荧光强度表征柚皮素生物合成相关蛋白突变体泛素化修饰程度

柚皮素的生物合成途径如图 2A所示。首先由酪氨酸解氨酶(TAL)催化底物酪氨酸反应生成对香豆酸(p-coumaric acid, p-CA),之后由4-香豆酸: 辅酶A连接酶(4CL) 催化底物对香豆酸和CoA反应生成对香豆酰-CoA,对香豆酰CoA由查尔酮合成酶(CHS) 催化反应生成柚皮素查耳酮,柚皮素查尔酮再由查耳酮异构酶(CHI) 催化异构化最终生成柚皮素。根据泛素化位点的预测结果,通过定点突变PCR对柚皮素生物合成途径相关蛋白进行点突变。为了最大程度不影响酶的原本构象,将泛素化修饰位点赖氨酸突变为精氨酸(图 2B)[21],以期减弱目的蛋白泛素化修饰程度,强化柚皮素的生物合成。

图 2 点突变柚皮素生物合成途径相关蛋白 Fig. 2 Point mutations in proteins involved in naringenin biosynthesis pathway. (A) The biosynthesis pathway of naringenin. (B) According to the predicted results of the website, point mutations were introduced into proteins involved in naringenin biosynthesis pathway. The ubiquitin modification site was mutated from lysine to arginine.

将柚皮素合成途径相关蛋白及其突变体通过Gibson组装连接至pY26-gene-GC,并连同pRS424-UBI4-GN共转化CEN.PK2-1D-ΔUBI4,得到转化子SC021-SC037。以共转化pY26-gene- GC和pRS424-UBI4-GN的酿酒酵母菌株作为阴性对照。在酿酒酵母中存在4种编码泛素蛋白的基因UBI1–4,这4个基因在酿酒酵母对数生长期都会表达,但稳定期仅有UBI3UBI4基因表达[32]。分别取样培养至24 h、48 h的发酵液样品,用酶标仪检测荧光强度表征酿酒酵母不同状态下的泛素化修饰程度。培养24 h的荧光检测结果显示,突变体SjCHS-K320R、SmCHS-K51R、FjTAL-K265R、FjTAL-K487R相较于阳性对照荧光强度有所下降(图 3A)。48 h的荧光检测结果显示SmCHS-K51R、SmCHS- K326R、FjTAL-K487R相较于阳性对照荧光强度有所下降(图 3B)。突变体表现出荧光强度降低,可能由于突变泛素化修饰位点阻碍了Ub与目的蛋白的连接修饰,从而降低目的蛋白泛素化修饰程度。

图 3 柚皮素生物合成途径相关蛋白突变体相对荧光强度 Fig. 3 Relative fluorescence intensity of mutants of proteins involved in naringenin biosynthesis pathway after culturing for 24 h (A) and 48 h (B).
2.3 FjTAL突变体对对香豆酸产量的影响

根据泛素化修饰的荧光表征结果,进一步在酿酒酵母CEN.PK2-1DΔUBI4中游离表达FjTAL及其突变体得到菌株SC035、SC036、SC037。共转化pY26-gene-GC和pRS424- UBI4-GN至CEN.PK2-1DΔUBI4得到SC018菌株作为阴性对照。添加2 g/L酪氨酸作为底物在YPD中发酵,评价FjTAL及其突变体以酪氨酸为底物生产对香豆酸的能力。

发酵24 h后阳性对照SC035菌株得到了0.6 mg/L的p-CA,突变体FjTAL-K265R和FjTAL-K487R对应菌株SC036和SC037的p-CA产量分别为1.3 mg/L和3.1 mg/L。发酵48 h后阳性对照SC035菌株得到了39.8 mg/L的p-CA,突变体FjTAL-K265R和FjTAL-K487R对应菌株SC036和SC037的p-CA产量分别为24.1 mg/L和37.1 mg/L。发酵72 h后阳性对照SC035菌株得到了56.1 mg/L的p-CA,突变体FjTAL-K265R和FjTAL-K487R对应菌株SC036和SC037的p-CA产量分别为46.4 mg/L和74.2 mg/L。经过72 h发酵,突变体FjTAL-K487R相较于原始FjTAL p-CA产量由56.1 mg/L提高至74.2 mg/L,提高了32.3% (图 4)。结果表明,对FjTAL潜在泛素化位点的突变,可以降低FjTAL的泛素化修饰程度,提高对香豆酸的产量。

图 4 FjTAL突变体对对香豆酸产量的影响 Fig. 4 Effect of FjTAL mutations on the production of p-coumaric acid.
2.4 SjCHS、SmCHS突变体对柚皮素产量的影响

利用CRISPR/Cas9系统将4CLCHI基因表达框整合在酿酒酵母CEN.PK2-1DΔUBI4 HO基因上(图 5)。根据泛素化修饰的荧光表征结果,在酿酒酵母CEN.PK2-1DΔUBI4中游离表达SjCHS、SmCHS及其对应的突变体得到菌株SC050、SC051、SC052、SC053、SC054。共转化pY26-gene-GC和pRS424-UBI4-GN至CEN.PK2-1DΔUBI4得到SC018菌株作为阴性对照。在YPD培养基中发酵24 h后,添加500 mg/L对香豆酸作为底物,评价SjCHS、SmCHS及其对应的突变体以对香豆酸为底物生产对柚皮素的能力。

图 5 CRISPR/Cas9系统用于基因整合 Fig. 5 Integration of genes by CRISPR/Cas9 system. (A) Integration of 4CL and CHI into the HO gene of CEN.PK2-1DΔUBI4 genome by CRISPR/Cas9 system. (B) Verification of gene integration by PCR.

添加底物对香豆酸发酵24 h后,SjCHS阳性对照对应菌株SC050得到了94.5 mg/L的柚皮素,突变体SjCHS-K320R对应菌株SC051得到了82.8 mg/L的柚皮素。SmCHS阳性对照对应菌株SC052得到了52.8 mg/L的柚皮素,突变体SmCHS-K51R和SmCHS-K326R对应菌株SC053和SC054分别得到了49.4 mg/L和53.4 mg/L的柚皮素。添加底物对香豆酸发酵48 h后,SjCHS阳性对照对应菌株SC050得到了229.8 mg/L的柚皮素,突变体SjCHS-K320R对应菌株SC051得到了208.7 mg/L的柚皮素。SmCHS阳性对照对应菌株SC052得到了134.4 mg/L的柚皮素,突变体SmCHS-K51R和SmCHS-K326R对应菌株SC053和SC054分别得到了136.8 mg/L和137.4 mg/L的柚皮素。添加底物对香豆酸发酵72 h后,SjCHS阳性对照对应菌株SC050得到了245.9 mg/L的柚皮素,突变体SjCHS-K320R对应菌株SC051得到了236.5 mg/L的柚皮素。SmCHS阳性对照对应菌株SC052得到了149.8 mg/L的柚皮素,突变体SmCHS-K51R和SmCHS-K326R对应菌株SC053和SC054分别得到了145.5 mg/L和157.4 mg/L的柚皮素(图 6)。结果表明,SjCHS的催化效率高于SmCHS,突变体SjCHS-K320R未能提升柚皮素产量,突变体SmCHS-K326R相比于SmCHS发酵产柚皮素的产量有所提升,但效果不明显。荧光表征结果也显示SjCHS、SmCHS相较于FjTAL的荧光结果降低的幅度较小。

图 6 SjCHS、SmCHS对应突变体对柚皮素产量的影响 Fig. 6 Effect of SmCHS, SjCHS mutations on the production of naringenin.
3 讨论

柚皮素的生物合成途径涉及多种外源蛋白,强化外源蛋白表达是提升柚皮素产量的重要前提。基于高通量筛选方法筛选不同强度启动子用于代谢途径优化[11],或是整合多拷贝位点强化关键基因表达都为解决该问题提供了思路[9]。但是,此前大量针对微生物合成柚皮素等黄酮类化合物的研究很少关注对外源酶自身的改造。蛋白质泛素化是一种多功能的翻译后修饰,能影响细胞的整个生命活动。通过泛素介导的非正常蛋白质的识别和选择性降解是生命活动中的重要环节,对维持蛋白质在细胞内的动态平衡具有重要作用,但同时也可能会影响外源表达蛋白在胞内积累,从而影响催化反应。利用BiFC法发现外源蛋白的潜在泛素化位点,并对这些位点进行突变,降低外源蛋白泛素化修饰程度,有助于目标产物产量的提升。该方法为强化外源蛋白的表达提供了一种新的思路。本研究应用BiFC法,基于荧光值评价柚皮素生物合成途径相关蛋白的泛素化修饰程度,并对FjTAL潜在泛素化修饰位点进行突变,对香豆酸的产量提高了32.3%。

研究表明,泛素化修饰除了与蛋白质的降解密切相关,被泛素化修饰的蛋白还会影响靶蛋白的催化活性[33],或使其发生空间位置的转移[34]。此外,靶蛋白的赖氨酸残基除了可以被泛素蛋白连接修饰,还可以作为小泛素样修饰蛋白的连接位点,发生类泛素化修饰[35]。对靶蛋白的某个氨基酸进行突变可能也会对蛋白构象产生影响,因此靶蛋白的赖氨酸突变对靶蛋白功能的发挥还有许多未知的影响。这些问题的进一步探索,对提升外源蛋白表达量和目标产物合成效率具有重要意义。

参考文献
[1]
Georgetti SR, Casagrande R, Di Mambro VM, et al. Evaluation of the antioxidant activity of different flavonoids by the chemiluminescence method. AAPS Pharm Sci, 2003, 5(2): E20.
[2]
Chao CL, Weng CS, Chang NC, et al. Naringenin more effectively inhibits inducible nitric oxide synthase and cyclooxygenase-2 expression in macrophages than in microglia. Nutr Res, 2010, 30(12): 858-864. DOI:10.1016/j.nutres.2010.10.011
[3]
Ahamad MS, Siddiqui S, Jafri A, et al. Induction of apoptosis and antiproliferative activity of naringenin in human epidermoid carcinoma cell through ROS generation and cell cycle arrest. PLoS One, 2014, 9(10): e110003. DOI:10.1371/journal.pone.0110003
[4]
Cushnie TPT, Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob Agents, 2006, 27(2): 181. DOI:10.1016/j.ijantimicag.2005.12.002
[5]
Mitrocotsa D, Mitaku S, Axarlis S, et al. Evaluation of the antiviral activity of kaempferol and its glycosides against human Cytomegalovirus. Planta Med, 2000, 66(4): 377-379. DOI:10.1055/s-2000-8550
[6]
Lv JL, Li ZZ, Zhang LB. Two new flavonoids from Artemisia argyi with their anticoagulation activities. Nat Prod Res, 2018, 32(6): 632-639. DOI:10.1080/14786419.2017.1332603
[7]
Zhao C, Wang F, Lian Y, et al. Biosynthesis of Citrus flavonoids and their health effects. Crit Rev Food Sci Nutr, 2020, 60(4): 566-583. DOI:10.1080/10408398.2018.1544885
[8]
Lyu X, Ng KR, Lee JL, et al. Enhancement of naringenin biosynthesis from tyrosine by metabolic engineering of Saccharomyces cerevisiae. J Agric Food Chem, 2017, 65(31): 6638-6646. DOI:10.1021/acs.jafc.7b02507
[9]
Li HB, Gao S, Zhang SQ, et al. Effects of metabolic pathway gene copy numbers on the biosynthesis of (2S)-naringenin in Saccharomyces cerevisiae. J Biotechnol, 2021, 325: 119-127. DOI:10.1016/j.jbiotec.2020.11.009
[10]
Palmer CM, Miller KK, Nguyen A, et al. Engineering 4-coumaroyl-CoA derived polyketide production in Yarrowia lipolytica through a β-oxidation mediated strategy. Metab Eng, 2020, 57: 174-181. DOI:10.1016/j.ymben.2019.11.006
[11]
Gao S, Zhou HR, Zhou JW, et al. Promoter-library-based pathway optimization for efficient (2S)-naringenin production from p-coumaric acid in Saccharomyces cerevisiae. J Agric Food Chem, 2020, 68(25): 6884-6891. DOI:10.1021/acs.jafc.0c01130
[12]
Hu J, Guo YT, Li YM. Research progress in protein post-translational modification. Chin Sci Bull, 2006, 51(6): 633-645. DOI:10.1007/s11434-006-0633-3
[13]
Bah A, Forman-Kay JD. Modulation of intrinsically disordered protein function by post-translational modifications. J Biol Chem, 2016, 291(13): 6696-6705. DOI:10.1074/jbc.R115.695056
[14]
Pieroni L, Iavarone F, Olianas A, et al. Enrichments of post-translational modifications in proteomic studies. J Sep Sci, 2020, 43(1): 313-336. DOI:10.1002/jssc.201900804
[15]
Swatek KN, Komander D. Ubiquitin modifications. Cell Res, 2016, 26(4): 399-422. DOI:10.1038/cr.2016.39
[16]
Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem, 1998, 67: 425-479. DOI:10.1146/annurev.biochem.67.1.425
[17]
Swatek KN, Usher JL, Kueck AF, et al. Insights into ubiquitin chain architecture using Ub-clipping. Nature, 2019, 572(7770): 533-537. DOI:10.1038/s41586-019-1482-y
[18]
Ciruela F. Fluorescence-based methods in the study of protein-protein interactions in living cells. Curr Opin Biotechnol, 2008, 19(4): 338-343. DOI:10.1016/j.copbio.2008.06.003
[19]
Kerppola TK. Visualization of molecular interactions by fluorescence complementation. Nat Rev Mol Cell Biol, 2006, 7(6): 449-456.
[20]
Hu CD, Kerppola TK. Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat Biotechnol, 2003, 21(5): 539-545. DOI:10.1038/nbt816
[21]
Lv Y, Zhao XR, Liu L, et al. A simple procedure for protein ubiquitination detection in Saccharomyces cerevisiae: Gap1p as an example. J Microbiol Methods, 2013, 94(1): 25-29. DOI:10.1016/j.mimet.2013.04.004
[22]
Sung MK, Huh WK. Bimolecular fluorescence complementation analysis system for in vivo detection of protein-protein interaction in Saccharomyces cerevisiae. Yeast, 2007, 24(9): 767-775. DOI:10.1002/yea.1504
[23]
Remy I, Michnick SW. Regulation of apoptosis by the Ft1 protein, a new modulator of protein kinase B/Akt. Mol Cell Biol, 2004, 24(4): 1493-1504. DOI:10.1128/MCB.24.4.1493-1504.2004
[24]
Lee OH, Kim H, He Q, et al. Genome-wide YFP fluorescence complementation screen identifies new regulators for telomere signaling in human cells. Mol Cell Proteomics, 2011, 10(2): M110.001628.
[25]
Li AM, Liu ZS, Li QX, et al. Construction and characterization of bidirectional expression vectors in Saccharomyces cerevisiae. FEMS Yeast Res, 2008, 8(1): 6-9. DOI:10.1111/j.1567-1364.2007.00335.x
[26]
Gao S, Lyu YB, Zeng WZ, et al. Efficient biosynthesis of (2S)-naringenin from p-coumaric acid in Saccharomyces cerevisiae. J Agric Food Chem, 2020, 68(4): 1015-1021. DOI:10.1021/acs.jafc.9b05218
[27]
Wu JJ, Yu O, Du GC, et al. Fine-tuning of the fatty acid pathway by synthetic antisense RNA for enhanced (2S)-naringenin production from L-tyrosine in Escherichia coli. Appl Environ Microbiol, 2014, 80(23): 7283-7292. DOI:10.1128/AEM.02411-14
[28]
Ye YH, Rape M. Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol, 2009, 10(11): 755-764. DOI:10.1038/nrm2780
[29]
Deshaies RJ, Joazeiro CAP. RING domain E3 ubiquitin ligases. Annu Rev Biochem, 2009, 78: 399-434. DOI:10.1146/annurev.biochem.78.101807.093809
[30]
Schulman BA, Wade Harper J. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat Rev Mol Cell Biol, 2009, 10(5): 319-331.
[31]
吕永坤, 周景文, 刘龙. 氮代谢调控相关蛋白质泛素化修饰筛选. 食品与生物技术学报, 2014, 33(6): 576-582.
Lv YK, Zhou JW, Liu L. Ubiquitination detection of NCR related permeases and regulators. J Food Sci Biotechnol, 2014, 33(6): 576-582 (in Chinese).
[32]
兰秋艳, 高媛, 李衍常, 等. 泛素、泛素链和蛋白质泛素化研究进展. 生物工程学报, 2016, 32(1): 14-30.
Lan QY, Gao Y, Li YC, et al. Progress in ubiquitin, ubiquitin chain and protein ubiquitination. Chin J Biotech, 2016, 32(1): 14-30 (in Chinese).
[33]
Chen ZJ, Sun LJ. Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell, 2009, 33(3): 275-286. DOI:10.1016/j.molcel.2009.01.014
[34]
Yang WL, Zhang X, Lin HK. Emerging role of Lys-63 ubiquitination in protein kinase and phosphatase activation and cancer development. Oncogene, 2010, 29(32): 4493-4503. DOI:10.1038/onc.2010.190
[35]
Kerscher O, Felberbaum R, Hochstrasser M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol, 2006, 22(1): 159-180. DOI:10.1146/annurev.cellbio.22.010605.093503