生物工程学报  2022, Vol. 38 Issue (12): 4536-4552
http://dx.doi.org/10.13345/j.cjb.220332
中国科学院微生物研究所、中国微生物学会主办
0

文章信息

郭雷, 肖芃颖, 李龙山, 陈爽, 袁港
GUO Lei, XIAO Pengying, LI Longshan, CHEN Shuang, YUAN Gang
海藻糖强化高盐胁迫下异养硝化-好氧反硝化菌群的代谢机制
Mechanism of trehalose-enhanced metabolism of heterotrophic nitrification-aerobic denitrification community under high-salt stress
生物工程学报, 2022, 38(12): 4536-4552
Chinese Journal of Biotechnology, 2022, 38(12): 4536-4552
10.13345/j.cjb.220332

文章历史

Received: April 25, 2022
Accepted: June 14, 2022
Published: June 21, 2022
海藻糖强化高盐胁迫下异养硝化-好氧反硝化菌群的代谢机制
郭雷 , 肖芃颖 , 李龙山 , 陈爽 , 袁港     
重庆理工大学 化学化工学院, 重庆 400054
摘要:异养硝化-好氧反硝化(heterotrophic nitrification-aerobic denitrification, HN-AD) 菌是一类可在高盐环境脱氮的好氧微生物,但其工程应用效果不理想。海藻糖作为相容性溶质,通过参与调节细胞渗透压帮助微生物抵抗高盐胁迫,对提升高盐环境菌群的脱氮效率起重要作用。本研究通过启动膜曝气生物膜反应器(membrane aerobic biofilm reactor, MABR) 富集HN-AD菌,设计添加150 μmol/L海藻糖的C150实验组和未添加海藻糖的C0对照组,开展了外源性海藻糖对高盐胁迫下HN-AD菌群代谢的强化机制研究。反应器运行性能及群落结构分析结果显示,C150组相较C0组,NH4+-N、总氮(total nitrogen, TN) 和化学需氧量(chemical oxygen demand, COD) 去除率分别提高29.7%、28.0%和29.1%;以不动杆菌属(Acinetobacter) 和假黄褐藻属(Pseudofulvimonas) 为优势菌属的耐盐型HN-AD菌群总相对丰度在C150组达到66.8%、较C0组提高了18.2%,添加海藻糖促进高盐环境中耐性型HN-AD菌群富集并强化系统脱氮性能。代谢组学深度分析表明,外源性海藻糖加强脯氨酸合成,提高微生物对高盐胁迫的抵抗能力;通过调节细胞增殖信号通路(cGMP-PKG、PI3K-Akt)、磷脂代谢通路及氨酰基-tRNA合成通路的活性,促使甘油磷脂代谢物磷酸乙醇胺及嘌呤和嘧啶丰度上调,提升细菌聚集能力和细胞增殖,助推微生物在高盐环境生长;同时,添加海藻糖还加快三羧酸循环(tricarboxylic acid cycle, TCA cycle),为HN-AD菌群的碳、氮代谢提供更多电子供体与能量,进而优化系统脱氮性能。本研究结果为HN-AD菌在高盐高氮废水处理中的运用提供理论指导。
关键词高盐胁迫    海藻糖    异养硝化-好氧反硝化    群落结构    微生物代谢    
Mechanism of trehalose-enhanced metabolism of heterotrophic nitrification-aerobic denitrification community under high-salt stress
GUO Lei , XIAO Pengying , LI Longshan , CHEN Shuang , YUAN Gang     
School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
Abstract: Heterotrophic nitrification-aerobic denitrification (HN-AD) bacteria are aerobic microorganisms that can remove nitrogen under high-salt conditions, but their performance in practical applications are not satisfactory. As a compatible solute, trehalose helps microorganisms to cope with high salt stress by participating in the regulation of cellular osmotic pressure, and plays an important role in promoting the nitrogen removal efficiency of microbial populations in the high-salt environment. We investigated the mechanism of exogenous-trehalose-enhanced metabolism of HN-AD community under high-salt stress by starting up a membrane aerobic biofilm reactor (MABR) to enrich HN-AD bacteria, and designed a C150 experimental group with 150 μmol/L trehalose addition and a C0 control group without trehalose. The reactor performance and the community structure showed that NH4+-N, total nitrogen (TN) and chemical oxygen demand (COD) removal efficiency were increased by 29.7%, 28.0% and 29.1%, respectively. The total relative abundance of salt-tolerant HN-AD bacteria (with Acinetobacter and Pseudofulvimonas as the dominant genus) in the C150 group reached 66.8%, an 18.2% increase compared with that of the C0 group. This demonstrated that trehalose addition promoted the enrichment of salt-tolerant HN-AD bacteria in the high-salt environment to enhance the nitrogen removal performance of the system. In-depth metabolomics analysis showed that the exogenous trehalose was utilized by microorganisms to improve proline synthesis to increase resistance to high-salt stress. By regulating the activity of cell proliferation signaling pathways (cGMP-PKG, PI3K-Akt), phospholipid metabolism pathway and aminoacyl-tRNA synthesis pathway, the abundances of phosphoethanolamine, which was one of the glycerophospholipid metabolites, and purine and pyrimidine were up-regulated to stimulate bacterial aggregation and cell proliferation to promote the growth of HN-AD bacteria in the high-salt environment. Meanwhile, the addition of trehalose accelerated the tricarboxylic acid (TCA) cycle, which might provide more electron donors and energy to the carbon and nitrogen metabolisms of HN-AD bacteria and promote the nitrogen removal performance of the system. These results may facilitate using HN-AD bacteria in the treatment of high-salt and high-nitrogen wastewater.
Keywords: high salt stress    trehalose    heterotrophic nitrification-aerobic denitrification    community structure    microbial metabolism    

沿海地区、工业过程和海水养殖等产生的高盐废水成分复杂且排放量大,其中多包含高浓度氮和有机污染物等成分,若不经处理直接排放会对水体环境造成严重污染[1]。目前,物化法、生物法及其组合工艺是高盐废水的常用处理技术[2-3]。经物化法处理后的高盐废水虽然污染物浓度及毒性降低,但在进一步生物处理时,营养污染物去除效果仍不理想[4]。其原因是传统脱氮菌对高盐条件极其敏感。盐度会影响微生物的生长代谢,如传统硝化、反硝化菌和常规异养菌等在低盐度(<2%) 时活性就受到明显抑制[5],在高盐度(≥2%) 时会出现细胞严重脱水、质壁分离而死亡的现象[6]。高盐还通过降低细菌酶活抑制微生物对氨氮的利用[7-8]。高盐废水的生物处理一般采用驯化耐盐菌等方法,但其驯化周期过长、相关工艺调控复杂,增加了高盐废水的生物脱氮处理难度[9-10]。因此,寻求新型高效的生物强化方法,成为解决高盐高氮废水工程应用问题的关键。

异养硝化-好氧反硝化菌(heterotrophic nitrification-aerobic denitrification, HN-AD) 分布广泛,具有增殖速度快、脱氮效率高、活性持久且无中间产物NO3-N、NO2-N积累等优点[11]。部分HN-AD菌属,如常见的不动杆菌属(Acinetobacter)、盐单胞菌属(Halomonas)、假单胞菌属(Pseudomonas)、产碱杆菌属(Alcaligenes)、黄杆菌属(Flavobacterium) 等均可耐受一定盐度[12-14]。尽管如此,这类耐盐型HN-AD菌在高氮废水中的脱氮效果却不稳定[15]。多年来,众多学者从工艺过程的反应器类型、进水条件及运行模式等方面进行优化[4, 16],而另一类“相容性溶质强化策略”因操作简便也得到广泛运用[17-19]。其中,海藻糖(分子式为C12H22O11·2H2O) 作为一种价格低、易采购的常见典型相容性溶质,在高盐废水处理中已成功应用。有研究表明,外源性海藻糖浓度在0.25 mmol/L时就可使模拟高盐废水中氨氮(NH4+-N)、亚硝态氮(NO2-N) 和总氮(TN) 去除率分别提高50%、43%和46%[20];在盐度为2.5%的高盐环境中,添加1 mmol/L海藻糖可使模拟废水中厌氧氨氧化活性提高51.3%[21]。外源性海藻糖通过调节渗透压使微生物细胞快速适应高盐环境,保护酶活并增强微生物抗盐持久性[22-23],进而促进微生物生长,达到提高菌群去污能力的目的。目前,关于外源性海藻糖对高盐废水处理过程的研究,多关注于其对反应器运行性能及污染物去除效果的动力学优化[20, 24],海藻糖对高盐废水中微生物群落多样性及其生长代谢途径的作用机理鲜有报道。

本研究启动对HN-AD菌具有良好富集效果的膜曝气生物膜反应器(membrane aerobic biofilm reactor, MABR)[25-26],采用高通量测序、非靶向代谢组学等分析方法,研究添加海藻糖对高盐环境中HN-AD菌群代谢通路与代谢物的影响,以期初步阐释外源性海藻糖强化高盐胁迫下HN-AD菌群代谢的分子机理。研究结果为推动HN-AD菌在高盐高氮废水处理中的运用提供理论基础及新技术思路。

1 材料与方法 1.1 MABR实验装置与运行条件

MABR反应器装置如图 1所示。MABR由膜组件和有机玻璃池构成,有效体积为0.85 L,膜组件由若干根聚偏氟乙烯(polyvinylidene fluoride, PVDF) 膜丝组成,膜丝内径为1.7 mm、外径为2.0 mm,膜孔径为0.1 μm,有效比表面积为1.76 cm2/cm3。反应器进出水均由蠕动泵完成,水力停留时间(hydraulic retention time, HRT) 为48 h,曝气压力设定为10 kPa[26]

图 1 MABR装置示意图 Fig. 1 Schematic diagram of the MABR. Wastewater was entered into the reactor from the inlet pool by the peristaltic pump. The gas was entered into the membrane module by the air pump from one side meanwhile, the excess gas was entered into the bottom aeration by the flow meter from the other side to form an oxygen cycle and provide sufficient oxygen for the microorganisms. After the reaction, the water sample was taken for analysis, and the rest of the wastewater was pumped into the outlet pool by the peristaltic pump. 进水池废水经蠕动泵进入反应器,气体由空气泵进入膜组件一侧,多余气体从另一侧排出,经流量计进入底曝形成氧循环,为微生物提供充足氧气,反应结束后取水样分析,其余废水再由蠕动泵泵入出水池
1.2 实验用水及菌液接种

实验用水为含盐高氨氮模拟废水,盐度设置为2.5% (以NaCl计),分别以(NH4)2SO4和无水CH3COONa作为唯一氮源和碳源,进水NH4+-N浓度为500 mg/L,COD浓度为5 000 mg/L,微量元素(50 mL/L) 为:MgSO4·7H2O 2.0 g/L,MnSO4·H2O 0.1 g/L,CaCl2 1.5 g/L,FeSO4·7H2O 0.1 g/L,K2HPO4 5.0 g/L。启动两个平行MABR,分别接种60 mL HN-AD混合菌液进行菌液挂膜(专利申请号:201810209983.8,COD、NH4+-N、TN去除率均≥90%)。挂膜完成后,将2个平行反应器中分别加入不同浓度海藻糖(0 μmol/L和150 μmol/L),分别设置为对照组C0和实验组C150进行后续实验。

1.3 水质分析方法及生物膜表观特征分析

进、出水NH4+-N、TN、COD的浓度均参照《水和废水监测分析方法》进行三重样测定[27]。菌液浓度(OD600) 采用紫外分光光度法测定,溶氧、盐度及pH值分别采用便携式溶氧仪、海水比重计及pH计进行监测。采用扫描电镜表征挂膜阶段的生物膜表观形态特征,样品制备及检测方法参照文献[26]。

1.4 DNA提取及高通量测序

反应器运行阶段,采集C0和C150组的生物样品(约0.5 g/个,每组采集三重样)。利用MobioPowerSoil® DNA分离试剂盒(上海美吉生物医药科技有限公司) 提取生物膜DNA,并在–80 ℃下储存在0.9%的生理盐水中直至使用。提取的DNA浓度、纯度和质量均采用分光光度计进行测定。基于PCR技术,用引物338F (5′-ACTCCTACGGGAGGCAGCA-3′) 和806R (5′-GGACTACHVGGGTWTCTAAT-3′) 扩增细菌的16S rRNA的V3–V4区。扩增后,PCR产物经过纯化,然后通过Usearch平台以97%的相似度阈值分成多个组,用于进一步的测序信息确定、物种评估和多样性分析。

1.5 非靶向代谢组学分析

反应器运行阶段,采集C0和C150组的生物样品(0.1 g/个,每组采集六重样)。通过液氮速冻样品送至代谢组分析平台(上海中科新生命生物科技有限公司)。采用超高效液相色谱-串联飞行时间质谱联用仪在正负两种离子下检测样品中代谢产物,数据通过Proteo Wizard预处理后进行多维统计分析。通过正交偏最小二乘法判别分析(orthogonal partial least squares discrimination analysis, OPLS-DA) 模型得到变量权重值(variable important in projection, VIP)≥1,并结合单变量分析的差异倍数值(fold change, FC)>1.50或<0.67标准筛选差异表达代谢物;采用R软件(Ropls) 进行主成分分析(principal component analysis, PCA) 方法进行差异代谢产物相关性分析。本文通过比较C150和C0组之间的比值(C150_vs._C0) 来计算每种代谢物的倍数变化值,进一步将筛选及分析的差异性代谢产物结合KEGG数据库进行差异性代谢产物的KEGG富集通路分析。

2 结果与分析 2.1 外源性海藻糖对反应器脱氮性能的影响

两个平行反应器在进水NH4+-N浓度为500 mg/L,COD浓度为5 000 mg/L,盐度为2.5%的条件下进行菌液挂膜。28 d形成以杆菌和球菌为主的淡黄色致密生物膜(图 2),说明反应器成功启动并实现菌液的挂膜和驯化。未添加海藻糖时,反应器启动阶段污染物去除效率见图 3A3B中Ⅰ阶段,两个反应器,NH4+-N、TN去及COD去除率相近,分别在40%‒45%、32%‒35%和61%‒71%,NO2-N和NO3-N无明显积累。说明反应器成功富集了具有同步硝化反硝化功能的微生物,但其脱氮除碳活性不高。这主要是因为系统中存在高盐,而盐度会使微生物细胞内的渗透压升高、影响细胞活性,降低微生物的去污性能[28]

图 2 平行反应器启动运行阶段生物膜的表观结构特征(未添加海藻糖) Fig. 2 SEM characterization of the biofilm in the start-up operation of the reactor (trehalose not added). The SEM mainly reflected the microbial growth and attachment in the two parallel reactors. 0 d was the surface morphology of the MABR bare membrane, which presented the uneven and dense membrane surface and uniform distribution of membrane pores. 28 d showed the formation of biofilms which mainly growth bacilli and cocci on the membrane surface. SEM扫描电镜图主要反映两个平行反应器挂膜阶段的微生物生长附着情况。0 d是MABR裸膜表面形态,可见其凹凸不平,较为密实,膜孔分布均匀;28 d时可见膜丝表面已形成以杆菌和球菌为主的生物膜
图 3 反应器启动运行性能 Fig. 3 Performance of the reactors during the startup and operation. C tre: concentration of trehalose. Phase Ⅰ (0−28 d): performance of the two parallel reactors in the inoculation and startup stage. Phase Ⅱ (29−106 d): performance of the experimental group with trehalose (C150) and the control group without trehalose addition (C0) in the stable operation stage. Ⅰ阶段(0‒28 d):挂膜阶段两个平行反应器的去污性能;Ⅱ阶段(29‒106 d):稳定运行阶段,添加海藻糖实验组(C150) 和未添加海藻糖对照组(C0) 的去污性能

在反应器稳定运行阶段,于实验组C150中长期添加150 μmol/L的海藻糖,对照组C0中不添加海藻糖,运行至106 d结束,反应器运行性能见图 3A3B中Ⅱ阶段。C150组相较C0组,NH4+-N、TN和COD去除率分别提高了29.7%、28.0%和29.1%,说明外源性海藻糖强化了反应器脱氮性能。然而海藻糖仅在碳源浓度受限[29]、或者其添加浓度超过微生物作为渗透调节剂的最大吸收范围时,才能作为有机碳源供生物利用[20]。该研究中,作为唯一外加碳源的乙酸钠浓度高达5 000 mg/L,碳源充足;添加的海藻糖浓度为150 μmol/L (即COD=32.7 mg/L,相比外加碳源浓度可忽略不计),研究报道微生物对海藻糖的最大渗透调节剂吸收范围可达300 μmol/L[20]。因此,该研究的微生物脱氮效率提高不是因为外源性海藻糖的碳源作用,而是其可能作为渗透调节剂缓解了高盐对微生物细胞造成的高渗胁迫[30],进而强化了菌群脱氮性能。

2.2 外源性海藻糖对HN-AD菌群结构的影响 2.2.1 α多样性分析

为研究海藻糖对反应器中物种丰富度及多样性的影响,对实验组C150和对照组C0中采集的生物样品进行α多样性分析,结果如表 1所示。通过Illumina MiSeq测序分析C0和C150组分别获得269个和293个OTU,覆盖指数均为99.82%,说明测序深度已经包含测序样品中的全部细菌数。反映物种丰富度的Chao指数和Ace指数在C150组中均出现增长,说明外源性海藻糖丰富了系统的微生物种类。反映物种多样性的Shannon指数值在C150组中同样高于C0组,表明外源性海藻糖提高了系统的群落多样性。

表 1 微生物α多样性指数 Table 1 Alpha diversity indices
Reactors OTUs Coverage (%) Chao Ace Shannon
C0 269 99.82 320.50±16.94 314.21±25.07 3.06±0.26
C150 293 99.82 365.94±19.37 362.12±19.09 3.76±0.11
2.2.2 HN-AD菌群组成分析

在属水平上对C0和C150组进行微生物群落结构分析,将相对丰度小于0.02%的菌属进行合并处理,分析结果如图 4A所示。C0组中,优势菌属为不动杆菌属(Acinetobacter) (33.46%)。Acinetobacter属具有好氧异养硝化功能[31],但在更多环境中其可同时体现异养硝化和好氧反硝化脱氮特性[11],具有耐受高盐、高氨氮且脱氮速率快的优点[32]。添加海藻糖的C150组中,优势菌属为Acinetobacter (35.91%) 和假黄褐藻属(Pseudofulvimonas) (14.12%);相较C0组,Acinetobacter相对丰度无明显变化,而Pseudofulvimonas相对丰度提高了11.26%。Pseudofulvimonas同为HN-AD菌,也具有较强的耐盐性能,是高盐废水处理过程中常见的脱氮功能微生物[33]。进一步对两组中HN-AD菌属的相对丰度变化进行Student’s t检验,获得组间显著性差异分析结果如图 4B所示。发现C0和C150组中,除Acinetobacter外,其余HN-AD菌属的相对丰度均存在显著性差异(P<0.05)。C150组相较C0组中,副球菌属(Paracoccus)、假单胞菌属(Pseudomonas) 和黄杆菌属(Flavobacterium) 等耐盐型HN-AD菌属的相对丰度均得到显著增加(P<0.05),HN-AD菌群的总相对丰度达到66.82%,提高了18.16%,是系统内的高丰度优势菌群。上述结果说明,外源性海藻糖有效促进了高盐环境中HN-AD菌群富集,尤其有利于耐盐型HN-AD菌生长,对微生物脱氮性能具有正向作用。

图 4 属水平上微生物群落组成分析(A) 及组间差异显著性检验(B) Fig. 4 Analysis of microbial community composition at the genus level (A) and the relative abundance of HN-AD bacteria (B). (A) The community structure and genus abundance at the level of microbial genera in group C0 and group C150. (B) The significant differences in genus abundance between groups based on the results of figure A, which clarified the functional genus categories and abundance patterns significantly affected by trehalose. 图A表示C0组与C150组中微生物属水平上的群落结构及菌属丰度;图B表示基于图A结果的组间菌属丰度显著性差异情况,以明确受海藻糖显著影响的功能菌属类别及丰度变化规律
2.3 外源性海藻糖对HN-AD菌群代谢的影响 2.3.1 海藻糖对菌群总体代谢通路活性的影响

以C150组作为实验组,C0组作为对照组,对两组进行非靶向代谢分析,深度分析外源性海藻糖对系统内HN-AD菌群代谢的影响。该研究共检测到代谢物459种(正离子模式:339种;负离子模式:120种);其中,差异性代谢产物95种(正离子模式:83种,负离子模式:12种),分别如图 5A5B所示。外源性海藻糖作用下丰度显著上调的代谢物数量高于丰度显著下调的代谢物数量。

图 5 代谢物丰度差异火山图(A:正离子模式;B:负离子模式) 及KEGG富集通路图(C) Fig. 5 Volcano plots (A, positive mode; B, negative mode) and top 20 enriched KEGG pathways of the different abundance of metabolite components in C150 and C0 (C). (A‒B) The red dots represented the significantly up-regulated differential metabolites (FC > 1.5, P < 0.05), the blue dots were the significantly down-regulated differential metabolites (FC < 0.67, P < 0.05), and the black dots were the non-significant differential metabolites. The color depth in Fig. 5C represented the P-value of enrichment, the darker the color the smaller the P-value and the more significant the degree of enrichment. (A–B) 中红色为显著上调的差异代谢物(FC>1.5,P<0.05),蓝色为显著下调的差异代谢物(FC<0.67,P<0.05),黑色为无显著性差异代谢物。(C) 中颜色代表富集的P值,颜色越深P值越小,富集程度越显著

通过KEGG富集分析,获得具有显著性差异的前20条代谢途径(P<0.05) 如图 5C所示。发现外源性海藻糖对菌群细胞的生长衰亡途径、细胞中信号分子传递、氨酰基-tRNA生物合成、ABC转运途径、嘌呤与嘧啶代谢、脂质代谢以及氨基酸代谢等通路的活性具有明显影响。

进一步分析通路活性存在显著差异的代谢途径,利用差异丰度得分对代谢变化进行分析,捕捉具体某一途径中所有代谢物的平均、总体变化,按照Pathway_Hierarchy1进行分类归属,分为细胞过程、环境信号处理、遗传信息处理、新陈代谢与有机体系统5大类,共获得显著性差异代谢通路26条,其中上调23条,下调3条,结果如图 6所示。3条下调代谢通路分别是:细胞过程中的细胞凋亡(apoptosis)、细胞坏死性死亡(necroptosis) 以及环境信号处理中的FoxO信号通路。Apoptosis和Necroptosis与微生物细胞死亡功能相关[34],这两条通路下调,说明高盐环境下添加海藻糖可减缓系统中菌群细胞的衰亡。FoxO信号通路主要调节系统生理病理,诱导细胞死亡等过程[35],C150组中FoxO信号通路活性下调,同样说明高盐胁迫下海藻糖减弱FoxO信号通路对菌群细胞死亡的诱导作用,减缓了细胞衰亡。其他与微生物新陈代谢(如氨基酸的生物合成、嘌呤代谢和嘧啶代谢等)、遗传信息处理(氨酰基-tRNA生物合成) 及有机体系统(长寿调控途径、长期效力和蛋白质降解与吸收等) 三大功能相关的代谢通路活性在外源性海藻糖作用下显著上调,说明在高盐环境中添加海藻糖对系统内HN-AD菌群细胞的生长繁殖及遗传表达起着正向作用。

图 6 差异代谢通路的差异丰度得分图 Fig. 6 Analysis of different abundance of metabolic pathways based on C150_vs._C0. The length of the line segment indicated the absolute value of the differential abundance score, and the size of the dots indicates the number of metabolites in the pathway, with larger dots indicates higher numbers; darker red indicates that the overall expression of the pathway was inclined to up-regulated, and darker blue illustrated that the overall expression of the pathway tended to be down-regulated. 线段的长度表示差异丰度得分的绝对值,圆点大小表示该通路中代谢物的数目,点越大表示数目越多;红色越深,表示该通路整体表达情况越倾向于上调,蓝色越深,表示该通路整体表达情况越倾向于下调
2.3.2 外源性海藻糖对菌群信号通路的影响

图 6所示,环境信息处理中cGMP-PKG和PI3K-Akt信号传输通路上调。这两个信号通路与细胞的生长增殖有关,cGMP-PKG信号通路主要在促进细胞生长增殖过程中发挥重要作用;Akt作为PI3K信号通路下游的主要应激酶,参与细胞生长、分化、损伤保护等过程[36-37]。上述信号通路活性在C150组上调,说明外源性海藻糖可强化HN-AD菌群的细胞生长增殖。由于PI3K-Akt信号通路活性上调会进一步限制FoxO信号通路的作用[38],因此,该研究中与细胞凋亡和细胞坏死性死亡关联的信号通路(FoxO、apoptosis和necroptosis) 活性受影响均下调。外源性海藻糖有效缓解了高盐对HN-AD菌群细胞生长的毒害作用、减少细胞坏死,促进微生物生长富集。

C150组相较C0组中,与脂类调控密切相关的鞘磷脂信号通路(sphingolipid signaling pathway, S1P) 和磷脂酶D (phospholipase D, PLD) 信号通路活性,以及与物质运输相关的ABC转运蛋白表达均明显上调(图 6)。S1P和PLD可调控磷脂代谢,将磷脂酰胆碱裂解为磷脂酸及胆碱,参与细胞的信号传递、增殖分化等[39-40]。ABC转运蛋白可以转运无机盐离子、糖、氨基酸等,在微生物抗逆性中起着重要作用[41]。添加海藻糖的体系中,上述代谢通路及蛋白表达的上调,说明外源性海藻糖有利于加速高盐胁迫下菌群细胞的磷脂代谢进程以及物质传输过程。

2.3.3 外源性海藻糖对菌群磷脂代谢的影响

疏水性磷脂会影响细菌的聚集能力[42]。磷酸乙醇胺(phosphorylethanolamine, PE) 和磷酸胆碱(phosphorylcholine, PC) 是大多数细胞膜中磷脂的主要成分,并参与甘油磷脂代谢途径生物合成和磷脂酰乙醇胺(phosphatidylethanolamine, PtE) 的代谢[43]。因此,通过KEGG数据库分析上调的磷脂代谢途径,其代谢物结果如图 7A所示。PC和PE的丰度在C150组中同样出现上调。PC对细胞膜转运功能、渗透性能存在影响[44],外源性海藻糖促使PC丰度上调,使菌群细胞呈现出更活跃的PC分解代谢和细胞新陈代谢功能[45],对调节细胞的蛋白转运和分泌方面起着积极作用。此外,PE丰度上调会促进细胞表现出更活跃的PtE代谢,使载体附着的细菌具有更高凝聚能力[46]。本研究中,C150组相较C0组PE上调,说明外源性海藻糖有效提升了生物膜表面的HN-AD菌群聚集能力。

图 7 外源性海藻糖作用下磷脂代谢物丰度(A)、抗高盐胁迫关键代谢物丰度(B)、嘌呤与嘧啶丰度(C) 和氨基酸代谢物丰度(D) Fig. 7 Abundance of metabolites related to phospholipid metabolism (A), key metabolites for high salt stress resistance (B), purine and pyrimidine (C) and metabolic amino acids (D) upon addition of exogenous trehalose. *: P < 0.05; **: P < 0.01; ***: P < 0.001. Asp: aspartic acid; His: histidine; Phe: phenylalanine; Ile: isoleucine; Val: valine; Arg: arginine; Glu: glutamic acid; Leu: leucine; Pro: proline. Based on the analysis of the changes in the abundance of relevant metabolites in C0 and C150 groups, the effect of trehalose on the abundance of phospholipid metabolites, metabolites resistant to high-salt stress, purines and pyrimidines, and amino acid metabolites were illustrated in four aspects of figure A, B, C, and D. The mechanism of the trehalose effected on the growth and metabolism of bacteria community in high-salt wastewater was clarified. 基于C0组和C150组相关代谢物丰度变化进行分析,从图A、B、C、D四个方面阐述了海藻糖对磷脂代谢物、抗高盐胁迫代谢物、嘌呤与嘧啶以及氨基酸代谢物丰度的影响,明确海藻糖对高盐废水中菌群生长代谢的作用机制
2.3.4 外源性海藻糖对菌群抵抗高盐胁迫关键代谢物丰度的影响

微生物在高盐环境中常处于一种高渗状态,致使细胞脱水甚至死亡[6]。此时,微生物可以通过自身合成相容性溶质(如甜菜碱、脯氨酸等) 来调节细胞内外的渗透压力[19]。如图 7B所示,C150组相较C0组中,代谢物甜菜碱丰度下调。高盐胁迫下,微生物可经胞内运输或生物合成途径,生成甜菜碱作为渗透调节剂平衡细胞渗透压,保护细胞结构甚至提高细胞生长速率[17]。该研究在添加海藻糖后,微生物细胞内的甜菜碱含量却减少,说明HN-AD菌群可能没有通过积累甜菜碱来抵抗高盐胁迫,而是选择了其他途径。

脯氨酸可通过浓度依赖性方式破坏双螺旋结构并降低DNA熔点温度(Tm) 以抵消氯化钠对细胞DNA稳定性的影响,其他氨基酸不具备这种功能[47-48]。该研究中脯氨酸丰度在C150组上调,说明添加海藻糖的菌群体系对高盐造成的高渗胁迫具有更好的抵御能力。HN-AD菌群受外源性海藻糖作用增进细胞内脯氨酸合成,提升细胞对高盐胁迫的抵抗能力。

2.3.5 外源性海藻糖对菌群嘌呤与嘧啶丰度的影响

与DNA/RNA生成、转录密切关联的嘌呤和嘧啶丰度变化如图 7C所示。C150组相较C0组中,除胞嘧啶(cytosine) 丰度下调,腺嘌呤(adenine)、次黄嘌呤(hypoxanthine)、黄嘌呤(xanthine)、胸腺嘧啶(thymine) 与尿嘧啶(uracil) 的丰度均显著上调。上述代谢物在脱氧核苷酸/核苷酸碱基通路中发挥重要作用。胸腺嘧啶作为DNA分子的特有碱基,其丰度变化对微生物的DNA合成及细胞增殖具有影响[49]。该研究中,添加海藻糖后细胞内胸腺嘧啶丰度上调,说明外源性海藻糖促进了高盐环境中HN-AD菌群的DNA合成,益于微生物生长。

该研究中,尿嘧啶丰度和氨酰基-tRNA合成通路活性(图 6) 在海藻糖作用下均上调,同时,与细菌聚集能力相关的甘油磷脂代谢通路活性(图 6) 及其代谢物PE也同样上调(图 7A),此时,系统内HN-AD菌群数量在添加海藻糖后呈增长趋势(图 4)。有研究表明,细胞RNA的特有碱基尿嘧啶含量升高、氨酰基-tRNA合成通路活性上调,可以提高微生物RNA合成水平[50]。当RNA合成水平提高,同时系统内的菌群数量也呈增长趋势时,RNA合成水平的提升主要贡献于促进碳骨架合成,而不是转录调控[49]。因此,该研究中,外源性海藻糖通过强化碳骨架合成,增强了高盐胁迫下HN-AD菌群细胞的增殖。

2.3.6 外源性海藻糖对菌群碳、氮代谢的影响

氮源是微生物生长与繁殖所必需的营养物质[51],在微生物细胞内用于合成各类氨基酸,调节细胞增殖发育[45]。该研究共检测到15种氨基酸代谢物,其中,天冬氨酸(Asp)、组氨酸(His)、苯丙氨酸(Phe)、异亮氨酸(Ile)、缬氨酸(Val)、精氨酸(Arg)、谷氨酸(Glu)、亮氨酸(Leu) 和脯氨酸(Pro),这9种氨基酸代谢物的丰度在C150组相较C0组全部上调,结果如图 7D所示。天冬氨酸与氮同化作用的调控有关[52]。亮氨酸、异亮氨酸和组氨酸,具有促进细胞合成代谢的信号特性[53]。其中,组氨酸水平直接影响细胞蛋白质合成,其含量增加可促进细胞生长、强化其抗逆能力和酶活性[54]。缬氨酸是合成谷氨酸的重要氮供体,而谷氨酸是生物合成的主要前体物,用于细胞合成[55]。精氨酸的合成与胞内外氮源的吸收和利用效率以及胞内氮代谢调控密切相关[56]。由此可知,外源性海藻糖对HN-AD菌群在细胞增殖、抗逆性能以及氮代谢调控方面具有促进作用。

葡萄糖、蔗糖、乙酸钠等是工程应用中普遍使用的碳源,根据废水处理条件的不同(如好氧生物处理或厌氧生物处理),功能微生物可通过糖酵解途径(glycolytic pathway, EMP)[57]、2-酮-3-脱氧-6-磷酸葡萄糖酸途径(entner-doudoroff, ED)[58]、磷酸戊糖途径(pentose phosphate pathway, PPP)[59]或乙酸代谢途径[60]生成乙酰辅酶A (acetyl-CoA) 进入TCA循环,acetyl-CoA是碳源与TCA循环之间的重要桥梁。该研究C150组相较C0组中,检测到acetyl-CoA的丰度上调,说明外源性海藻糖促进了微生物对碳源的利用。乙酸钠为该研究的唯一碳源,可直接经乙酸代谢产生acetyl-CoA进入TCA循环[60],同时TCA循环的重要代谢物柠檬酸(citrate)、苹果酸(malate)、α-酮戊二酸(α-ketoglutarate) 丰度在C150组同样上调(见图 8 carbon metabolism),以上说明外源性海藻糖加快乙酸代谢、强化了TCA循环。TCA循环作为细胞的中心碳代谢通路以及能量中心,是细胞内其他代谢通路的基础,并可持续产生电子供体NADH及释放大量ATP供能[61]。在C150组中,能量代谢的中间产物NAD+、NADH、ADP及ATP相较C0组分别提高1.67倍、1.30倍、1.23倍和1.05倍,说明菌群能量代谢水平受海藻糖影响得到提升。HN-AD菌同时利用氧气和硝态氮作为终端电子受体进行好氧呼吸,在能量代谢调控下可完成氮转化。由脱氮基因丰度变化结果(见图 8 nitrogen metabolism) 可知,添加海藻糖体系中,与硝化过程关联的hao基因,以及与反硝化过程关联的nasAnarGnarHnarInapAnapBnirKnorBnorCnosZ基因的相对丰度均增加,微生物的硝化和反硝化进程得到加速。TCA循环上调促进能量代谢水平提高对强化HN-AD菌群氮代谢起着重要作用。

图 8 外源性海藻糖作用下相关代谢通路变化 Fig. 8 Relevant metabolic pathway changes upon addition of exogenous trehalose. Red on black represents metabolites upregulated in C150_vs._C0, red upward arrows indicated that the relevant pathway or function was enhanced. Metabolomic analysis revealed that trehalose had significant effect on carbon and nitrogen metabolic pathways, phospholipid metabolic pathway and DNA/RNA synthesis associated with microbial growth and proline synthesis against high-salt stress, and that trehalose enhanced bacteria growth and denitrification by up-regulating the abundance of key metabolites in these metabolic pathways. 代谢组分析获悉海藻糖对碳、氮代谢通路,微生物生长关联的磷脂代谢通路和DNA/RNA合成以及抵抗高盐胁迫的脯氨酸合成具有显著作用,海藻糖通过上调以上代谢通路的关键代谢物丰度强化菌群生长和脱氮性能
3 结论

污染物NH4+-N、TN和COD去除率在实验组C150中相较对照组C0分别升高了29.7%、28.0%和29.1%,外源性海藻糖有效提高了HN-AD菌群在高盐环境的脱氮性能。

外源性海藻糖丰富了系统内微生物的多样性,以AcinetobacterPseudofulvimonas为优势菌属的HN-AD菌群总相对丰度在C150组中高达66.8%,相较C0组提高了18.2%;其中ParacoccusPseudomonasFlavobacterium等耐盐型HN-AD菌的相对丰度显著增加,说明外源性海藻糖促进了高盐环境中耐盐型HN-AD菌的生长富集。

添加海藻糖增进细胞内脯氨酸合成,提高了微生物对高盐胁迫的抵抗能力;促进与细胞增殖关联的信号通路活性、甘油磷脂代谢以及DNA/RNA合成水平上调用于合成碳骨架,提升了HN-AD菌群的细菌凝聚及细胞增殖能力;同时,加快乙酸代谢、推动TCA循环强化碳代谢,进而增强微生物能量代谢水平为氮代谢提供充足电子供体与能量,优化了HN-AD菌群脱氮性能。

参考文献
[1]
Li PS, Chen Q, Dong H, et al. Effect of applying potentials on anaerobic digestion of high salinity organic wastewater. Sci Total Environ, 2022, 822: 153416. DOI:10.1016/j.scitotenv.2022.153416
[2]
Shi XQ, Lefebvre O, Ng KK, et al. Sequential anaerobic-aerobic treatment of pharmaceutical wastewater with high salinity. Bioresour Technol, 2014, 153: 79-86. DOI:10.1016/j.biortech.2013.11.045
[3]
张彦灼, 李军, 陈光辉, 等. NaCl对好氧颗粒污泥短程硝化反硝化的影响. 环境科学研究, 2015, 28(5): 823-830.
Zhang YZ, Li J, Chen GH, et al. Effects of NaCl concentration on partial nitrification and denitrification by aerobic granular sludge. Res Environ Sci, 2015, 28(5): 823-830 (in Chinese). DOI:10.13198/j.issn.1001-6929.2015.05.22
[4]
李兴, 勾芒芒, 刘学峰, 等. 高盐废水处理现状及研究进展. 水处理技术, 2019, 45(5): 6-10, 14.
Li X, Gou MM, Liu XF, et al. Research status and progress on treatment of high-salt wastewater. Technol Water Treat, 2019, 45(5): 6-10, 14 (in Chinese).
[5]
Fu GP, Han JY, Yu TY, et al. The structure of denitrifying microbial communities in constructed mangrove wetlands in response to fluctuating salinities. J Environ Manage, 2019, 238: 1-9. DOI:10.1016/j.jenvman.2019.02.029
[6]
Chen Q, Liu CQ, Liu XY, et al. Magnetite enhances anaerobic digestion of high salinity organic wastewater. Environ Res, 2020, 189: 109884. DOI:10.1016/j.envres.2020.109884
[7]
He HJ, Chen YJ, Li X, et al. Influence of salinity on microorganisms in activated sludge processes: a review. Int Biodeterior Biodegrad, 2017, 119: 520-527. DOI:10.1016/j.ibiod.2016.10.007
[8]
徐佳杰, 刘朋波, 陶春平, 等. 1, 3-丙二醇发酵过程中盐浓度的胁迫作用. 生物工程学报, 2008, 24(6): 1098-1102.
Xu JJ, Liu PB, Tao CP, et al. 1, 3-propanediol production under salt stress. Chin J Biotech, 2008, 24(6): 1098-1102 (in Chinese). DOI:10.3321/j.issn:1000-3061.2008.06.032
[9]
王朝朝, 张欢, 闫立娜, 等. 高盐度冲击后厌氧氨氧化工艺恢复及运行特性. 中国给水排水, 2021, 37(3): 16-23.
Wang ZZ, Zhang H, Yan LN, et al. Recovery and operational characteristics of anammox process after high salinity shock. China Water Wastewater, 2021, 37(3): 16-23 (in Chinese).
[10]
Jiang MM, Westerholm M, Qiao W, et al. High rate anaerobic digestion of swine wastewater in an anaerobic membrane bioreactor. Energy, 2020, 193: 116783. DOI:10.1016/j.energy.2019.116783
[11]
袁建华, 赵天涛, 彭绪亚. 极端条件下异养硝化-好氧反硝化菌脱氮的研究进展. 生物工程学报, 2019, 35(6): 942-955.
Yuan JH, Zhao TT, Peng XY. Advances in heterotrophic nitrification-aerobic denitrifying bacteria for nitrogen removal under extreme conditions. Chin J Biotech, 2019, 35(6): 942-955 (in Chinese).
[12]
Silva LCF, Lima HS, Sartoratto A, et al. Effect of salinity in heterotrophic nitrification/aerobic denitrification performed by acclimated microbiota from oil-produced water biological treatment system. Int Biodeterior Biodegrad, 2018, 130: 1-7. DOI:10.1016/j.ibiod.2018.03.009
[13]
Pan ZL, Zhou J, Lin ZY, et al. Effects of COD/TN ratio on nitrogen removal efficiency, microbial community for high saline wastewater treatment based on heterotrophic nitrification-aerobic denitrification process. Bioresour Technol, 2020, 301: 122726. DOI:10.1016/j.biortech.2019.122726
[14]
Meng FS, Huang WW, Liu DF, et al. Application of aerobic granules-continuous flow reactor for saline wastewater treatment: granular stability, lipid production and symbiotic relationship between bacteria and algae. Bioresour Technol, 2020, 295: 122291. DOI:10.1016/j.biortech.2019.122291
[15]
Huang JL, Cui YW, Yan JL, et al. Occurrence of heterotrophic nitrification-aerobic denitrification induced by decreasing salinity in a halophilic AGS SBR treating hypersaline wastewater. Chem Eng J, 2022, 431: 134133. DOI:10.1016/j.cej.2021.134133
[16]
Han F, Li X, Zhang MR, et al. Solid-phase denitrification in high salinity and low-temperature wastewater treatment. Bioresour Technol, 2021, 341: 125801. DOI:10.1016/j.biortech.2021.125801
[17]
He Q, Kong XJ, Chai HX, et al. Efficiency influence of exogenous betaine on anaerobic sequencing batch biofilm reactor treating high salinity mustard tuber wastewater. Environ Technol, 2012, 33(13/14/15): 1695-1699.
[18]
Vyrides I, Stuckey DC. Adaptation of anaerobic biomass to saline conditions: role of compatible solutes and extracellular polysaccharides. Enzyme Microb Technol, 2009, 44(1): 46-51. DOI:10.1016/j.enzmictec.2008.09.008
[19]
Vyrides I, Stuckey DC. Compatible solute addition to biological systems treating waste/wastewater to counteract osmotic and other environmental stresses: a review. Crit Rev Biotechnol, 2017, 37(7): 865-879. DOI:10.1080/07388551.2016.1266460
[20]
杨振琳, 于德爽, 李津, 等. 海藻糖强化厌氧氨氧化耦合反硝化工艺处理高盐废水的脱氮除碳效能. 环境科学, 2018, 39(10): 4612-4620.
Yang ZL, Yu DS, Li J, et al. Enhanced nitrogen and carbon removal performance of simultaneous ANAMMOX and enitrification (SAD) with trehalose addition treating saline wastewater. Environ Sci, 2018, 39(10): 4612-4620 (in Chinese).
[21]
Liu M, Peng YZ, Wang SY, et al. Enhancement of anammox activity by addition of compatible solutes at high salinity conditions. Bioresour Technol, 2014, 167: 560-563. DOI:10.1016/j.biortech.2014.06.015
[22]
Gregory GJ, Boyd EF. Stressed out: bacterial response to high salinity using compatible solute biosynthesis and uptake systems, lessons from Vibrionaceae. Comput Struct Biotechnol J, 2021, 19: 1014-1027. DOI:10.1016/j.csbj.2021.01.030
[23]
Rath H, Sappa PK, Hoffmann T, et al. Impact of high salinity and the compatible solute glycine betaine on gene expression of Bacillus subtilis. Environ Microbiol, 2020, 22(8): 3266-3286. DOI:10.1111/1462-2920.15087
[24]
Wang JH, Xie GL, Qi X, et al. Kinetics of pentachlorophenol co-metabolism removal by micro-aeration sequencing batch reactor process. Korean J Chem Eng, 2022, 1-10.
[25]
罗晓静, 肖芃颖, 康宝文, 等. MABR快速富集HN-AD菌强化处理高氨氮废水. 环境工程, 2020, 38(9): 106-112.
Luo XJ, Xiao PY, Kang BW, et al. Performance of mabr with enhancement of rapid hn-ad bacteria enrichment in treating high ammonium nitrogen wastewater. Environ Eng, 2020, 38(9): 106-112 (in Chinese). DOI:10.13205/j.hjgc.202009018
[26]
康宝文, 肖芃颖, 周靖, 等. 生物膜层DO浓度对MABR中异养硝化-好氧反硝化的影响. 环境科学研究, 2021, 34(10): 2397-2404.
Kang BW, Xiao PY, Zhou J, et al. Effects of dissolved oxygen concentrations on heterotrophic nitrification-aerobic denitrification of MABR. Res Environ Sci, 2021, 34(10): 2397-2404 (in Chinese). DOI:10.13198/j.issn.1001-6929.2021.05.19
[27]
Gilcreas FW. Standard methods for the examination of water and waste water. Am J Public Health Nations Health, 1966, 56(3): 387-388. DOI:10.2105/AJPH.56.3.387
[28]
Hou TT, Zhao JM, Lei ZF, et al. Addition of air-nanobubble water to mitigate the inhibition of high salinity on co-production of hydrogen and methane from two-stage anaerobic digestion of food waste. J Clean Prod, 2021, 314: 127942. DOI:10.1016/j.jclepro.2021.127942
[29]
Vanaporn M, Titball RW. Trehalose and bacterial virulence. Virulence, 2020, 11(1): 1192-1202. DOI:10.1080/21505594.2020.1809326
[30]
Yang Y, Yao YD, Li J, et al. Trehalose alleviated salt stress in tomato by regulating ROS metabolism, photosynthesis, osmolyte synthesis, and trehalose metabolic pathways. Front Plant Sci, 2022, 13: 772948. DOI:10.3389/fpls.2022.772948
[31]
金敏, 王景峰, 孔庆鑫, 等. 好氧异养硝化菌Acinetobacter sp. YY-5的分离鉴定及脱氮机理. 应用与环境生物学报, 2009, 15(5): 692-697.
Jin M, Wang JF, Kong QX, et al. Isolation and denitrification mechanism of an aerobic heterotrophic bacterium Acinetobacter sp. YY-5. Chin J Appl Environ Biol, 2009, 15(5): 692-697 (in Chinese).
[32]
Ali A, Wu ZZ, Li M, et al. Carbon to nitrogen ratios influence the removal performance of calcium, fluoride, and nitrate by Acinetobacter H12 in a quartz sand-filled biofilm reactor. Bioresour Technol, 2021, 333: 125154. DOI:10.1016/j.biortech.2021.125154
[33]
Wang HT, Guo L, Ren XM, et al. Enhanced aerobic granular sludge by static magnetic field to treat saline wastewater via simultaneous partial nitrification and denitrification (SPND) process. Bioresour Technol, 2022, 350: 126891. DOI:10.1016/j.biortech.2022.126891
[34]
Wang YQ, Kanneganti TD. From pyroptosis, apoptosis and necroptosis to PANoptosis: a mechanistic compendium of programmed cell death pathways. Comput Struct Biotechnol J, 2021, 19: 4641-4657. DOI:10.1016/j.csbj.2021.07.038
[35]
Goldbraikh D, Neufeld D, Eid-Mutlak Y, et al. USP1 deubiquitinates Akt to inhibit PI3K-Akt-FoxO signaling in muscle during prolonged starvation. EMBO Rep, 2020, 21(4): e48791.
[36]
Yu L, Wei J, Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin Cancer Biol, 2021: 2021Jun25; S1044-2021Jun25;S579X(21)00188-7.
[37]
马云, 李婷婷, 冯日月, 等. 急性白血病细胞中JAK/STAT5和PI3K/AKT信号通路对eIF4B的协同调控作用. 生物工程学报, 2020, 36(11): 2413-2423.
Ma Y, Li TT, Feng RY, et al. Synergistic role of JAK/STAT5 and PI3K/AKT signaling pathways in regulating eIF4B in acute leukemia. Chin J Biotech, 2020, 36(11): 2413-2423 (in Chinese).
[38]
袁媛, 史新娥, 刘月光, 等. 高表达FoxO1抑制猪骨骼肌成肌细胞的分化. 生物工程学报, 2010, 26(12): 1668-1673.
Yuan Y, Shi XE, Liu YG, et al. Over-expression of FoxO1 inhibits the differentiation of porcine skeletal muscle myoblast. Chin J Biotech, 2010, 26(12): 1668-1673 (in Chinese).
[39]
Hla T, Dannenberg AJ. Sphingolipid signaling in metabolic disorders. Cell Metab, 2012, 16(4): 420-434. DOI:10.1016/j.cmet.2012.06.017
[40]
McDermott MI, Wang Y, Wakelam MJO, et al. Mammalian phospholipase D: function, and therapeutics. Prog Lipid Res, 2020, 78: 101018. DOI:10.1016/j.plipres.2019.101018
[41]
Zhao TT, Chen PP, Zhang LJ, et al. Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp. TAC-1 at low temperature and high ammonia nitrogen. Bioresour Technol, 2021, 339: 125620. DOI:10.1016/j.biortech.2021.125620
[42]
Vacca I. Biofilms: building up the matrix. Nat Rev Microbiol, 2017, 15(9): 512-513. DOI:10.1038/nrmicro.2017.97
[43]
Gibellini F, Smith TK. The Kennedy pathway—de novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life, 2010, 62(6): 414-428.
[44]
蔡雪丽, 李洋, 宣文静, 等. 掺入大肠杆菌膜中的磷脂酰胆碱(PC)影响青霉素β-内酰胺酶的分泌. 微生物学报, 2008, 48(4): 486-491.
Cai XL, Li Y, Xuan WJ, et al. Incorporation of phosphatidylcholine into Escherichia coli membrane affects secretion of penicillin β-lactamase. Acta Microbiol Sin, 2008, 48(4): 486-491 (in Chinese). DOI:10.3321/j.issn:0001-6209.2008.04.012
[45]
Lv YF, Pan JJ, Huo TR, et al. Enhanced microbial metabolism in one stage partial nitritation-anammox system treating low strength wastewater by novel composite carrier. Water Res, 2019, 163: 114872. DOI:10.1016/j.watres.2019.114872
[46]
Zhao YP, Liu SF, Jiang B, et al. Genome-centered metagenomics analysis reveals the symbiotic organisms possessing ability to cross-feed with anammox bacteria in anammox consortia. Environ Sci Technol, 2018, 52(19): 11285-11296. DOI:10.1021/acs.est.8b02599
[47]
Rajendrakumar CS, Suryanarayana T, Reddy AR. DNA helix destabilization by proline and betaine: possible role in the salinity tolerance process. FEBS Lett, 1997, 410(2/3): 201-205.
[48]
朱道辰, 刘杏荣. 相容性溶质四氢嘧啶及其羟基化衍生物的研究进展. 中国生物工程杂志, 2011, 31(2): 95-101.
Zhu DC, Liu XR. Compatible solutes ectoine and its derivate hydroxyectoine. China Biotechnol, 2011, 31(2): 95-101 (in Chinese).
[49]
霍唐燃, 潘珏君, 刘思彤. 基于代谢组的厌氧氨氧化菌群对温度的响应机制. 微生物学通报, 2019, 46(8): 1936-1945.
Huo TR, Pan JJ, Liu ST. Metabolomics insight into the response mechanism of anammox consortia to temperature. Microbiol China, 2019, 46(8): 1936-1945 (in Chinese).
[50]
Ting L, Williams TJ, Cowley MJ, et al. Cold adaptation in the marine bacterium, Sphingopyxis alaskensis, assessed using quantitative proteomics. Environ Microbiol, 2010, 12(10): 2658-2676.
[51]
张晓梅, 高宇洁, 杨玲, 等. 谷氨酸棒杆菌中氨基酸分泌转运蛋白及其代谢改造研究进展. 生物工程学报, 2020, 36(11): 2250-2259.
Zhang XM, Gao YJ, Yang L, et al. Amino acid exporters and metabolic modification of Corynebacterium glutamicum-a review. Chin J Biotech, 2020, 36(11): 2250-2259 (in Chinese).
[52]
Schubert C, Zedler S, Strecker A, et al. L-aspartate as a high-quality nitrogen source in Escherichia coli: regulation of L-aspartase by the nitrogen regulatory system and interaction of L-aspartase with GlnB. Mol Microbiol, 2021, 115(4): 526-538. DOI:10.1111/mmi.14620
[53]
Yoder PS, Huang X, Teixeira IA, et al. Effects of jugular infused methionine, lysine, and histidine as a group or leucine and isoleucine as a group on production and metabolism in lactating dairy cows. J Dairy Sci, 2020, 103(3): 2387-2404. DOI:10.3168/jds.2019-17082
[54]
Gao YJ, Liu YJ, Chen XQ, et al. Effects of graded levels of histidine on growth performance, digested enzymes activities, erythrocyte osmotic fragility and hypoxia-tolerance of juvenile grass carp Ctenopharyngodon idella. Aquaculture, 2016, 452: 388-394. DOI:10.1016/j.aquaculture.2015.11.019
[55]
Nagatani H, Shimizu M, Valentine RC. The mechanism of ammonia assimilation in nitrogen fixing Bacteria. Arch Mikrobiol, 1971, 79(2): 164-175. DOI:10.1007/BF00424923
[56]
Sahm H, Eggeling L, de Graaf AA. Pathway analysis and metabolic engineering in Corynebacterium glutamicum. Biol Chem, 2000, 381(9/10): 899-910.
[57]
Wu MX, Zou Y, Yu YH, et al. Comparative transcriptome and proteome provide new insights into the regulatory mechanisms of the postharvest deterioration of Pleurotus tuoliensis fruitbodies during storage. Food Res Int, 2021, 147: 110540. DOI:10.1016/j.foodres.2021.110540
[58]
Hong SH, Park SJ, Moon SY, et al. In silico prediction and validation of the importance of the Entner-Doudoroff pathway in poly(3-hydroxybutyrate) production by metabolically engineered Escherichia coli. Biotechnol Bioeng, 2003, 83(7): 854-863. DOI:10.1002/bit.10733
[59]
Fürch T, Hollmann R, Wittmann C, et al. Comparative study on central metabolic fluxes of Bacillus megaterium strains in continuous culture using 13C labelled substrates. Bioprocess Biosyst Eng, 2007, 30(1): 47-59.
[60]
Kwong WK, Zheng H, Moran NA. Convergent evolution of a modified, acetate-driven TCA cycle in bacteria. Nat Microbiol, 2017, 2: 17067. DOI:10.1038/nmicrobiol.2017.67
[61]
Tang KH, Tang YJ, Blankenship RE. Carbon metabolic pathways in phototrophic bacteria and their broader evolutionary implications. Front Microbiol, 2011, 2: 165.