生物工程学报  2022, Vol. 38 Issue (1): 50-65
http://dx.doi.org/10.13345/j.cjb.210135
中国科学院微生物研究所、中国微生物学会主办
0

文章信息

潘凌云, 马家冀, 李建民, 尹兵兵, 付畅
PAN Lingyun, MA Jiaji, LI Jianmin, YIN Bingbing, FU Chang
植物盐胁迫应答转录因子的研究进展
Advances of salt stress-responsive transcription factors in plants
生物工程学报, 2022, 38(1): 50-65
Chinese Journal of Biotechnology, 2022, 38(1): 50-65
10.13345/j.cjb.210135

文章历史

Received: February 9, 2021
Accepted: April 23, 2021
Published: May 11, 2021
植物盐胁迫应答转录因子的研究进展
潘凌云 , 马家冀 , 李建民 , 尹兵兵 , 付畅     
哈尔滨师范大学 生命科学与技术学院, 黑龙江 哈尔滨 150025
摘要:盐胁迫会导致植物受到初级的渗透胁迫和离子毒害以及次级的氧化胁迫和营养胁迫,严重制约了农业生产。植物盐胁迫应答转录因子能够通过调节下游靶基因的表达减轻盐胁迫对植物造成的伤害。文中基于土壤盐渍化及其对植物的危害、转录因子在植物盐胁迫信号转导网络中的中枢调节作用,综述了盐胁迫应答转录因子参与的盐胁迫信号转导途径、通过形成同源或异源二聚体及与调控蛋白形成复合物等方式调控下游基因形成的复杂下游基因网络,以及盐胁迫应答转录因子在提高植物耐盐性中的应用,为解析盐胁迫应答转录因子在盐胁迫应答调控网络中的作用提供理论依据,为植物抗逆分子育种提供参考信息。
关键词盐胁迫    转录因子    调控    网络    
Advances of salt stress-responsive transcription factors in plants
PAN Lingyun , MA Jiaji , LI Jianmin , YIN Bingbing , FU Chang     
College of Life Science and Technology, Harbin Normal University, Harbin 150025, Heilongjiang, China
Abstract: Salt stress may cause primary osmotic stress and ion toxicity, as well as secondary oxidative stress and nutritional stress in plants, which hampers the agricultural production. Salt stress-responsive transcription factors can mitigate the damage of salt stress to plants through regulating the expression of downstream target genes. Based on the soil salinization and its damage to plants, and the central regulatory role of transcription factors in the plant salt stress-responsive signal transduction network, this review summarized the salt stress-responsive signal transduction pathways that the transcription factors are involved, and the application of salt stress-responsive transcription factors to enhance the salt tolerance of plants. We also reviewed the transcription factors-regulated complex downstream gene network which is formed by forming homo- or heterodimers between transcription factors and by forming complexes with regulatory proteins. This paper provides a theoretical basis for understanding the role of salt stress-responsive transcription factors in the salt stress regulatory network, which may facilitate the molecular breeding for improved stress resistance.
Keywords: salt stress    transcription factor    regulation    network    

土壤盐渍化是一个全球性的问题,全世界约有8.31×108 hm2的土壤资源受到盐的影响[1],全球每年因盐引起的农业减产造成的经济损失达273亿美元[2]。到2050年,世界粮食产量需要增加70%才能与预计的人口增长对粮食的需求相适应[3],因此迫切需要找到有效途径,减少土壤盐渍化对农业生产的影响。了解土壤盐渍化对植物的危害以及植物应对盐胁迫的机制是解决这一问题的重要前提。

盐胁迫会引起渗透胁迫和离子毒害等初级胁迫,高盐还会引起氧化胁迫和营养胁迫等一系列次级胁迫[4]。多种胁迫的积累会影响细胞生长和代谢过程[5],进而影响种子萌发、幼苗生长和作物产量[6]。为了增加存活的机会,植物在形态结构、生理代谢和分子水平上进化出复杂的应对盐胁迫的机制[7-8],包括叶片数和叶面积的减少、气孔的关闭、渗透调节物质的积累、Na+和Cl的外排及区隔化、活性氧的清除以及胁迫响应基因表达的变化。形态结构和生理代谢水平的改善程度受到胁迫响应基因表达的控制,而转录因子在这些应激反应基因的表达中起着关键的调控作用[9]

转录因子是一类具有特殊结构、能够调控基因表达的蛋白质分子,通过结合目的基因启动子区域中的顺式作用元件,激活或抑制该基因的转录,从而使目的基因在特定的时间与空间表达。WRKY、V-myb avian myeloblastosis viral oncogene homolog (MYB)、NAM,ATAF1/2 and CUC2 (NAC)、Basic leucine zipper (bZIP)、APETALA2/ethylene responsive factor (AP2/ERF)、Basic helix-loop-helix (bHLH) 等转录因子家族在复杂的盐胁迫信号转导网络中起着中枢调节和分子开关的作用,通过激活或抑制一个或一组基因使其特异性表达,这些基因表达的产物再进一步控制下游基因的表达或直接保护植物减轻盐胁迫的破坏[10]。通过基因工程途径在植物中过表达这些转录因子基因,可以增强植物对盐胁迫的适应性。

本文对盐胁迫应答转录因子的结构特征、参与的盐胁迫信号转导途径、调控的下游基因网络以及在提高植物耐盐性中的应用进行综述,为解析盐胁迫应答转录因子在响应盐胁迫调控网络中的作用提供理论依据,为植物抗逆分子育种提供参考信息。

1 盐胁迫应答转录因子及其参与的盐胁迫信号途径

当外界存在盐胁迫刺激信号时,会由细胞壁或细胞膜上的传感器或受体感知。细胞壁是最早感知外界环境变化的细胞结构[11]。植物细胞壁完整性的维持对于感知和响应盐胁迫是至关重要的。细胞膜上的受体激酶FERONIA可以感知盐胁迫导致的细胞壁软化[12]。拟南芥(Arabidopsis thaliana) OSCA1编码一种质膜定位的钙离子通道,被认为是一个假定的渗透胁迫感受器,用山梨醇或甘露醇处理进行渗透胁迫时,拟南芥osca1突变体中Ca2+浓度显著低于野生型[13]MOCA1编码葡萄糖醛酸转移酶,可以将葡萄糖醛酸转移到肌醇磷酸神经酰胺,形成细胞质膜外侧鞘脂糖基肌醇磷酸神经酰胺(glycosyl inositol phosphorylceramide, GIPC),GIPCs与Na+结合后打开Ca2+流入通道,增加胞内Ca2+浓度,通过调控生理生化过程来应对盐胁迫[14]。该发现是对植物钠离子信号感应器鉴定的重大突破。HPCA1编码一种富亮氨酸重复的受体激酶,是于近期首次发现的植物细胞表面过氧化氢(H2O2) 感受器,H2O2可对HPCA1胞外的半胱氨酸残基进行共价修饰,从而激活该蛋白,导致HPCA1的自磷酸化并介导钙离子通道的打开[15]。盐胁迫信号通过Ca2+、活性氧(reactive oxygen species, ROS) 等第二信使进一步传递和放大,启动了植物中多条复杂的信号转导途径(图 1)。

图 1 植物细胞盐胁迫信号转导网络[8, 13-40] Fig. 1 Salt stress-responsive signal transduction network in plant cells[8, 13-40].
1.1 WRKY参与的盐胁迫信号转导途径

WRKY转录因子含有一个或两个约60个氨基酸残基组成的WRKY结构域。结构域的N端是WRKYGQK序列,与DNA结合活性相关,结构域的C端是C-X4-5-C-X22-23-H-X1-H或C-X7-C-X23-H-X1-C锌指结构,功能是参与蛋白质互作和辅助DNA结合[41-42]。目前已从多种植物中鉴定出大量的盐应答WRKY转录因子,其中Ⅱc亚族WRKY因子显示出关键作用[43]。盐应答WRKY转录因子通过与启动子中的W-box元件相互作用驱动或阻抑靶基因转录,参与脱落酸(abscisic acid, ABA)、乙烯、盐过敏感(salt overly sensitive, SOS) 信号转导途径并在不同信号转导途径的交互作用中充当中间因子。不同植物中鉴定出的盐应答WRKY级联为系统性解析盐应答WRKY调控网络提供了重要线索。毛竹(Phyllostachys edulis) PeWRKY83在拟南芥中的超表达上调了ABA合成基因AtAAO3AtNCED2AtNCED3的表达,在耐盐性中发挥积极作用[44]。巴西橡胶树(Hevea brasiliensis) HbWRKY83在拟南芥中的超表达增强了乙烯信号途径转录因子基因AtEIN3的表达,提高了拟南芥在盐胁迫下的发芽率[45]。不同的WRKY转录因子能分别负调控和正调控SOS途径的盐应答反应,高粱(Sorghum bicolor (L.) Moench) SbWRKY50能通过降低拟南芥Na+/H+反向转运蛋白基因AtSOS1的表达水平负调控盐应答反应[46]。金柑(Fortunella crassifolia) FcWRKY40则可以直接激活SOS途径中的丝氨酸/苏氨酸蛋白激酶基因FcSOS2的表达,间接调控FcSOS1FcSOS3基因的表达,促进Na+外排,正调控对盐胁迫的应答反应。此外,FcWRKY40又可以被ABA诱导表达,作为ABA反应元件结合因子FcABF2的靶点,FcWRKY40可能是SOS途径与ABA途径之间形成交叉互作的关键转录因子[8]。随着盐胁迫浓度的升高,向日葵(Helianthus annuus L.) 根中有14个WRKY上调表达,7个WRKY下调表达[47]。笔者所在团队从向日葵中克隆得到响应盐胁迫的HaWRKY22HaWRKY29HaWRKY81,启动子中具有MYB结合序列、脱落酸响应元件(ABA-responsive element, ABRE)、参与茉莉酸甲酯反应的顺式调控元件TGACG-motif及WRKY转录因子特异结合元件W-box,暗示这些基因可能在多种信号转导途径中发挥重要作用,对这些WRKY基因的功能及机制分析正在开展。

1.2 bHLH参与的盐胁迫信号转导途径

bHLH含有一个约60个氨基酸残基组成的高度保守的bHLH结构域,结构域N端的碱性氨基酸区,功能是结合DNA,位于结构域C端的螺旋-环-螺旋区域,功能是形成同源或异源二聚体[48]。盐应答bHLH转录因子通过结合启动子G-box/E-box或GCG-box元件调控靶基因转录[49],参与ABA和丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK) 信号转导途径。bHLH家族的同一成员能通过作用于不同靶基因发挥多功能调节作用,不同成员能通过介导不同的信号途径调节耐盐性[50]。小麦(Triticum aestivum) TabHLH1能够上调超表达烟草中ABA受体基因NtPYL12和蔗糖非发酵相关蛋白激酶2 (sucrose non-fermenting 1-related protein kinase 2, SnRK2) 基因NtSAPK2;1的表达,通过介导ABA通路促进气孔关闭,降低叶片失水率,提高耐盐性[51]。水稻(Oryza sativa) OsbHLH035通过下调ABA合成基因OsABA2OsAAO3,上调ABA分解代谢基因OsABA8ox1,减轻盐胁迫下ABA对发芽的抑制作用[52]。在MAPK途径中,拟南芥AtMKK3-AtMAPK6级联磷酸化转录因子AtMYC2,后者与AtP5CS1的5′ UTR作用,减少脯氨酸的积累来负调控对盐胁迫的应答反应[16]。bHLH转录因子识别结合的新型顺式作用元件如GCG-box的发现[49],为广泛鉴定bHLH的靶基因及其参与的信号途径带来了新的契机。

1.3 bZIP参与的盐胁迫信号转导途径

bZIP具有bZIP结构域,其N端含有一个用于DNA结合的碱性结合域,其C端含有一个参与寡聚化的亮氨酸拉链区[53]。盐应答bZIP转录因子通过结合启动子G-box和ABRE等顺式作用元件调控靶基因表达,其中A亚族bZIP转录因子ABF/AREB,即ABA应答元件结合蛋白,广泛参与ABA途径响应盐胁迫。关键的bZIP转录因子在盐应答反应中发挥多功能调节作用,bZIP功能的特异性主要通过形成特定的同源或异源二聚体、灵活多样的蛋白复合体以及盐诱导的亚细胞重定位调节[50]。苦荞(Fagopyrum tataricum) FtbZIP83能与FtSnRK2.6/2.3互作并能增强盐胁迫下转基因拟南芥中AtRD29AAtRD29BAtAIL等ABA诱导基因的表达[17]。FtSnRK2.6还能与苦荞FtbZIP5互作,通过调控ABA信号途径降低转基因拟南芥在盐胁迫下的氧化损伤[18]。在渗透胁迫下,AtSnRK2能磷酸化转录因子AtAREB1、AtAREB2和AtABF3,在拟南芥areb1areb2abf3突变体中,淀粉水解酶基因AtBAM1AtAMY3的转录水平降低,推测转录因子AtAREB1、AtAREB2和AtABF3可能通过促进淀粉降解为糖和糖衍生的渗透物,在提高渗透胁迫的耐受性中发挥着重要作用[19]。bZIP转录因子在其他信号途径中的作用、在盐应答反应中的多功能调节及功能特异性调节网络还需要通过更多的研究来揭示全貌。

1.4 NAC参与的盐胁迫信号转导途径

NAC蛋白的N端含有约150个氨基酸残基组成的保守的NAC结构域,用于结合DNA,C端含有高度可变的转录调节区域,用于激活或抑制转录[54-55]。盐应答NAC转录因子通过结合启动子NACRS顺式作用元件,参与调控乙烯、生长素和ABA信号转导途径。NAC转录因子家族的不同成员通过作用于不同的靶基因,介导不同途径调节盐应答反应,与不同靶基因启动子的结合与核心顺式元件的侧翼序列差异有关[50],NAC转录因子家族的不同成员如何协同调节盐应答反应是揭示NAC盐应答调节网络的重要基础,利用生物信息学技术解析启动子核心DNA结合元件侧翼序列的分布规律会为此提供助力。苹果(Malus domestica) MdNAC047通过上调乙烯合成基因MdACS1MdACO1以及转录因子基因MdERF3的表达,诱导了乙烯的积累,通过调节乙烯反应来增强对盐胁迫的耐受性[20]。大豆(Glycine max) GmNAC109通过正调控生长素应答基因类枯草杆菌蛋白酶基因AtAIR3和负调控转录因子基因AtARF2的表达,促进了转基因拟南芥侧根的形成,对高盐胁迫表现出更强的耐受性,盐胁迫下在超表达GmNAC109的拟南芥中,脱落酸响应元件结合蛋白基因AtAREB1AtAREB2,ABA应答基因AtABI1AtABI5的表达显著上调[21],GmNAC109可能是连接生长素途径和ABA途径的关键因子。转录因子可以作为不同信号转导途径的连接点,“连接点”转录因子基因的鉴定应作为未来研究的重点之一,通过基因工程途径实现植物在高盐环境中通过多条信号转导途径的协同调节抵御盐胁迫。笔者所在团队从向日葵中筛选出140个NAC转录因子基因,为进一步筛选盐应答NAC转录因子提供了基础(未发表数据)。

1.5 MYB参与的盐胁迫信号转导途径

MYB转录因子的N末端含有一段大约由52个氨基酸残基组成的高度保守的MYB结构域,用于结合DNA,C端是具有多样性的转录调控区域,用于调控蛋白活性[56]。植物中具有相当高比例的MYB转录因子响应盐胁迫、具有调控耐盐性的功能,大部分属于R2R3型MYB。盐应答MYB转录因子通过结合靶基因启动子中的MYBCORE等顺式作用元件,激活或抑制其时空表达,参与ABA和MAPK信号转导途径,也有一些盐应答MYB通过非ABA途径调节耐盐性。转录因子AtMYB73是SOS途径的负调节因子,盐胁迫下atmyb73突变体中Na+/H+反向转运蛋白基因AtSOS1和EF-hand手型结构的钙结合蛋白基因AtSOS3的表达升高,耐盐性增强[57]。在ABA途径中,不同的MYB转录因子对盐胁迫的应答反应分别起正、负调控作用,在超表达芝麻(Sesamum indicum) SiMYB75的拟南芥中,ABA合成基因AtNCED3AtABA3的表达上调,ABA含量增加,SiMYB75通过ABA途径促进气孔关闭,减少叶片水分损失,调节盐胁迫[58]。而菠萝(Ananas comosus L.) AcoMYB4可以结合ABA合成基因AcoABA1和ABA途径关键因子AcoABI5的启动子,通过减弱ABA的合成和信号转导途径来负调控盐胁迫[59]。大部分MYB转录因子存在功能冗余[60],CRISPR/Cas9技术为鉴定MYB成员的功能冗余提供了有力工具,有助于解析复杂的MYB转录因子调控网络。

1.6 AP2/ERF参与的盐胁迫信号转导途径

AP2/ERF转录因子含有非常保守的约60个氨基酸的AP2/ERF结构域,该结构域的N端是YRG区,与DNA结合有关,C端是RAYD区,介导蛋白间的相互作用[61]。盐应答AP2/ERF转录因子通过与启动子GCC-box和Dehydration responsive element/C-repeat (DRE/CRT) 元件结合[62],调节靶基因的表达,参与MAPK和乙烯信号转导途径。一些AP2/ERF转录因子对盐应答反应的负调控与其结构中含有EAR等转录抑制结构域相关。水稻OsMAPKKK6可以磷酸化激活OsMAPKK4[22],OsMAPKK4可以磷酸化激活OsMAPK5[23]。盐胁迫下转录因子OsSERF1是OsMAPK5的磷酸化靶标,能激活下游转录因子基因OsDREB2AOsZFP179的表达。OsDREB2A的超表达能提高水稻在盐胁迫下的发芽率和存活率,OsZFP179的超表达能激活胚胎晚期丰富蛋白基因OsLEA3在水稻中的表达[24-26]。OsSERF1还能结合自身及上游OsMAPK5OsMAPKKK6的启动子,增强其表达。拟南芥ERF转录因子AtESE1介导乙烯途径响应盐胁迫,乙烯途径关键转录因子AtEIN3与AtESE1启动子结合,AtESE1又与AtRD29AAtCOR15AAtP5CS2的启动子结合,提高转基因拟南芥在种子萌发期和幼苗期的耐盐性[63]。AP2/ERF转录因子的反馈调节特征应是解析其调控网络的重要关注点。

1.7 其他转录因子参与的盐胁迫信号转导途径

水稻OsMADS25通过正调控生长素合成酶基因的表达调节主根长度和侧根密度,进而适应高盐胁迫[27]。拟南芥AtHSFA7b和番茄SlDof22都通过SOS途径参与盐胁迫反应。AtHSFA7b正调控SOS信号通路中AtSOS1AtSOS2AtSOS3基因的表达,通过维持细胞离子稳态提高植物的耐盐性[64]SlDof22-RNAi使番茄中SlSOS1的表达水平显著下调,导致耐盐性降低[65]。蒺藜苜蓿(Medicago truncatula) MtNGA1的过表达上调了ABA合成酶基因AtNCED3的表达,提高了转基因拟南芥在盐胁迫下的存活率[66]。植物的盐信号转导网络具有高度复杂性,盐应答转录因子除了位于信号转导途径的下游发挥中枢作用,调节盐应答功能基因的表达,还可以作为分子开关,通过调节激素合成调控相应的信号途径。

2 盐胁迫应答转录因子调控的下游基因网络

转录因子通过直接结合或间接调控靶基因的转录来控制关键下游反应,包括一系列生理生化改变,在植物对盐胁迫的适应中发挥重要作用。此外,转录因子通过形成同源或异源二聚体及与调控蛋白形成复合物等方式调控下游靶基因,由靶基因执行提高活性氧清除能力、提高Na+/K+的比值、提高渗透调节物质的含量等功能,形成复杂的下游基因网络(图 2)。

图 2 盐胁迫应答转录因子调控的下游功能基因[8, 39, 49, 63, 67-72] Fig. 2 Downstream functional genes regulated by salt stress-responsive transcription factors[8, 39, 49, 63, 67-72].
2.1 盐胁迫应答转录因子及其靶向的功能基因

盐应答转录因子与功能基因启动子中特定的顺式作用元件结合,增强或抑制其转录,重建细胞内部动态平衡,最终使植物适应盐胁迫。AtESE1、苹果MdMYB46、水稻OsONAC045和OsONAC063分别调控AtP5CS2MdCAD/MdCOMT/MdCCROsLEA3-1AtAMY1的表达,维持渗透平衡[50, 63, 67]。AtbZIP24、AtRITF1、水稻OsbZIP71和野生稻(Oryza rufipogon) OrbHLH001分别调控AtHKT1AtSOS1OsNHX1OsAKT1的转录,维持离子稳态[50, 68]。水稻OsSNAC2和OsNAC6分别通过调控Osprx46Osprx54/Osprx88的表达,提高活性氧清除能力[50]。金柑FcWRKY40既能调控离子稳态基因FcSOS2、FcSOS1FcSOS3,又能调控渗透平衡基因FcP5CS1,减轻盐相关损伤[8]。AtbHLH112、长叶红砂(Reaumuria trigyna) RtWRKY23和白桦(Betula platyphylla) BpNAC012既能分别调控渗透调节基因AtP5CSAtP5CS1/ AtP5CS2/AtPRODH2BpP5CS1/BpP5CS2,又能分别调控活性氧平衡基因AtPOD/AtSODAtPOD22/AtPOD23/AtCAT1BpSOD1/BpPOD1的表达[49, 69-70]。在已鉴定的盐应答转录因子靶基因中,有些被鉴定为直接靶基因,如BpNAC012直接作用于BpP5CS1BpP5CS2BpSOD1BpPOD1;有些被鉴定为间接靶基因,如FcWRKY40间接调控FcSOS1FcSOS3,这意味着中间还存在尚不明确的其他转录因子参与调控;还有一些靶基因的表达受到盐应答转录因子的调控,但尚未鉴定是直接还是间接的靶基因,如DgWRKY2与DgP5CSDgCAT的作用方式还需进一步鉴定。对转录因子启动子区顺式作用元件的研究有助于深入了解其调控机制,启动子区存在大量相同或不同的顺式作用元件的转录因子有望成为关键的耐盐转录因子,在植物耐盐基因工程中的潜力值得关注。

2.2 盐胁迫应答转录因子下游基因网络的复杂性

一些WRKY转录因子与转录辅助因子VQ蛋白存在相互作用,在植物生长发育和逆境反应中发挥着重要作用[73]。AtWRKY8和AtVQ9分别是拟南芥盐应答反应的正、负调控因子,两者通过相互作用形成复合物,降低了AtWRKY8与下游靶标AtRD29A的结合活性,协同调节对盐胁迫的反应[74]。甘薯(Ipomoea batatas) IbWRKY2能与IbVQ4互作,前者通过调控下游ABA合成基因AtNCED、脯氨酸合成基因AtP5CR和ROS清除基因AtCATAtPOD的表达调控,提高了转基因拟南芥对盐胁迫的耐受性[40]。水稻高亲和性K+转运蛋白OsHKT1;5参与卸载木质部钠离子至维管束薄壁细胞中,防止Na+在植株地上部分过度积累。最近发现,盐胁迫下DNA甲基化识别酶OsSUVH7结合在OsHKT1;5启动子上游甲基化的MITE转座子上,招募分子伴侣调控蛋白OsBAG4和转录因子OsMYB106,形成稳定的转录调控复合体,增强OsMYB106与OsHKT1;5启动子上的MYB结合顺式元件的结合,激活其表达,维持Na+/K+平衡[75]。组蛋白修饰引起的染色质结构变化可以改变靶基因的表达,参与调控盐应答反应。AP2/ERF转录因子OsIDS1是水稻响应盐胁迫的负调控因子,具有转录抑制活性,可与盐应答基因OsLEA1OsSOS1的启动子结合,抑制这些基因的表达,OsIDS1和转录抑制因子OsTPR1通过相互作用形成转录抑制复合物增强了OsIDS1对靶基因的转录抑制活性。此外,OsIDS1与组蛋白去乙酰化酶OsHDA1的相互作用,降低OsLEA1OsSOS1启动子区组蛋白乙酰化水平,通过表观遗传调控响应盐胁迫[76]。这些研究表明,转录因子与调控蛋白之间通过相互作用来增强或减弱它们与靶基因的结合以及转录活性,这些物理相互作用的鉴定为盐应答转录因子调控网络精细机制的揭示提供了新的线索。

转录因子通过形成二聚体的形式在基因表达调控中发挥关键作用。核桃(Juglans regia) JrWRKY2和JrWRKY7可以形成异源二聚体,与JrWRKY2JrWRKY7单独过表达相比,JrWRKY2JrWRKY7共表达,核桃中的JrSODJrCATJrAPX表达水平更高,抗氧化酶活性更强,其通过增强ROS清除能力来增强耐盐性[77]。白桦转录因子BplMYB46既可以与自身形成同源二聚体,也可以与BplMYB6、BplMYB8、BplMYB11、BplMYB12和BplMYB13形成异源二聚体,其中BplMYB46与BplMYB13的相互作用可能通过增强与MYBCORE顺式作用元件的结合能力而提高BplSOD4BplSOD6BplPOD9BplPOD10BplGST基因的表达水平,BplMYB46BplMYB13共表达烟草与单独过表达BplMYB46BplMYB13相比,SOD、POD和GST酶的活性更高,通过增强ROS清除能力来增强耐盐性[78]。不仅MYB转录因子之间存在相互作用,MYB转录因子还可以和AP2/ERF转录因子形成异源二聚体,在盐应答反应中发挥重要作用。苹果MdMYB63可与MdSOS1启动子上的MBS顺式元件结合,促进Na+流出,缓解盐胁迫,MdMYB63通过与MdERF106相互作用形成复合物显著促进下游MdSOS1的表达,增强苹果的耐盐性[79]。这些研究结果为扩展对盐应答转录因子调控网络的认识补充了重要参考信息。充分认识盐应答转录因子的调控网络还需要进一步解析和理清调控盐胁迫应答转录因子的上游网络成员是如何协同作用的,包括可能存在一些复杂的反馈调节机制,不同途径的精细化交叉调控,以及表观遗传修饰、转录以及转录后调控、翻译以及翻译后调控等多层次的综合调控。

3 盐胁迫应答转录因子在提高植物耐盐性中的应用

植物耐盐基因工程是目前培育高质量、高产量耐盐作物最有前景的途径。相比单一功能基因的操作,转录因子能够同时调控多个下游盐胁迫应答基因,在植物中过量表达耐盐转录因子已被证实能有效提高植物的耐盐性(表 1)。在观赏植物耐盐性改良方面,菊花(Dendranthema grandiforum) 转录因子基因DgWRKY2DgWRKY4的超表达使转基因菊花在盐胁迫下的成活率至少提高2倍[80-81],这些研究为今后扩大菊花生产规模,提高其观赏价值提供了应用基础。在林木耐盐性改良方面,Qin等[62]发现柽柳转录因子基因ThCRF1的超表达使转基因柽柳在盐胁迫下的鲜重提高1倍多,该研究对培育出具有耐盐能力优良的林木具有重要意义。在粮食作物耐盐性改良方面,Wang等[107]证明水稻转录因子基因OsSTAP1的超表达使转基因水稻在盐胁迫下存活率提高1倍多。在经济作物耐盐性改良方面,Li等[99]证明大豆(Glycine max) 转录因子基因GmFDL19的超表达使转基因大豆在盐胁迫下的发芽率提高2倍多。这些研究对扩大农作物的种植规模,培育耐盐作物具有重要意义。尽管目前对一些转录因子如TabZIP14-B[102]OoNAC72[94]VvWRKY2[84]FcWRKY40[8]等的研究仍停留在拟南芥和烟草等模式植物上,但是这些转录因子的发现同样为耐盐基因工程提供了新的候选基因,其中特别值得一提的是金柑转录因子基因FcWRKY40,它的超表达使转基因烟草在盐胁迫下的发芽率提高9倍多,远高于其他转录因子的转基因植株,这与其能结合FcSOS2FcP5CS1启动子中的W-box,既能调节渗透平衡,又能调节离子平衡等两种重要功能有关[8]

表 1 盐胁迫应答转录因子提高植物耐盐性的应用效果 Table 1 Effect of enhancing plant salt tolerance through applying transcription factors in response to salt stress
Family Genes Sources Transgenic
species
Applications The enhancement of tolerance of transgenic plants under salt stress References
Germinationrate Survival rate Proline content SOD activity
WRKY DgWRKY2 Dendranthema grandiforum Chrysanthemum a ↑2.05 ↑1.67 ↑3.67 [80]
DgWRKY4 Dendranthema grandiforum Chrysanthemum a ↑2.26 ↑1.77 ↑2.54 [81]
FcWRKY40 Fortunella crassifolia Tobacco b ↑9.39 [8]
FtWRKY46 Fagopyrum tataricum Arabidopsis b ↑1.45 ↑1.38 [82]
GmWRKY16 Glycine max Arabidopsis b ↑2.24 [83]
IbWRKY2 Ipomoea batatas Arabidopsis b ↑1.39 ↑1.46 [40]
PeWRKY83 Phyllostachys edulis Arabidopsis b ↑1.38 ↑3.04 [44]
VvWRKY2 Vitis vinifera Tobacco b ↑3.96 ↑3.69 [84]
MYB FtMYB9 Fagopyrum tataricum Arabidopsis b ↑4.47 ↑2.12 [85]
FtMYB13 Fagopyrum tataricum Arabidopsis b ↑3.67 ↑2.83 [86]
GhMYB73 Gossypium hirsutum Arabidopsis b ↑1.75 [87]
MdMYB46 Malus domestica Apple c ↑2.02 [67]
SlMYB102 Solanum lycopersicum Tomato d ↑2.23 [88]
ZmMYB3R Zea mays Arabidopsis b ↑4.47 [89]
NAC LpNAC13 Lilium pumilum Tobacco b ↑2.07 ↑1.35 [90]
MbNAC25 Malus baccata Arabidopsis b ↑2.42 ↑2.30 [91]
MlNAC10 Miscanthus lutarioriparius Arabidopsis b ↑1.74 ↑1.71 [92]
MlNAC12 Miscanthus lutarioriparius Arabidopsis b ↑1.78 ↑1.58 [93]
OoNAC72 Oxytropis ochrocephala Arabidopsis b ↑6.00 ↑2.10 ↑3.19 [94]
PheNAC3 Phyllostachys edulis Arabidopsis b ↑1.63 [95]
ThNAC13 Tamarix hispida Arabidopsis b ↑2.14 ↑2.04 [96]
bZIP BnaABF2 Brassica Napus Arabidopsis b ↑4.24 [97]
FtbZIP5 Fagopyrum tataricum Arabidopsis b ↑2.11 ↑1.89 ↑1.73 [18]
FtbZIP83 Fagopyrum tataricum Arabidopsis b ↑12.29 ↑1.75 ↑1.66 [17]
GmbZIP2 Glycine max Arabidopsis b ↑4.32 [98]
GmFDL19 Glycine max Soybean e ↑2.17 ↑1.17 [99]
GmTGA17 Glycine max Arabidopsis b ↑2.07 [100]
IbABF4 Ipomoea batatas Arabidopsis b ↑4.32 [101]
TabZIP14-B Triticum aestivum Arabidopsis b ↑7.67 ↑6.73 [102]
AP2/ERF HuERF1 Hylocereus undatus Arabidopsis b ↑1.88 ↑1.35 [103]
IbRAP2-12 Ipomoea batatas Arabidopsis b ↑2.15 ↑1.56 [104]
LkERF-B2 Larix kaempferi Arabidopsis b ↑4.83 [105]
MdDREB76 Malus domestica Tobacco b ↑2.22 ↑1.58 ↑3.89 [106]
OsSTAP1 Oryza sativa Rice f ↑1.56 ↑1.29 [107]
SlERF84 Solanum lycopersicum Arabidopsis b ↑1.43 [108]
ThCRF1 Tamarix hispida Tamarix g ↑1.16 ↑2.04 [62]
Note: ↑represents the multiple of wild type, a represents the ornamental plant, b represents the model plant, c represents the fruit crop, d represents the vegetable crop, e represents the economic crop, f represents the food crop, g represents the forest.
4 总结与展望

土壤盐渍化问题日益严重,已成为限制种子萌发、幼苗生长和作物产量的主要因素。提高植物的耐盐性主要是诱导应激反应基因的激活,这些基因的表达产物参与到由盐胁迫诱导的初级胁迫和次级胁迫等各个方面的修复中。相比单一功能基因,单个转录因子就可以调控一组下游靶基因,进而调控生理生化过程来应对盐胁迫。因此,转录因子成为优良的候选耐盐基因,其在作物育种中的应用将会有很大的发展空间。虽然人们已经积累了很多关于转录因子参与盐应答的信息,并验证了大量候选的转录因子基因的功能,但仍有一些问题有待解决。首先,如何在如此庞大的转录因子家族中选择关键的转录因子基因应用到实际生产中发挥最大价值是今后研究的一个重要目标。应优先选择靶向重要功能基因的转录因子,确定表型筛选标准,结合实验室、温室、田间数据,综合评估其对整个生命周期生长和耐受性的影响。其次,关于转录因子调控Cl平衡基因响应盐胁迫的信息还很缺乏,日后应关注筛选调控Cl通道蛋白基因、Cl/H+逆向转运蛋白基因的转录因子。最后,对耐盐转录因子上游和下游完整而精确的调控机制的解析仍需深入,新兴的反向染色质免疫沉淀技术有助于提高寻找上游调控因子的效率。随着耐盐相关的转录因子候选基因的发现和广泛应用,对转录因子参与的耐盐机制的揭示不断完善,通过基因工程培育耐盐作物将变得更加有力。

参考文献
[1]
Li JG, Pu LJ, Han MF, et al. Soil salinization research in China: advances and prospects. J Geogr Sci, 2014, 24(5): 943-960. DOI:10.1007/s11442-014-1130-2
[2]
Qadir M, Quillérou E, Nangia V, et al. Economics of salt-induced land degradation and restoration. Nat Resour Forum, 2014, 38(4): 282-295. DOI:10.1111/1477-8947.12054
[3]
Panta S, Flowers T, Lane P, et al. Halophyte agriculture: success stories. Environ Exp Bot, 2014, 107: 71-83. DOI:10.1016/j.envexpbot.2014.05.006
[4]
Yang YQ, Guo Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol, 2018, 217(2): 523-539. DOI:10.1111/nph.14920
[5]
Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59: 651-681. DOI:10.1146/annurev.arplant.59.032607.092911
[6]
Hasegawa PM, Bressan RA, Zhu JK, et al. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol, 2000, 51(1): 463-499. DOI:10.1146/annurev.arplant.51.1.463
[7]
Hou HM, Jia H, Yan Q, et al. Overexpression of a SBP-box gene (VpSBP16) from Chinese wild Vitis species in Arabidopsis improves salinity and drought stress tolerance. Int J Mol Sci, 2018, 19(4): E940. DOI:10.3390/ijms19040940
[8]
Dai WS, Wang M, Gong XQ, et al. The transcription factor FcWRKY40 of Fortunella crassifolia functions positively in salt tolerance through modulation of ion homeostasis and proline biosynthesis by directly regulating SOS2 and P5CS1 homologs. New Phytol, 2018, 219(3): 972-989. DOI:10.1111/nph.15240
[9]
Liang WJ, Ma XL, Wan P, et al. Plant salt-tolerance mechanism: a review. Biochem Biophys Res Commun, 2018, 495(1): 286-291. DOI:10.1016/j.bbrc.2017.11.043
[10]
Khan SA, Li MZ, Wang SM, et al. Revisiting the role of plant transcription factors in the battle against abiotic stress. Int J Mol Sci, 2018, 19(6): E1634. DOI:10.3390/ijms19061634
[11]
Parrotta L, Guerriero G, Sergeant K, et al. Target or barrier? The cell wall of early-and later-diverging plants vs cadmium toxicity: differences in the response mechanisms. Front Plant Sci, 2015, 6: 133.
[12]
Feng W, Kita D, Peaucelle A, et al. The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Curr Biol, 2018, 28(5): 666-675, e5. DOI:10.1016/j.cub.2018.01.023
[13]
Yuan F, Yang HM, Xue Y, et al. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature, 2014, 514(7522): 367-371. DOI:10.1038/nature13593
[14]
Jiang ZH, Zhou XP, Tao M, et al. Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx. Nature, 2019, 572(7769): 341-346. DOI:10.1038/s41586-019-1449-z
[15]
Wu FH, Chi Y, Jiang ZH, et al. Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis. Nature, 2020, 578(7796): 577-581. DOI:10.1038/s41586-020-2032-3
[16]
Verma D, Jalmi SK, Bhagat PK, et al. A bHLH transcription factor, MYC2, imparts salt intolerance by regulating proline biosynthesis in Arabidopsis. FEBS J, 2020, 287(12): 2560-2576. DOI:10.1111/febs.15157
[17]
Li Q, Wu Q, Wang AH, et al. Tartary buckwheat transcription factor FtbZIP83 improves the drought/salt tolerance of Arabidopsis via an ABA-mediated pathway. Plant Physiol Biochem, 2019, 144: 312-323. DOI:10.1016/j.plaphy.2019.10.003
[18]
Li Q, Zhao HX, Wang XL, et al. Tartary buckwheat transcription factor FtbZIP5, regulated by FtSnRK2.6, can improve salt/drought resistance in transgenic Arabidopsis. Int J Mol Sci, 2020, 21(3): 1123. DOI:10.3390/ijms21031123
[19]
Thalmann M, Pazmino D, Seung D, et al. Regulation of leaf starch degradation by abscisic acid is important for osmotic stress tolerance in plants. Plant Cell, 2016, 28(8): 1860-1878. DOI:10.1105/tpc.16.00143
[20]
An JP, Yao JF, Xu RR, et al. An apple NAC transcription factor enhances salt stress tolerance by modulating the ethylene response. Physiol Plant, 2018, 164(3): 279-289. DOI:10.1111/ppl.12724
[21]
Yang XF, Kim MY, Ha JM, et al. Overexpression of the soybean NAC gene GmNAC109 increases lateral root formation and abiotic stress tolerance in transgenic Arabidopsis plants. Front Plant Sci, 2019, 10: 1036. DOI:10.3389/fpls.2019.01036
[22]
Jung KH, Cao PJ, Seo YS, et al. The rice kinase phylogenomics database: a guide for systematic analysis of the rice kinase super-family. Trends Plant Sci, 2010, 15(11): 595-599. DOI:10.1016/j.tplants.2010.08.004
[23]
Kishi-Kaboshi M, Okada K, Kurimoto L, et al. A rice fungal MAMP-responsive MAPK cascade regulates metabolic flow to antimicrobial metabolite synthesis. Plant J, 2010, 63(4): 599-612. DOI:10.1111/j.1365-313X.2010.04264.x
[24]
Schmidt R, Mieulet D, Hubberten HM, et al. Salt-responsive ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice. Plant Cell, 2013, 25(6): 2115-2131. DOI:10.1105/tpc.113.113068
[25]
Mallikarjuna G, Mallikarjuna K, Reddy MK, et al. Expression of OsDREB2A transcription factor confers enhanced dehydration and salt stress tolerance in rice (Oryza sativa L.). Biotechnol Lett, 2011, 33(8): 1689-1697. DOI:10.1007/s10529-011-0620-x
[26]
Sun SJ, Guo SQ, Yang X, et al. Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. J Exp Bot, 2010, 61(10): 2807-2818. DOI:10.1093/jxb/erq120
[27]
Xu N, Chu YL, Chen HL, et al. Rice transcription factor OsMADS25 modulates root growth and confers salinity tolerance via the ABA-mediated regulatory pathway and ROS scavenging. PLoS Genet, 2018, 14(10): e1007662. DOI:10.1371/journal.pgen.1007662
[28]
Ma L, Ye JM, Yang YQ, et al. The SOS2-SCaBP8 complex generates and fine-tunes an AtANN4-dependent calcium signature under salt stress. Dev Cell, 2019, 48(5): 697-709, e5. DOI:10.1016/j.devcel.2019.02.010
[29]
Yu LJ, Nie JN, Cao CY, et al. Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol, 2010, 188(3): 762-773. DOI:10.1111/j.1469-8137.2010.03422.x
[30]
Shen L, Zhuang BC, Wu Q, et al. Phosphatidic acid promotes the activation and plasma membrane localization of MKK7 and MKK9 in response to salt stress. Plant Sci, 2019, 287: 110190. DOI:10.1016/j.plantsci.2019.110190
[31]
Dong ZJ, Yu YW, Li SH, et al. Abscisic acid antagonizes ethylene production through the ABI4-mediated transcriptional repression of ACS4 and ACS8 in Arabidopsis. Mol Plant, 2016, 9(1): 126-135. DOI:10.1016/j.molp.2015.09.007
[32]
Joo SJ, Liu YD, Lueth A, et al. MAPK phosphorylation-induced stabilization of ACS6 protein is mediated by the non-catalytic C-terminal domain, which also contains the cis-determinant for rapid degradation by the 26S proteasome pathway. Plant J, 2008, 54(1): 129-140. DOI:10.1111/j.1365-313X.2008.03404.x
[33]
Liu YD, Zhang SQ. Phosphorylation of 1-aminocyclopropane- 1-carboxylic acid synthase by MPK6, a stress- responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell, 2004, 16(12): 3386-3399. DOI:10.1105/tpc.104.026609
[34]
Yoo SD, Cho YH, Tena G, et al. Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature, 2008, 451(7180): 789-795. DOI:10.1038/nature06543
[35]
Wang FZ, Jing WH, Zhang WH. The mitogen-activated protein kinase cascade MKK1-MPK4 mediates salt signaling in rice. Plant Sci, 2014, 227: 181-189. DOI:10.1016/j.plantsci.2014.08.007
[36]
Testerink C, Larsen PB, van der Does D, et al. Phosphatidic acid binds to and inhibits the activity of Arabidopsis CTR1. J Exp Bot, 2007, 58(14): 3905-3914. DOI:10.1093/jxb/erm243
[37]
Wang PP, Shen L, Guo JH, et al. Phosphatidic acid directly regulates PINOID-dependent phosphorylation and activation of the PIN-FORMED2 auxin efflux transporter in response to salt stress. Plant Cell, 2019, 31(1): 250-271. DOI:10.1105/tpc.18.00528
[38]
Park J, Kim YS, Kim SG, et al. Integration of auxin and salt signals by the NAC transcription factor NTM2 during seed germination in Arabidopsis. Plant Physiol, 2011, 156(2): 537-549. DOI:10.1104/pp.111.177071
[39]
Hsieh TH, Li CW, Su RC, et al. A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response. Planta, 2010, 231(6): 1459-1473. DOI:10.1007/s00425-010-1147-4
[40]
Zhu H, Zhou YY, Zhai H, et al. A novel sweetpotato WRKY transcription factor, IbWRKY2, positively regulates drought and salt tolerance in transgenic Arabidopsis. Biomolecules, 2020, 10(4): 506. DOI:10.3390/biom10040506
[41]
Eulgem T, Rushton PJ, Robatzek S, et al. The WRKY superfamily of plant transcription factors. Trends Plant Sci, 2000, 5(5): 199-206. DOI:10.1016/S1360-1385(00)01600-9
[42]
Jiang JJ, Ma SH, Ye NH, et al. WRKY transcription factors in plant responses to stresses. J Integr Plant Biol, 2017, 59(2): 86-101. DOI:10.1111/jipb.12513
[43]
Chen F, Hu Y, Vannozzi A, et al. The WRKY transcription factor family in model plants and crops. Crit Rev Plant Sci, 2017, 36(5/6): 311-335.
[44]
Wu M, Liu HL, Han GM, et al. A mosobamboo WRKY gene PeWRKY83 confers salinity tolerance in transgenic Arabidopsis plants. Sci Rep, 2017, 7(1): 11721. DOI:10.1038/s41598-017-10795-z
[45]
Kang GJ, Yan D, Chen XL, et al. Molecular characterization and functional analysis of a novel WRKY transcription factor HbWRKY83 possibly involved in rubber production of Hevea brasiliensis. Plant Physiol Biochem, 2020, 155: 483-493. DOI:10.1016/j.plaphy.2020.08.013
[46]
Song YS, Li JL, Sui Y, et al. The sweet Sorghum SbWRKY50 is negatively involved in salt response by regulating ion homeostasis. Plant Mol Biol, 2020, 102(6): 603-614. DOI:10.1007/s11103-020-00966-4
[47]
Li JJ, Islam F, Huang Q, et al. Genome-wide characterization of WRKY gene family in Helianthus annuus L. and their expression profiles under biotic and abiotic stresses. PLoS One, 2020, 15(12): e0241965. DOI:10.1371/journal.pone.0241965
[48]
Feller A, Machemer K, Braun EL, et al. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J, 2011, 66(1): 94-116. DOI:10.1111/j.1365-313X.2010.04459.x
[49]
Liu YJ, Ji XY, Nie XG, et al. Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs. New Phytol, 2015, 207(3): 692-709. DOI:10.1111/nph.13387
[50]
陈娜, 程果, 王冕, 等. 参与植物盐胁迫调控的转录因子研究进展. 花生学报, 2016, 45(3): 44-52.
Chen N, Cheng G, Wang M, et al. Advances in the research of transcription factors involved in plant salt stress regulation. J Peanut Sci, 2016, 45(3): 44-52 (in Chinese).
[51]
Yang TR, Yao SF, Hao L, et al. Wheat bHLH-type transcription factor gene TabHLH1 is crucial in mediating osmotic stresses tolerance through modulating largely the ABA-associated pathway. Plant Cell Rep, 2016, 35(11): 2309-2323. DOI:10.1007/s00299-016-2036-5
[52]
Chen HC, Cheng WH, Hong CY, et al. The transcription factor OsbHLH035 mediates seed germination and enables seedling recovery from salt stress through ABA-dependent and ABA- independent pathways, respectively. Rice, 2018, 11(1): 50. DOI:10.1186/s12284-018-0244-z
[53]
Zhang CY, Li C, Liu J, et al. The OsABF1 transcription factor improves drought tolerance by activating the transcription of COR413-TM1 in rice. J Exp Bot, 2017, 68(16): 4695-4707. DOI:10.1093/jxb/erx260
[54]
Ooka H, Satoh K, Doi K, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res, 2003, 10(6): 239-247. DOI:10.1093/dnares/10.6.239
[55]
Greve K, La Cour T, Jensen MK, et al. Interactions between plant RING-H2 and plant-specific NAC (NAM/ATAF1/2/CUC2) proteins: RING-H2 molecular specificity and cellular localization. Biochem J, 2003, 371(1): 97-108. DOI:10.1042/bj20021123
[56]
Du H, Zhang L, Liu L, et al. Biochemical and molecular characterization of plant MYB transcription factor family. Biochemistry (Mosc), 2009, 74(1): 1-11. DOI:10.1134/S0006297909010015
[57]
Kim JH, Nguyen NH, Jeong CY, et al. Loss of the R2R3 MYB, AtMyb73, causes hyper-induction of the SOS1 and SOS3 genes in response to high salinity in Arabidopsis. J Plant Physiol, 2013, 170(16): 1461-1465. DOI:10.1016/j.jplph.2013.05.011
[58]
Dossa K, Mmadi MA, Zhou R, et al. Ectopic expression of the sesame MYB transcription factor SiMYB305 promotes root growth and modulates ABA-mediated tolerance to drought and salt stresses in Arabidopsis. AoB Plants, 2020, 12(1): plz081. DOI:10.1093/aobpla/plz081
[59]
Chen HH, Lai LY, Li LX, et al. AcoMYB4, an Ananas comosus L. MYB transcription factor, functions in osmotic stress through negative regulation of ABA signaling. Int J Mol Sci, 2020, 21(16): 5727. DOI:10.3390/ijms21165727
[60]
Li JL, Han GL, Sun CF, et al. Research advances of MYB transcription factors in plant stress resistance and breeding. Plant Signal Behav, 2019, 14(8): e1613131. DOI:10.1080/15592324.2019.1613131
[61]
Riechmann JL, Meyerowitz EM. The AP2/EREBP family of plant transcription factors. Biol Chem, 1998, 379(6): 633-646.
[62]
Qin LP, Wang LQ, Guo Y, et al. An ERF transcription factor from Tamarix hispida, ThCRF1, can adjust osmotic potential and reactive oxygen species scavenging capability to improve salt tolerance. Plant Sci, 2017, 265: 154-166. DOI:10.1016/j.plantsci.2017.10.006
[63]
Zhang LX, Li ZF, Quan RD, et al. An AP2 domain-containing gene, ESE1, targeted by the ethylene signaling component EIN3 is important for the salt response in Arabidopsis. Plant Physiol, 2011, 157(2): 854-865. DOI:10.1104/pp.111.179028
[64]
Zang DD, Wang JX, Zhang X, et al. Arabidopsis heat shock transcription factor HSFA7b positively mediates salt stress tolerance by binding to an E-box-like motif to regulate gene expression. J Exp Bot, 2019, 70(19): 5355-5374. DOI:10.1093/jxb/erz261
[65]
Cai XF, Zhang CJ, Shu WB, et al. The transcription factor SlDof22 involved in ascorbate accumulation and salinity stress in tomato. Biochem Biophys Res Commun, 2016, 474(4): 736-741. DOI:10.1016/j.bbrc.2016.04.148
[66]
Guo T, Wang SM, Li Y, et al. Expression of a NGATHA1 gene from Medicago truncatula delays flowering time and enhances stress tolerance. Int J Mol Sci, 2020, 21(7): 2384. DOI:10.3390/ijms21072384
[67]
Chen KQ, Song MR, Guo YN, et al. MdMYB46 could enhance salt and osmotic stress tolerance in apple by directly activating stress-responsive signals. Plant Biotechnol J, 2019, 17(12): 2341-2355. DOI:10.1111/pbi.13151
[68]
Liu CT, Mao BG, Ou SJ, et al. OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Mol Biol, 2014, 84(1/2): 19-36.
[69]
Du C, Ma BJ, Wu ZG, et al. Reaumuria trigyna transcription factor RtWRKY23 enhances salt stress tolerance and delays flowering in plants. J Plant Physiol, 2019, 239: 38-51. DOI:10.1016/j.jplph.2019.05.012
[70]
Hu P, Zhang KM, Yang CP. BpNAC012 positively regulates abiotic stress responses and secondary wall biosynthesis. Plant Physiol, 2019, 179(2): 700-717. DOI:10.1104/pp.18.01167
[71]
Chang HC, Tsai MC, Wu SS, et al. Regulation of ABI5 expression by ABF3 during salt stress responses in Arabidopsis thaliana. Bot Stud, 2019, 60(1): 16. DOI:10.1186/s40529-019-0264-z
[72]
Liu WW, Tai HH, Li SS, et al. bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism. New Phytol, 2014, 201(4): 1192-1204. DOI:10.1111/nph.12607
[73]
Dong QL, Zhao S, Duan DY, et al. Structural and functional analyses of genes encoding VQ proteins in apple. Plant Sci, 2018, 272: 208-219. DOI:10.1016/j.plantsci.2018.04.029
[74]
Hu YR, Chen LG, Wang HP, et al. Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance. Plant J, 2013, 74(5): 730-745. DOI:10.1111/tpj.12159
[75]
Wang J, Nan N, Li N, et al. A DNA methylation reader-chaperone regulator-transcription factor complex activates OsHKT1;5 expression during salinity stress. Plant Cell, 2020, 32(11): 3535-3558. DOI:10.1105/tpc.20.00301
[76]
Cheng XL, Zhang SX, Tao WC, et al. INDETERMINATE SPIKELET1 recruits histone deacetylaseand a transcriptional repression complex to regulate rice salt tolerance. Plant Physiol, 2018, 178(2): 824-837. DOI:10.1104/pp.18.00324
[77]
Yang G, Zhang W, Liu Z, et al. Both JrWRKY2 and JrWRKY7 of Juglans regia mediate responses to abiotic stresses and abscisic acid through formation of homodimers and interaction. Plant Biol (Stuttg), 2017, 19(2): 268-278. DOI:10.1111/plb.12524
[78]
Wang YM, Wang C, Guo HY, et al. BplMYB46 from Betula platyphylla can form homodimers and heterodimers and is involved in salt and osmotic stresses. Int J Mol Sci, 2019, 20(5): 1171. DOI:10.3390/ijms20051171
[79]
Yu L, Liu WJ, Guo ZW, et al. Interaction between MdMYB63 and MdERF106 enhances salt tolerance in apple by mediating Na+/H+ transport. Plant Physiol Biochem, 2020, 155: 464-471. DOI:10.1016/j.plaphy.2020.08.017
[80]
He L, Wu YH, Zhao Q, et al. Chrysanthemum DgWRKY2 gene enhances tolerance to salt stress in transgenic Chrysanthemum. Int J Mol Sci, 2018, 19(7): E2062. DOI:10.3390/ijms19072062
[81]
Wang K, Wu YH, Tian XQ, et al. Overexpression of DgWRKY4 enhances salt tolerance in Chrysanthemum seedlings. Front Plant Sci, 2017, 8: 1592. DOI:10.3389/fpls.2017.01592
[82]
Lv BB, Wu Q, Wang AH, et al. A WRKY transcription factor, FtWRKY46, from Tartary buckwheat improves salt tolerance in transgenic Arabidopsis thaliana. Plant Physiol Biochem, 2020, 147: 43-53. DOI:10.1016/j.plaphy.2019.12.004
[83]
Ma Q, Xia Z, Cai Z, et al. GmWRKY16 enhances drought and salt tolerance through an ABA-mediated pathway in Arabidopsis thaliana. Front Plant Sci, 2018, 9: 1979.
[84]
Mzid R, Zorrig W, Ben Ayed R, et al. The grapevine VvWRKY2 gene enhances salt and osmotic stress tolerance in transgenic Nicotiana tabacum. 3 Biotech, 2018, 8(6): 277. DOI:10.1007/s13205-018-1301-4
[85]
Gao F, Zhou J, Deng RY, et al. Overexpression of a Tartary buckwheat R2R3-MYB transcription factor gene, FtMYB9, enhances tolerance to drought and salt stresses in transgenic Arabidopsis. J Plant Physiol, 2017, 214: 81-90. DOI:10.1016/j.jplph.2017.04.007
[86]
Huang YJ, Zhao HX, Gao F, et al. A R2R3-MYB transcription factor gene, FtMYB13, from Tartary buckwheat improves salt/drought tolerance in Arabidopsis. Plant Physiol Biochem, 2018, 132: 238-248. DOI:10.1016/j.plaphy.2018.09.012
[87]
Zhao YY, Yang ZE, Ding YP, et al. Over-expression of an R2R3 MYB Gene, GhMYB73, increases tolerance to salt stress in transgenic Arabidopsis. Plant Sci, 2019, 286: 28-36. DOI:10.1016/j.plantsci.2019.05.021
[88]
Zhang X, Chen LC, Shi QH, et al. SlMYB102, an R2R3-type MYB gene, confers salt tolerance in transgenic tomato. Plant Sci, 2020, 291: 110356. DOI:10.1016/j.plantsci.2019.110356
[89]
Wu JD, Jiang YL, Liang YN, et al. Expression of the maize MYB transcription factor ZmMYB3R enhances drought and salt stress tolerance in transgenic plants. Plant Physiol Biochem, 2019, 137: 179-188. DOI:10.1016/j.plaphy.2019.02.010
[90]
Wang Y, Cao SJ, Guan CJ, et al. Overexpressing the NAC transcription factor LpNAC13 from Lilium pumilum in tobacco negatively regulates the drought response and positively regulates the salt response. Plant Physiol Biochem, 2020, 149: 96-110. DOI:10.1016/j.plaphy.2020.01.036
[91]
Han DG, Du M, Zhou ZY, et al. Overexpression of a Malus baccata NAC transcription factor gene MbNAC25 increases cold and salinity tolerance in Arabidopsis. Int J Mol Sci, 2020, 21(4): 1198. DOI:10.3390/ijms21041198
[92]
He K, Zhao X, Chi XY, et al. A novel Miscanthus NAC transcription factor MlNAC10 enhances drought and salinity tolerance in transgenic Arabidopsis. J Plant Physiol, 2019, 233: 84-93. DOI:10.1016/j.jplph.2019.01.001
[93]
Yang XW, He K, Chi XY, et al. Miscanthus NAC transcription factor MlNAC12 positively mediates abiotic stress tolerance in transgenic Arabidopsis. Plant Sci, 2018, 277: 229-241. DOI:10.1016/j.plantsci.2018.09.013
[94]
Guan HR, Liu X, Niu F, et al. OoNAC72, a NAC-type Oxytropis ochrocephala transcription factor, conferring enhanced drought and salt stress tolerance in Arabidopsis. Front Plant Sci, 2019, 10: 890.
[95]
Xie LH, Cai MM, Li XY, et al. Overexpression of PheNAC3 from mosobamboo promotes leaf senescence and enhances abiotic stress tolerance in Arabidopsis. Peer J, 2020, 8: e8716. DOI:10.7717/peerj.8716
[96]
Wang LQ, Li Z, Lu MZ, et al. ThNAC13, a NAC transcription factor from Tamarix hispida, confers salt and osmotic stress tolerance to transgenic Tamarix and Arabidopsis. Front Plant Sci, 2017, 8: 635. DOI:10.3389/fpls.2017.00635
[97]
Zhao BY, Hu YF, Li JJ, et al. BnaABF2, a bZIP transcription factor from rapeseed (Brassica napus L.), enhances drought and salt tolerance in transgenic Arabidopsis. Bot Stud, 2016, 57(1): 12. DOI:10.1186/s40529-016-0127-9
[98]
Yang Y, Yu TF, Ma J, et al. The soybean bZIP transcription factor gene GmbZIP2 confers drought and salt resistances in transgenic plants. Int J Mol Sci, 2020, 21(2): 670. DOI:10.3390/ijms21020670
[99]
Li YY, Chen QZ, Nan HY, et al. Overexpression of GmFDL19 enhances tolerance to drought and salt stresses in soybean. PLoS One, 2017, 12(6): e0179554. DOI:10.1371/journal.pone.0179554
[100]
Li B, Liu Y, Cui XY, et al. Genome-wide characterization and expression analysis of soybean TGA transcription factors identified a novel TGA gene involved in drought and salt tolerance. Front Plant Sci, 2019, 10: 549. DOI:10.3389/fpls.2019.00549
[101]
Wang WB, Qiu XP, Yang YX, et al. Sweet potato bZIP transcription factor IbABF4 confers tolerance to multiple abiotic stresses. Front Plant Sci, 2019, 10: 630. DOI:10.3389/fpls.2019.00630
[102]
Zhang L, Zhang LC, Xia C, et al. A novel wheat C-bZIP gene, TabZIP14-B, participates in salt and freezing tolerance in transgenic plants. Front Plant Sci, 2017, 8: 710. DOI:10.3389/fpls.2017.00710
[103]
Qu YJ, Nong QD, Jian SG, et al. An AP2/ERF gene, HuERF1, from pitaya (Hylocereus undatus) positively regulates salt tolerance. Int J Mol Sci, 2020, 21(13): 4586. DOI:10.3390/ijms21134586
[104]
Li Y, Zhang H, Zhang Q, et al. An AP2/ERF gene, IbRAP2-12, from sweetpotato is involved in salt and drought tolerance in transgenic Arabidopsis. Plant Sci, 2019, 281: 19-30. DOI:10.1016/j.plantsci.2019.01.009
[105]
Cao BB, Shu LX, Li A. Functional characterization of LkERF-B2 for improved salt tolerance ability in Arabidopsis thaliana. 3 Biotech, 2019, 9(7): 1-13.
[106]
Sharma V, Goel P, Kumar S, et al. An apple transcription factor, MdDREB76, confers salt and drought tolerance in transgenic tobacco by activating the expression of stress-responsive genes. Plant Cell Rep, 2019, 38(2): 221-241. DOI:10.1007/s00299-018-2364-8
[107]
Wang YX, Wang J, Zhao XQ, et al. Overexpression of the transcription factor gene OsSTAP1 increases salt tolerance in rice. Rice, 2020, 13(1): 50. DOI:10.1186/s12284-020-00405-4
[108]
Li ZJ, Tian YS, Xu J, et al. A tomato ERF transcription factor, SlERF84, confers enhanced tolerance to drought and salt stress but negatively regulates immunity against Pseudomonas syringae pv. tomato DC3000. Plant Physiol Biochem, 2018, 132: 683-695. DOI:10.1016/j.plaphy.2018.08.022